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ABSTRACT. We study the problem of discrepancy of finite point sets in the unit
square with respect to convex polygons, when the directions of the edges are
fixed, when the number of edges is bounded, as well as when no such restric-
tions are imposed. In all three cases, we obtain estimates for the supremum
norm that are very close to best possible.

1. INTRODUCTION

Suppose that P is a distribution of N > 1 points, not necessarily distinct, in
the unit square [0, 1]?. For every Lebesgue measurable set A C [0,1]2, let Z[P; A]
denote the number of points of P that fall into A, and consider the discrepancy
function

D[P; A] = Z[P; A] = Nu(A), (1)
where p(A) denotes the measure (or area) of A. We shall study the discrepancy
function (1) when the subsets A are closed convex polygons in [0, 1]2. More precisely,
we study the behaviour of the function

sup | D[P; Al
AcA

with respect to three classes A of convex polygons in [0, 1]%.

Notation. We adopt standard Vinogradov notation. For two functions f and g,
we write f < g to denote the existence of a positive constant ¢ such that |f] < ¢g.
For any non-negative functions f and g, we write f > g to denote the existence of
a positive constant ¢ such that f > cg. The inequality signs < and > may be used
with subscripts involving parameters such as k and O, in which case the positive
constant ¢ in question may depend on the parameters indicated.

Let © = (0y,...,0;), where 01,...,0; € [0,7) are fixed. We denote by A(O)
the collection of all convex polygons A in [0,1]? such that every side of A makes
an angle 6; for some ¢ = 1,...,k with the positive horizontal axis. Note that if
© = (0,7/2), then A(O) is simply the collection of all aligned rectangles in [0, 1]2.
Then the famous result of Schmidt [12] shows that for every set P of N points in
[0,1]2, we have

sup  |D[P;A]| > log N. (2)
A€ A(0,7/2)
This result is best possible, apart from the implicit constant in the inequality, as
an old result of Lerch [10] implies that there exists a set P of N points in [0, 1]?
such that
sup  |D[P; A]| < log N.
A€ A(0,m/2)
For the general case, the ideas in Beck and Chen [4] can be adapted easily to show
that for every set P of N points in [0, 1]2, we have

sup |D[P;A]| >e log N.
A€ A(O)
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Here we establish the following complementary result.

Theorem 1. Suppose that © = (0y,...,0y), where 01,...,0; € [0,7) are fized.
Then for every integer N > 1, there exists a set P of N points in [0,1]? such that
sup |D[P;A]| <e logN.
AcA(©)

Next, we relax the restriction on the direction of the sides of the convex polygons
and replace this with a restriction on the number of sides instead. We denote by
Ay, the collection of all convex polygons in [0,1]? with at most k sides. Then a
result of Beck [1] implies that for every set P of N points in [0, 1]%, we have

sup |D[P; A]| > N4 (3)
Ae Ay

Here we establish the following upper bound.

Theorem 2. For every integer N > 1, there exists a set P of N points in [0, 1]
such that
sup |D[P; A]| < N'/*(log N)'/2. (4)
AeAg
Finally, we relax all the restrictions on the direction and number of sides of the
convex polygons. Accordingly, we denote by A* the collection of all convex polygons
in [0,1]%. Our study is motivated by the wonderfully elegant work of Schmidt [13]
and Beck [2] on the collection C* of all convex sets in [0, 1]%. Here, for every set P
of N points in [0, 1]?, we have
sup |D[P; A]| > N/3. (5)
AeC*
This is essentially best possible. For every integer N > 1, there exists a set P of IV
points in [0, 1] such that

sup |D[P; A]| < NY/3(log N)*.
Aec*

Here we establish the following lower bound.

Theorem 3. For every integer N > 1, for every set P of N points in [0,1]%, we
have
sup |D[P; A]| > N/3. (6)
AeA*

We remark that some of the arguments can be extended to polytopes in the
d-dimensional unit cube [0,1]¢. In particular, the inequalities (3) and (4) can
be generalized to arbitrary dimensions d, with the exponent 1/4 replaced by the
exponent 1/2 — 1/2d, while the inequalities (5) and (6) can also be generalized to
arbitrary dimensions d, with the exponent 1/3 replaced by the exponent 1—2/(d+1).
On the other hand, the generalization of the inequality (2) to arbitrary dimensions
is one of the most frustrating unsolved problems in the subject. For example, we
do not know whether for every set P of N points in the cube [0,1]3, there is an
aligned rectangular box A in [0, 1] such that |D[P; A]| > (log N)2.

