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Abstract. We study the problem of discrepancy of finite point sets in the unit

square with respect to convex polygons, when the directions of the edges are
fixed, when the number of edges is bounded, as well as when no such restric-

tions are imposed. In all three cases, we obtain estimates for the supremum

norm that are very close to best possible.

1. Introduction

Suppose that P is a distribution of N > 1 points, not necessarily distinct, in
the unit square [0, 1]2. For every Lebesgue measurable set A ⊆ [0, 1]2, let Z[P;A]
denote the number of points of P that fall into A, and consider the discrepancy
function

D[P;A] = Z[P;A]−Nµ(A), (1)
where µ(A) denotes the measure (or area) of A. We shall study the discrepancy
function (1) when the subsetsA are closed convex polygons in [0, 1]2. More precisely,
we study the behaviour of the function

sup
A∈A
|D[P;A]|

with respect to three classes A of convex polygons in [0, 1]2.

Notation. We adopt standard Vinogradov notation. For two functions f and g,
we write f � g to denote the existence of a positive constant c such that |f | ≤ cg.
For any non-negative functions f and g, we write f � g to denote the existence of
a positive constant c such that f ≥ cg. The inequality signs� and� may be used
with subscripts involving parameters such as k and Θ, in which case the positive
constant c in question may depend on the parameters indicated.

Let Θ = (θ1, . . . , θk), where θ1, . . . , θk ∈ [0, π) are fixed. We denote by A(Θ)
the collection of all convex polygons A in [0, 1]2 such that every side of A makes
an angle θi for some i = 1, . . . , k with the positive horizontal axis. Note that if
Θ = (0, π/2), then A(Θ) is simply the collection of all aligned rectangles in [0, 1]2.
Then the famous result of Schmidt [12] shows that for every set P of N points in
[0, 1]2, we have

sup
A∈A(0,π/2)

|D[P;A]| � logN. (2)

This result is best possible, apart from the implicit constant in the inequality, as
an old result of Lerch [10] implies that there exists a set P of N points in [0, 1]2

such that
sup

A∈A(0,π/2)

|D[P;A]| � logN.

For the general case, the ideas in Beck and Chen [4] can be adapted easily to show
that for every set P of N points in [0, 1]2, we have

sup
A∈A(Θ)

|D[P;A]| �Θ logN.
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Here we establish the following complementary result.

Theorem 1. Suppose that Θ = (θ1, . . . , θk), where θ1, . . . , θk ∈ [0, π) are fixed.
Then for every integer N > 1, there exists a set P of N points in [0, 1]2 such that

sup
A∈A(Θ)

|D[P;A]| �Θ logN.

Next, we relax the restriction on the direction of the sides of the convex polygons
and replace this with a restriction on the number of sides instead. We denote by
Ak the collection of all convex polygons in [0, 1]2 with at most k sides. Then a
result of Beck [1] implies that for every set P of N points in [0, 1]2, we have

sup
A∈Ak

|D[P;A]| �k N
1/4. (3)

Here we establish the following upper bound.

Theorem 2. For every integer N > 1, there exists a set P of N points in [0, 1]2

such that
sup
A∈Ak

|D[P;A]| �k N
1/4(logN)1/2. (4)

Finally, we relax all the restrictions on the direction and number of sides of the
convex polygons. Accordingly, we denote byA∗ the collection of all convex polygons
in [0, 1]2. Our study is motivated by the wonderfully elegant work of Schmidt [13]
and Beck [2] on the collection C∗ of all convex sets in [0, 1]2. Here, for every set P
of N points in [0, 1]2, we have

sup
A∈C∗

|D[P;A]| � N1/3. (5)

This is essentially best possible. For every integer N > 1, there exists a set P of N
points in [0, 1]2 such that

sup
A∈C∗

|D[P;A]| � N1/3(logN)4.

Here we establish the following lower bound.