2. DIOPHANTINE APPROXIMATION

To establish Theorem 1, we shall follow the argument of Beck and Chen [5]
and make use of a suitably scaled and rotated copy of the lattice Z2. The rota-
tion is made possible by the following result on diophantine approximation due to
Davenport [7].
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Lemma 2.1. Suppose that f1,..., [, are real valued functions of a real variable,
with continuous first derivatives in some open interval I containing some point
ag € R such that fi(ag),. .., fl(ag) are all non-zero. Then there exists o € I such
that f1(a),..., fr(a) are all badly approximable.

Remark. A real number 0, such as # = /2, is said to be badly approximable if
there exists a constant ¢ > 0 such that n||nf|| > ¢ for every natural number n € N.
Here ||8]| denotes the distance of 5 from the nearest integer.

More precisely, we shall use the following simple consequence.

Lemma 2.2. Suppose that the angles 01, ...,60, € [0,7) are fixzed. Then there exists
a € [0,27) such that

tan o, tan(a — 7/2), tan(a — 601), . .., tan(a — 6y)
are all finite and badly approzimable.

We shall be concerned with the collection A(©) of convex polygons in [0,1]?,
where 01,...,0, € [0,7) are fixed. Recall that every side of such a polygon A €
A(©) makes an angle 6; for some ¢ = 1,...,k with the positive horizontal axis.

Corresponding to the given ©, we now choose a value of « from Lemma 2.2 and
keep it fixed throughout. We would like to consider the lattice A formed by rotating
the lattice (N ~'/2Z)? anticlockwise by the angle o about the origin. In particular,
we are interested in the lattice points of A that fall into [0,1]?2. Notationally,
however, it is far simpler to rescale and rotate the unit square [0, 1] and the convex
polygons in A(©). Accordingly, we consider the following rescaled and rotated
variant of the original problem.

Let U denote the image of the square [0, N'/?]? rotated clockwise by the angle
a about the origin, and let Ayx(0O;«) denote the collection of all convex polygons
B in U such that every side of B either is parallel to a side of U or makes an angle
0; — « for some i = 1,...,k with the positive horizontal axis. For every measurable
subset B C U, let Z(B) denote the number of lattice points of Z? that fall into B,
and write E(B) = Z(B) — u(B). We need the following intermediate result.

Lemma 2.3. For every B € Ayx(0;a), we have
|E(B)| <e log N.
Deduction of Theorem 1. Unfortunately, the set Z2 N U does not necessarily have

precisely N points. Let Q denote a set of precisely N points in U obtained by
adding to or removing from Z2 N U precisely ||Z? N U| — N| points. Note that

12> NU| = N| = |E(U)| <e log N,

in view of Lemma 2.3. For every B € Ax(©;a), we now let Z[Q; B] denote the
number of points of @ in B. Then

1Z2]Q; B] — u(B)| < |E(B)| +1Z(B) — Z[; B|

<|EB)|+12(U) - z[:U]|

= |EB)|+|EU)

< log N.
Now let P be obtained by rotating N~1/2Q anticlockwise by the angle o. Then P
is a set of precisely N points in [0,1]%, and the inequality

|D[P; A]| <o log N

holds for every convex polygon A € A(O). O
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Proof of Lemma 2.3. We adopt the convention that 61, ..., 60 are distinct, but note
that no convex polygon can have three parallel sides. For every n = (ny,ns) € Z2,
let

S(n) = (n1 — 3,n1 + 3] % (n2 — 3,m2 + 3.

For any convex polygon B € Ax(0;a), let
N ={neZ:Smn)nB+#0p},
so that
E(B)=Y_ E(BNS(n)).
neN
Furthermore, for every i = 1,...,k, let T; denote the edge(s) of B that makes the
angle 6; — o with the positive horizontal axis, let T;* denote the totality of all the
other edges of B, and write
Ni={neN:Sm)NT; #0and S(n)NT; =0}.
We also write
Nt ={n € N : there exist i’ # i" with S(n) N Ty # 0 and S(n) N Ty # 0}

and

N ={neN:Sn)NT; =0 for every i}.
Clearly N = M U...UN, UNTUN, and

k
EB)=> > EBnSm)+ Y EBNSm)+ Y EBNSMH). (7)

i=1 neN; neN+ neN—
It is easy to see that |[NT| = Og(1) and that |[E(B N S(n))| <1 for every n € NV,

so that
> E(BNS(n)) = 0e(1). (8)
neN+
It is also easy to see that

>~ E(BNS(n))=0. (9)
neN -
Combining (7)—(9), we conclude that

k
E(B)=>_ Y E(BNSD))+0e(1).

i=1 neN;
To prove Lemma 2.3, it remains to prove that for every ¢ = 1,..., k, we have
Y E(BnS(n)) <e log N. (10)
HENi
Write p; = 0; — . In view of symmetry, we may assume that 0 < ¢; < 7/4. There
are at most two edges of B that makes the angle ¢; with the positive horizontal

axis. Let one of these lie on the line
T2 — a2

= tan ¢;,
r1 —ay

where (z1,22) € R? denotes any point on the line and where a; and ao are real

constants. Elementary calculation then shows that the contribution from this edge
to the sum in (10) is given by

+ Z Y(ag + (m — a1) tan ¢;),
A;<m<B;

where A; and B; are integers satisfying 0 < A4; < B; < V2N 2. and where
P(z) = z — [2] — 1/2 for every z € R. Since tan ; is badly approximable, giving
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rise to good distribution of the sequence m tan ¢; modulo 1, the well-known result
of Lerch [10] (see also Hardy and Littlewood [8, 9] and Davenport [6]) shows that

Z P(ag + (M —ar) tan g;) <y, log(B; — A; +2) <, log N.
A;<m<B;

This establishes the inequality (10), and completes the proof of Lemma 2.3. ]

3. AN ARGUMENT OF BECK

To study Theorem 2, we use an elaboration of the idea of Beck as discussed in
Section 8.1 of [3]. It is convenient to restrict the natural number N to be a perfect
square, so that N = M? for some natural number M. This restriction can be lifted
easily, in view of Lagrange’s theorem that every positive integer is a sum of at most
four integer squares, so that we can superimpose up to four point distributions
where the number of points in each is a perfect square.

We shall consider a rescaled version of the problem, and study sets of N points in
the square [0, M]%. Let k € N be fixed, with k > 3. We denote by Gy, the collection
of all convex polygons in [0, M]? which have at most k sides. Suppose that P is a
set of N points in [0, M]?. For every measurable subset A C [0, M]?, let Z[P; A]
denote the number of points of P that fall into A, and let E[P; A] = Z[P; A] — u(A)
denote the corresponding discrepancy. We would like to show that there exists a
set P of N points in [0, M]? such that for every convex polygon A € Gy, we have

|E[P; A]] <1 NY*(log N)Y/2.

Our first step is to approximate the convex polygons in Gi by a special finite
collection of polygons. Let 6 = (6kM)~!, and let H; denote the collection of all
convex polygons in [0, M]? with at most 4k sides and with vertices on (§Z)2N[0, M]?.
It is easy to see that |(6Z)? N[0, M]?| = (6kN + 1)2, so that

4k
6kN +1)2 ,
| M| sdz_g (( p ) ) < p N,

where the constant ¢, depends at most on k.

Lemma 3.1. For every convex polygon A € Gy, there exist two convex polygons
BY, B~ € Hy, such that B~ C AC B* and n(BT\ B™) < 1.

Lemma 3.2. There exists a set P of N points in [0, M]? such that for every convex
polygon B € Hy,, we have

|E[P; B]| < C,,N'/*(log N)*/2,
where the constant C, depends at most on k.

Before we establish these two lemmas, we shall first complete the very short
deduction of Theorem 2.

Deduction of Theorem 2. For every convex polygon A € Gy, it is not difficult to
show that the convex polygons BY, B~ € Hj given by Lemma 3.1 satisfy the
inequality

|E[P; A]| < max{|E[P; B™||,|E[P; B]|} + w(B" \ B7)
< Cp NY4(log N)Y2 41
This gives Theorem 2 immediately. O

We shall establish Lemma 3.2 in Section 4, and Lemma 3.1 in Section 5.
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4. LARGE DEVIATION
In this section, we establish Lemma 3.2 using a large deviation type argument.
For every 1 = (f1,45) € Z2N[0,M)2, let qu € S(1) = [l1,¢1 + 1) x [la,ls + 1) be
a random point uniformly distributed in S(1) and independent of the points in the
other squares, and consider the random point set
P={q:1ez>n[0,M)?}.
Consider a fixed convex polygon B € Hy, and let
L(B)={leZ*N[0,M)*:S1)NOB # 0}.
Then it is easy to show that
|L(B)| < 4N'/2,
For any 1 € L(B), let

1 ifq e B,
512{ i

0 otherwise.
Then
E[P;Bl= ) (4—E&).
1€L(B)
We now use the following large deviation type inequality due to Hoeffding; see,
for example, Appendix B of Pollard [11].