Theorem 3. For every integer N > 1, for every set P of N points in [0, 1]2, we
have

sup
A∈A∗

|D[P;A]| � N1/3. (6)

We remark that some of the arguments can be extended to polytopes in the
d-dimensional unit cube [0, 1]d. In particular, the inequalities (3) and (4) can
be generalized to arbitrary dimensions d, with the exponent 1/4 replaced by the
exponent 1/2 − 1/2d, while the inequalities (5) and (6) can also be generalized to
arbitrary dimensions d, with the exponent 1/3 replaced by the exponent 1−2/(d+1).
On the other hand, the generalization of the inequality (2) to arbitrary dimensions
is one of the most frustrating unsolved problems in the subject. For example, we
do not know whether for every set P of N points in the cube [0, 1]3, there is an
aligned rectangular box A in [0, 1]3 such that |D[P;A]| � (logN)2.

2. Diophantine Approximation

To establish Theorem 1, we shall follow the argument of Beck and Chen [5]
and make use of a suitably scaled and rotated copy of the lattice Z2. The rota-
tion is made possible by the following result on diophantine approximation due to
Davenport [7].
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Lemma 2.1. Suppose that f1, . . . , fr are real valued functions of a real variable,
with continuous first derivatives in some open interval I containing some point
α0 ∈ R such that f ′1(α0), . . . , f ′r(α0) are all non-zero. Then there exists α ∈ I such
that f1(α), . . . , fr(α) are all badly approximable.

Remark. A real number θ, such as θ =
√

2, is said to be badly approximable if
there exists a constant c > 0 such that n‖nθ‖ > c for every natural number n ∈ N.
Here ‖β‖ denotes the distance of β from the nearest integer.

More precisely, we shall use the following simple consequence.

Lemma 2.2. Suppose that the angles θ1, . . . , θk ∈ [0, π) are fixed. Then there exists
α ∈ [0, 2π) such that

tanα, tan(α− π/2), tan(α− θ1), . . . , tan(α− θk)

are all finite and badly approximable.

We shall be concerned with the collection A(Θ) of convex polygons in [0, 1]2,
where θ1, . . . , θk ∈ [0, π) are fixed. Recall that every side of such a polygon A ∈
A(Θ) makes an angle θi for some i = 1, . . . , k with the positive horizontal axis.

Corresponding to the given Θ, we now choose a value of α from Lemma 2.2 and
keep it fixed throughout. We would like to consider the lattice Λ formed by rotating
the lattice (N−1/2Z)2 anticlockwise by the angle α about the origin. In particular,
we are interested in the lattice points of Λ that fall into [0, 1]2. Notationally,
however, it is far simpler to rescale and rotate the unit square [0, 1]2 and the convex
polygons in A(Θ). Accordingly, we consider the following rescaled and rotated
variant of the original problem.

Let U denote the image of the square [0, N1/2]2 rotated clockwise by the angle
α about the origin, and let AN (Θ;α) denote the collection of all convex polygons
B in U such that every side of B either is parallel to a side of U or makes an angle
θi−α for some i = 1, . . . , k with the positive horizontal axis. For every measurable
subset B ⊆ U , let Z(B) denote the number of lattice points of Z2 that fall into B,
and write E(B) = Z(B)− µ(B). We need the following intermediate result.

Lemma 2.3. For every B ∈ AN (Θ;α), we have

|E(B)| �Θ logN.

Deduction of Theorem 1. Unfortunately, the set Z2 ∩ U does not necessarily have
precisely N points. Let Q denote a set of precisely N points in U obtained by
adding to or removing from Z2 ∩ U precisely ||Z2 ∩ U | −N | points. Note that

||Z2 ∩ U | −N | = |E(U)| �Θ logN,

in view of Lemma 2.3. For every B ∈ AN (Θ;α), we now let Z[Q;B] denote the
number of points of Q in B. Then

|Z[Q;B]− µ(B)| ≤ |E(B)|+ |Z(B)− Z[Q;B]|
≤ |E(B)|+ |Z(U)− Z[Q;U ]|
= |E(B)|+ |E(U)|
�Θ logN.

Now let P be obtained by rotating N−1/2Q anticlockwise by the angle α. Then P
is a set of precisely N points in [0, 1]2, and the inequality

|D[P;A]| �Θ logN

holds for every convex polygon A ∈ A(Θ). �
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Proof of Lemma 2.3. We adopt the convention that θ1, . . . , θk are distinct, but note
that no convex polygon can have three parallel sides. For every n = (n1, n2) ∈ Z2,
let

S(n) = (n1 − 1
2 , n1 + 1

2 ]× (n2 − 1
2 , n2 + 1

2 ].
For any convex polygon B ∈ AN (Θ;α), let

N = {n ∈ Z2 : S(n) ∩B 6= ∅},
so that

E(B) =
∑
n∈N

E(B ∩ S(n)).

Furthermore, for every i = 1, . . . , k, let Ti denote the edge(s) of B that makes the
angle θi − α with the positive horizontal axis, let T ∗i denote the totality of all the
other edges of B, and write

Ni = {n ∈ N : S(n) ∩ Ti 6= ∅ and S(n) ∩ T ∗i = ∅}.
We also write

N+ = {n ∈ N : there exist i′ 6= i′′ with S(n) ∩ Ti′ 6= ∅ and S(n) ∩ Ti′′ 6= ∅}
and

N− = {n ∈ N : S(n) ∩ Ti = ∅ for every i}.
Clearly N = N1 ∪ . . . ∪Nk ∪N+ ∪N−, and

E(B) =
k∑
i=1

∑
n∈Ni

E(B ∩ S(n)) +
∑

n∈N+

E(B ∩ S(n)) +
∑

n∈N−
E(B ∩ S(n)). (7)

It is easy to see that |N+| = OΘ(1) and that |E(B ∩ S(n))| ≤ 1 for every n ∈ N ,
so that ∑

n∈N+

E(B ∩ S(n)) = OΘ(1). (8)

It is also easy to see that ∑
n∈N−

E(B ∩ S(n)) = 0. (9)

Combining (7)–(9), we conclude that

E(B) =
k∑
i=1

∑
n∈Ni

E(B ∩ S(n)) +OΘ(1).

To prove Lemma 2.3, it remains to prove that for every i = 1, . . . , k, we have∑
n∈Ni

E(B ∩ S(n))�Θ logN. (10)

Write ϕi = θi−α. In view of symmetry, we may assume that 0 ≤ ϕi ≤ π/4. There
are at most two edges of B that makes the angle ϕi with the positive horizontal
axis. Let one of these lie on the line

x2 − a2

x1 − a1
= tanϕi,

where (x1, x2) ∈ R2 denotes any point on the line and where a1 and a2 are real
constants. Elementary calculation then shows that the contribution from this edge
to the sum in (10) is given by

±
∑

Ai≤m≤Bi

ψ(a2 + (m− a1) tanϕi),

where Ai and Bi are integers satisfying 0 ≤ Ai ≤ Bi ≤
√

2N1/2, and where
ψ(z) = z − [z] − 1/2 for every z ∈ R. Since tanϕi is badly approximable, giving
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rise to good distribution of the sequence m tanϕi modulo 1, the well-known result
of Lerch [10] (see also Hardy and Littlewood [8, 9] and Davenport [6]) shows that∑

Ai≤m≤Bi

ψ(a2 + (m− a1) tanϕi)�ϕi
log(Bi −Ai + 2)�ϕi

logN.

This establishes the inequality (10), and completes the proof of Lemma 2.3. �

3. An Argument of Beck

To study Theorem 2, we use an elaboration of the idea of Beck as discussed in
Section 8.1 of [3]. It is convenient to restrict the natural number N to be a perfect
square, so that N = M2 for some natural number M . This restriction can be lifted
easily, in view of Lagrange’s theorem that every positive integer is a sum of at most
four integer squares, so that we can superimpose up to four point distributions
where the number of points in each is a perfect square.

We shall consider a rescaled version of the problem, and study sets of N points in
the square [0,M ]2. Let k ∈ N be fixed, with k ≥ 3. We denote by Gk the collection
of all convex polygons in [0,M ]2 which have at most k sides. Suppose that P is a
set of N points in [0,M ]2. For every measurable subset A ⊆ [0,M ]2, let Z[P;A]
denote the number of points of P that fall into A, and let E[P;A] = Z[P;A]−µ(A)
denote the corresponding discrepancy. We would like to show that there exists a
set P of N points in [0,M ]2 such that for every convex polygon A ∈ Gk, we have

|E[P;A]| �k N
1/4(logN)1/2.