Lemma 4.1. Suppose that &1,...,&y are independent random variables such that
0<¢ <1 foreveryi=1,...,m. Then for every v > 0,

Prob <
m = |L(B)| < 4NY/2,

and choose 7 = Cx N'/4(log N)'/? with a sufficiently large constant Cj. Then it is
easy to check that

m

> (& —E&)

i=1

> 7) < 277/,

Note that

v? - CZN'/2logN i

St 08N Yk e N
m = AN/Z 1 0B

so that
4e—2'y2/m S 4N_Cg/2 S C];l]v—sk7

where the last inequality is valid for all N > 2 provided that C}, is large enough in
terms of k and ¢j. Since

%|Hk|_l > %Clle_gk > 28—2’y2/m’
we have
Prob (|E[7'5;B]| > O, NY4(log N)1/2) < Lyt
If we now consider all convex polygons B € Hy, then the above implies
Prob (|E[73,B]| > Cx NY4(log N)'/2 for some B € Hk) <
and so
Prob (\E[ﬁ,BH < CpNY4(log N)Y/2 for all B € Hk) > 1

This completes the proof of Lemma 3.2.
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5. CONVEXITY

In this section, we establish Lemma 3.1 using a convexity argument. Recall that
Gr. denotes the collection of all convex polygons in [0, M]? which have at most k
sides, and H}, denotes the collection of all convex polygons in [0, M]? with at most
4k sides and with vertices on (§Z)? N [0, M]?, where § = (6kM)~ 1.

For convenience, we make an ad hoc definition. By a §-square, we mean a closed
square of side § and with all vertices in (6Z)? N [0, M]?.

5.1. The Outer Convex Polygon B*. Suppose that a convex polygon A € G
is given. Corresponding to every vertex v of A, we shall define the set Oy of “outer
grid points” corresponding to v. We distinguish two cases:

e Case 1: Suppose that v € (6Z)%2 N [0, M]?. Then we take O, = {v}.

e Case 2: Suppose that v ¢ (6Z)? N [0, M]?. Then we take Oy to be the
collection of the vertices outside A or on the boundary of A of all é-squares
that contain v and whose interior intersect the boundary of A.

To construct the convex polygons BT € Hj, given in Lemma 3.1, we simply let
BT =ch {U Oy : v is a vertex of A}

denote the convex hull of all the outer grid points of A. Trivially, the convex polygon
B7 has at most 4k sides, since A has at most k sides. The inclusion A C Bt is
immediate from our definition. On the other hand, we have

n(B\A) < . (11)

To see this, note that any point of Oy has vertical or horizontal distance at most 2
from the (extended) edges of A that intersect at v. It follows that the set B* \ A
is contained in the union of k sets, each of area at most 20M. The inequality (11)
follows immediately.

5.2. The Inner Convex Polygon B~. Suppose that a convex polygon A € G is
given. Here we run into some technical complications caused by the possibility of A
having some vertices that are very close together. To overcome these complications,
we introduce an iterative process whereby we can remove some of the vertices of A,
one at a time, to obtain a smaller polygon A*.

Start with Ag = A. For each ¢ = 0,1,2,..., we remove, if possible, a vertex of
the polygon A; by taking one of the steps below, and denote by A;;; the convex
polygon formed with the remaining vertices:

e Option 1: Remove a vertex v of A; if a d-square containing v contains
another vertex of A;.

e Option 2: Remove a vertex v of A; if all four vertices of every J-square
containing v lie outside A; and at least one of the following two conditions
is satisfied:

— The horizontal distance from v to an adjacent vertex of A; is less than
the horizontal distance in the same direction from v to any grid point
of (6Z)% N [0, M]? lying inside A; or on the boundary of A;.
— The vertical distance from v to an adjacent vertex of A; is less than
the vertical distance in the same direction from v to any grid point of
(6Z)2 N [0, M]? lying inside A; or on the boundary of A;.
Note that A;11 C A;, and u(A; \ Aip1) < 6M.
This iterative process stops when it is no longer possible to remove any vertex of
a convex polygon under either option, and we denote by A* the last convex polygon
obtained from A by this process. Note that

p(A\ AY) < joM, (12)
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where j is the number of vertices of A removed by this process. Note that the
convex polygon A* may not be unique, and has at most k& — j sides.

Corresponding to every vertex v of A*, we shall define the set Z,, of “inner grid
points” corresponding to v. We distinguish two cases:

e Case 1: Suppose that v € (§Z)2 N [0, M]2. Then we take Z, = {v}.

e Case 2: Suppose that v ¢ (6Z)2 N [0, M]2. Let F, denote the collection of
vertices inside A* or on the boundary of A* of all d-squares that contain
v and whose interior intersect the boundary of A* — there is only one such
d-square, unless v lies on the boundary of two adjacent ones in which case
there are precisely two. There are three possibilities:

— If 7y # 0, then we take Z, = Fy.

— If 7, =0, and no point of the lattice (6Z)% N [0, M]? lies inside A* or
on the boundary of A*, then we take Z, = 0.

— If /, = 0, and there are points of the lattice (6Z)% N [0, M]? that
lie inside A* or on the boundary of A*, then for every d-square that
contains v and whose interior intersects the boundary of A*, one or
more of its four edges must have the following property: The edge
intersects A*, and there is a grid line of (6Z)? N [0, M]?, parallel to
this edge, closest to v but on the other side of this edge from v, that
contains points of (§Z)?N[0, M]? that lie inside A* or on the boundary
of A*. We take Z, to include all such grid points of (6Z)% N [0, M]?
on these closest grid lines that lie inside A* or on the boundary of A*.
The following is easy to prove: If the boundary of A* crosses precisely
one edge or three edges of the d-square, then the elements of Z, arising
from this d-square lie on at most one grid line. If the boundary of A*
crosses precisely two edges of the d-square, then the elements of Z,
arising from this d-square lie on at most two distinct grid lines, only
one of which can contain more than one element of Z,,. Note that the
boundary of A* cannot cross all four edges of the d-square, as this
would imply that no point of the lattice (6Z)% N [0, M]? lies inside A*
or on the boundary of A*.

To construct the convex polygons B~ € Hj given in Lemma 3.1, we simply let
B~ =ch {UIV 1 v is a vertex of A*}

denote the convex hull of all the inner grid points of A*, with the convention that
B~ =0 if 7, = ( for every vertex v of A*. Trivially, the convex polygon B~ has
fewer than 4k sides, since A* has at most k sides. The inclusions B~ C A* C A
are immediate from our definitions. On the other hand, we have

p(A\B7) < 3. (13)

To see this, note that each vertex v of A* contributes at most three vertices of
B~. Moreover, any point of Z, has vertical or horizontal distance at most ¢ from
the edges of A* that intersect at v. It follows that the set A*\ B~ is contained in
the union of k — j sets “along the edges”, each of area at most 6 M, and the union
of at most 2(k — j) triangles “near the vertices”, each of area at most 6M. The
inequality (13) then follows at once on noting the inequality (12). The case when
B~ = () is trivial.

6. AN ELEMENTARY GEOMETRIC ARGUMENT

In this section, we adapt the wonderfully elegant geometric argument described
in Schmidt [13] to give a simple proof of Theorem 3.
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Consider the circle of radius 1/2 lying within the unit square [0,1]2. Now let
k=[N 1/ 3], and let A denote a regular convex polygon of k sides inscribed in this
circle. Elementary calculation shows that any triangle whose three vertices are one
of the vertices of A and the midpoints of the two adjacent edges has area

1 .7 wm_1/27\° 1 _1
4Sin3kcosk>8(7rk) :ﬁzﬁ’ (14)
Corresponding to each vertex of A, we now consider an isosceles triangle of area

1/2N and with its two equal sides lying on the two edges of A adjacent to this
vertex. Let Bi,..., Bs denote those isosceles triangles which contain points of P,
and let C1,...,C}; denote those isosceles triangles which do not contain points of
P. Clearly

D[P;B;] > 3+ foreveryi=1,...,s,
and

D[P;C;] = —% forevery j=1,...,t.
Furthermore, the triangles By, ..., B, C1,...,C; are pairwise disjoint, in view of
(14) above, and s+t = k = [N'/3]. Tt is also easy to see that both

AT =A\(B1U...UBs) and A~ =A\(CiU...UCy)

are convex polygons. But now

S t
t k 1
DP; A~ - DIP; A*| =S " D[P;B] - S DIP;Cy > 24 - =5 = Z(NY3
It follows that
ID[P; A7) = JIN'3] or |DI[P; AY]| > 1[N/,

and this completes the proof of Theorem 3.
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