Our first step is to approximate the convex polygons in Gk by a special finite
collection of polygons. Let δ = (6kM)−1, and let Hk denote the collection of all
convex polygons in [0,M ]2 with at most 4k sides and with vertices on (δZ)2∩[0,M ]2.
It is easy to see that |(δZ)2 ∩ [0,M ]2| = (6kN + 1)2, so that

|Hk| ≤
4k∑
d=3

(
(6kN + 1)2

d

)
≤ ckN8k,

where the constant ck depends at most on k.

Lemma 3.1. For every convex polygon A ∈ Gk, there exist two convex polygons
B+, B− ∈ Hk such that B− ⊆ A ⊆ B+ and µ(B+ \B−) ≤ 1.

Lemma 3.2. There exists a set P of N points in [0,M ]2 such that for every convex
polygon B ∈ Hk, we have

|E[P;B]| ≤ CkN1/4(logN)1/2,

where the constant Ck depends at most on k.

Before we establish these two lemmas, we shall first complete the very short
deduction of Theorem 2.

Deduction of Theorem 2. For every convex polygon A ∈ Gk, it is not difficult to
show that the convex polygons B+, B− ∈ Hk given by Lemma 3.1 satisfy the
inequality

|E[P;A]| ≤ max{|E[P;B−]|, |E[P;B+]|}+ µ(B+ \B−)

≤ CkN1/4(logN)1/2 + 1

This gives Theorem 2 immediately. �

We shall establish Lemma 3.2 in Section 4, and Lemma 3.1 in Section 5.
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4. Large Deviation

In this section, we establish Lemma 3.2 using a large deviation type argument.
For every l = (`1, `2) ∈ Z2 ∩ [0,M)2, let ql ∈ S(l) = [`1, `1 + 1) × [`2, `2 + 1) be
a random point uniformly distributed in S(l) and independent of the points in the
other squares, and consider the random point set

P̃ = {ql : l ∈ Z2 ∩ [0,M)2}.

Consider a fixed convex polygon B ∈ Hk, and let

L(B) = {l ∈ Z2 ∩ [0,M)2 : S(l) ∩ ∂B 6= ∅}.

Then it is easy to show that
|L(B)| ≤ 4N1/2.

For any l ∈ L(B), let

ξl =
{

1 if ql ∈ B,
0 otherwise.

Then
E[P̃;B] =

∑
l∈L(B)

(ξl − Eξl).

We now use the following large deviation type inequality due to Hoeffding; see,
for example, Appendix B of Pollard [11].

Lemma 4.1. Suppose that ξ1, . . . , ξm are independent random variables such that
0 ≤ ξi ≤ 1 for every i = 1, . . . ,m. Then for every γ > 0,

Prob

(∣∣∣∣∣
m∑
i=1

(ξi − Eξi)

∣∣∣∣∣ ≥ γ
)
≤ 2e−2γ2/m.

Note that
m = |L(B)| ≤ 4N1/2,

and choose γ = CkN
1/4(logN)1/2 with a sufficiently large constant Ck. Then it is

easy to check that
γ2

m
≥ C2

kN
1/2 logN

4N1/2
=
C2
k

4
logN,

so that
4e−2γ2/m ≤ 4N−C

2
k/2 ≤ c−1

k N−8k,

where the last inequality is valid for all N ≥ 2 provided that Ck is large enough in
terms of k and ck. Since

1
2 |Hk|

−1 ≥ 1
2c
−1
k N−8k ≥ 2e−2γ2/m,

we have
Prob

(
|E[P̃;B]| ≥ CkN1/4(logN)1/2

)
≤ 1

2 |Hk|
−1.

If we now consider all convex polygons B ∈ Hk, then the above implies

Prob
(
|E[P̃;B]| ≥ CkN1/4(logN)1/2 for some B ∈ Hk

)
≤ 1

2 ,

and so
Prob

(
|E[P̃;B]| ≤ CkN1/4(logN)1/2 for all B ∈ Hk

)
≥ 1

2 .

This completes the proof of Lemma 3.2.
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5. Convexity

In this section, we establish Lemma 3.1 using a convexity argument. Recall that
Gk denotes the collection of all convex polygons in [0,M ]2 which have at most k
sides, and Hk denotes the collection of all convex polygons in [0,M ]2 with at most
4k sides and with vertices on (δZ)2 ∩ [0,M ]2, where δ = (6kM)−1.

For convenience, we make an ad hoc definition. By a δ-square, we mean a closed
square of side δ and with all vertices in (δZ)2 ∩ [0,M ]2.

5.1. The Outer Convex Polygon B+. Suppose that a convex polygon A ∈ Gk
is given. Corresponding to every vertex v of A, we shall define the set Ov of “outer
grid points” corresponding to v. We distinguish two cases:

• Case 1: Suppose that v ∈ (δZ)2 ∩ [0,M ]2. Then we take Ov = {v}.
• Case 2: Suppose that v 6∈ (δZ)2 ∩ [0,M ]2. Then we take Ov to be the

collection of the vertices outside A or on the boundary of A of all δ-squares
that contain v and whose interior intersect the boundary of A.

To construct the convex polygons B+ ∈ Hk given in Lemma 3.1, we simply let

B+ = ch
{⋃
Ov : v is a vertex of A

}
denote the convex hull of all the outer grid points of A. Trivially, the convex polygon
B+ has at most 4k sides, since A has at most k sides. The inclusion A ⊆ B+ is
immediate from our definition. On the other hand, we have

µ(B+ \A) ≤ 1
2 . (11)

To see this, note that any point of Ov has vertical or horizontal distance at most 2δ
from the (extended) edges of A that intersect at v. It follows that the set B+ \ A
is contained in the union of k sets, each of area at most 2δM . The inequality (11)
follows immediately.

5.2. The Inner Convex Polygon B−. Suppose that a convex polygon A ∈ Gk is
given. Here we run into some technical complications caused by the possibility of A
having some vertices that are very close together. To overcome these complications,
we introduce an iterative process whereby we can remove some of the vertices of A,
one at a time, to obtain a smaller polygon A∗.

Start with A0 = A. For each i = 0, 1, 2, . . . , we remove, if possible, a vertex of
the polygon Ai by taking one of the steps below, and denote by Ai+1 the convex
polygon formed with the remaining vertices:

• Option 1: Remove a vertex v of Ai if a δ-square containing v contains
another vertex of Ai.

• Option 2: Remove a vertex v of Ai if all four vertices of every δ-square
containing v lie outside Ai and at least one of the following two conditions
is satisfied:

– The horizontal distance from v to an adjacent vertex of Ai is less than
the horizontal distance in the same direction from v to any grid point
of (δZ)2 ∩ [0,M ]2 lying inside Ai or on the boundary of Ai.

– The vertical distance from v to an adjacent vertex of Ai is less than
the vertical distance in the same direction from v to any grid point of
(δZ)2 ∩ [0,M ]2 lying inside Ai or on the boundary of Ai.

Note that Ai+1 ⊆ Ai, and µ(Ai \Ai+1) ≤ δM .
This iterative process stops when it is no longer possible to remove any vertex of

a convex polygon under either option, and we denote by A∗ the last convex polygon
obtained from A by this process. Note that

µ(A \A∗) ≤ jδM, (12)
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where j is the number of vertices of A removed by this process. Note that the
convex polygon A∗ may not be unique, and has at most k − j sides.

Corresponding to every vertex v of A∗, we shall define the set Iv of “inner grid
points” corresponding to v. We distinguish two cases:

• Case 1: Suppose that v ∈ (δZ)2 ∩ [0,M ]2. Then we take Iv = {v}.
• Case 2: Suppose that v 6∈ (δZ)2 ∩ [0,M ]2. Let Fv denote the collection of

vertices inside A∗ or on the boundary of A∗ of all δ-squares that contain
v and whose interior intersect the boundary of A∗ – there is only one such
δ-square, unless v lies on the boundary of two adjacent ones in which case
there are precisely two. There are three possibilities:

– If Fv 6= ∅, then we take Iv = Fv.
– If Fv = ∅, and no point of the lattice (δZ)2 ∩ [0,M ]2 lies inside A∗ or

on the boundary of A∗, then we take Iv = ∅.
– If Fv = ∅, and there are points of the lattice (δZ)2 ∩ [0,M ]2 that

lie inside A∗ or on the boundary of A∗, then for every δ-square that
contains v and whose interior intersects the boundary of A∗, one or
more of its four edges must have the following property: The edge
intersects A∗, and there is a grid line of (δZ)2 ∩ [0,M ]2, parallel to
this edge, closest to v but on the other side of this edge from v, that
contains points of (δZ)2∩ [0,M ]2 that lie inside A∗ or on the boundary
of A∗. We take Iv to include all such grid points of (δZ)2 ∩ [0,M ]2

on these closest grid lines that lie inside A∗ or on the boundary of A∗.
The following is easy to prove: If the boundary of A∗ crosses precisely
one edge or three edges of the δ-square, then the elements of Iv arising
from this δ-square lie on at most one grid line. If the boundary of A∗

crosses precisely two edges of the δ-square, then the elements of Iv
arising from this δ-square lie on at most two distinct grid lines, only
one of which can contain more than one element of Iv. Note that the
boundary of A∗ cannot cross all four edges of the δ-square, as this
would imply that no point of the lattice (δZ)2 ∩ [0,M ]2 lies inside A∗

or on the boundary of A∗.
To construct the convex polygons B− ∈ Hk given in Lemma 3.1, we simply let

B− = ch
{⋃
Iv : v is a vertex of A∗

}
denote the convex hull of all the inner grid points of A∗, with the convention that
B− = ∅ if Iv = ∅ for every vertex v of A∗. Trivially, the convex polygon B− has
fewer than 4k sides, since A∗ has at most k sides. The inclusions B− ⊆ A∗ ⊆ A
are immediate from our definitions. On the other hand, we have

µ(A \B−) ≤ 1
2 . (13)

To see this, note that each vertex v of A∗ contributes at most three vertices of
B−. Moreover, any point of Iv has vertical or horizontal distance at most δ from
the edges of A∗ that intersect at v. It follows that the set A∗ \B− is contained in
the union of k − j sets “along the edges”, each of area at most δM , and the union
of at most 2(k − j) triangles “near the vertices”, each of area at most δM . The
inequality (13) then follows at once on noting the inequality (12). The case when
B− = ∅ is trivial.

6. An Elementary Geometric Argument

In this section, we adapt the wonderfully elegant geometric argument described
in Schmidt [13] to give a simple proof of Theorem 3.
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Consider the circle of radius 1/2 lying within the unit square [0, 1]2. Now let
k = [N1/3], and let A denote a regular convex polygon of k sides inscribed in this
circle. Elementary calculation shows that any triangle whose three vertices are one
of the vertices of A and the midpoints of the two adjacent edges has area

1
4

sin3 π

k
cos

π

k
≥ 1

8

(
2
π

π

k

)3

=
1
k3
≥ 1
N
. (14)

Corresponding to each vertex of A, we now consider an isosceles triangle of area
1/2N and with its two equal sides lying on the two edges of A adjacent to this
vertex. Let B1, . . . , Bs denote those isosceles triangles which contain points of P,
and let C1, . . . , Ct denote those isosceles triangles which do not contain points of
P. Clearly

D[P;Bi] ≥ 1
2 for every i = 1, . . . , s,

and
D[P;Cj ] = − 1

2 for every j = 1, . . . , t.
Furthermore, the triangles B1, . . . , Bs, C1, . . . , Ct are pairwise disjoint, in view of
(14) above, and s+ t = k = [N1/3]. It is also easy to see that both

A+ = A \ (B1 ∪ . . . ∪Bs) and A− = A \ (C1 ∪ . . . ∪ Ct)
are convex polygons. But now

D[P;A−]−D[P;A+] =
s∑
i=1

D[P;Bi]−
t∑

j=1

D[P;Cj ] ≥
s

2
+
t

2
=
k

2
=

1
2

[N1/3].

It follows that

|D[P;A−]| ≥ 1
4 [N1/3] or |D[P;A+]| ≥ 1

4 [N1/3],

and this completes the proof of Theorem 3.
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Dipartimento di Statistica, Università di Milano-Bicocca, Edificio U7, Via Bicocca
degli Arcimboldi 8, 20126 Milano, Italy

E-mail address: giancarlo.travaglini@unimib.it


