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DISCREPANCY FOR RANDOMIZED RIEMANN SUMS
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ABSTRACT. Given a finite sequence Uy = {u1,...,un} of points contained
in the d-dimensional unit torus, we consider the L2 discrepancy between the
integral of a given function and the Riemann sums with respect to translations
of Un. We show that with positive probability, the L2 discrepancy of other
sequences close to Uy in a certain sense preserves the order of decay of the
discrepancy of Upy. We also study the role of the regularity of the given
function.

1. INTRODUCTION

Let N € N be a given large number, let Uy = {uy,...,un} be a distribution

of N points in the unit cube [—3, 2)?, treated as the torus T¢, and let f be a real

function on T?. Suppose that for suitable choices of Uy and f, the Riemann sums

1N
N Z fluj — =)
j=1
are, after an L? average on the variable 2 € T¢, good approximations of the integral

f(s)ds.
']I‘d

What corresponding statement can we make concerning those sequences close to
the sequence Un? Do such sequences mostly share the same good behavior?

2. A RANDOMIZATION ARGUMENT

In order to start discussing these questions, we introduce the following random-
ization of Uy; see [3, 6] and also [8, 9]. Let du denote a probability measure on T¢.
For every j = 1,..., N, let du; denote the measure obtained after translating du
by u;. More precisely, for any integrable function g on T, we have

/ng(t) dpy = /ng(t — u;) dp.
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Let dt denote the Lebesgue measure on T¢. For every sequence Vy = {v1,...,on}
in T and every function f € L?(T9,dt), we introduce, for every t € T¢, the dis-
crepancy

N
D(t,Vy) d:ef%Zf(vj 1) - N £(s)ds.
j=1

Observe that D(-,Vy) is a periodic function with Fourier series

N _
Z % Z o= 2mikv; J?(k,)ezmk-t7
j=1

0#£keZd

and the Parseval identity yields

2

N
def 1 Tik-v; =
D*(Vy) = DGV liaaan = D |7 2¢"™ | TR
0#£kezZd j=1

We now average D(Vy) in L*(T¢,dp;) for every j =1,..., N, and consider

1/2
D, (Un) </T [ D) o). ..de(vN)> .

In this paper we study the relation between Dq4,(Un) and D(Uy). In the case
N = M where M € N, and

1 1 1\¢
M) Uy = 220 [— ) |

the above quantities were studied in relation to the sharpness of a result of Beck [1]
and of Montgomery [10] on irregularities of distribution; see Remark 3 below. In
[6] two of the authors compared the quantities D(Uy) and D4, (Ux) in the case (1)
and when f is the characteristic function of a ball. Here we study the problem in
our more general setting, and we are mainly interested in whether the inequality

(2) Dap(Un) < cD(Un)

holds.

Throughout this paper, the letters ¢, C, ... will denote positive constants, possi-
bly depending on f but independent of N, and which may change from one step to
the next. On the other hand, different letters B, k, ... will denote constants which
will not change throughout the paper.
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3. AN ExpriciT FORMULA
We first use a slight modification of an argument in [6] to obtain an explicit
formula for g4, (Un). We have

(3) D3u(Un)

1 Y Tik-v; Iy
/]I‘d'”/i;‘d Z N;GQ Foil 1 F(R) P dpa (vr) - .- dpw (o)

0£keZ? J

0#k€eZ?

= > 1P

0#k€eZ?

N
iy 1 1 mik-vj —2wik-v
Yo WP | 5+ Z// Fraem R dp (v;)dp (vr)
i 0=1
Tt

N

1 1 2mik-(ug—uy) 27ik-v; ,—2mik-v
x N+]\72j;16 ‘ 0 ) © e “dpu(vj)dp(ve)

2

S OFEE |+ amP ii’“ 1
N Nj:l N

0#keZd
1 | X 2
=5 Z If ()21 — |ak) ) + Z ROKGE Nze2ﬂ'1k~uj
0#£keZ4 0thezd =
1

=N (Hf”i?(’[[‘d,dt) —|f=* dMH%Q(Td,dt)) + 1 D(-, Un) * dM||2L2(Td,dt)-

There are two natural extremal measures. The first one is du = §y, the Dirac
measure centred at 0. In this case, we have

Ds,(Un) = D(Un).

On the other hand, when dy = dt, we have

1
95,(Un) = N <||f||%2(’[[‘d,dt) - ‘/Td f(t)de

)
the classical Monte-Carlo error.
Note that if ND?(Uy) > ¢, then D4;(Un) < c1D(Uy), and (2) follows easily.
Another very peculiar case is when D(Uy) = 0. We observe that in general this
does not imply D4, (Un) = 0, so that (2) does not hold. Indeed, let Uy be given
by (1). Then

1 omibew, | 1 ifke MZ?,
) N Ze T= { 0 otherwise.

j=1
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Now choose f(t) = exp(2mikg - t) for some kg € Z¢\ MZ?. Then D(Uy) = 0. On
the other hand, it follows from (3) that

D3, (Ux) = (1~ [lko) ) £ 0

whenever |fi(ko)| # 1, which is easily fulfilled, particularly by several measures with
small support around the origin.
Hence, throughout the paper, we will be interested only in the case when

0< D(Uy) < N~V2,

Let 0 < ey < 1. For every probability measure du supported on the unit cube
[f%, %)d, let du{N) denote the probability measure defined by

(5) [ o©au™€) = [ gene)dute).

Rd Rd
Then du™) is supported on the subcube [—%51\/, %51\/)”1, and can be regarded as a
measure on T%,

4. MAIN RESULT

We first state our main result.

Theorem 1. Let f € L?(T¢,dt) and let Uy = {u1,...,un} be a distribution of
N points in the cube [—%, L)% Assume that 0 < D(Uy) < N=Y2. Let du be a
non-Dirac probability measure on T?, let duN) be defined by (5) with 0 < ey < 1,

and let

g3 if o < 1,
ny =1 edlog(l+ey') ifa=1,
% if a > 1.

(i) If for some a > 0 and for every p > 1 we have

(6) Yo FRP<ep

p<|k|<2p
then
(7) 9%,.00(Un) <enyN~'+ D*(Uy).
(ii) If there exists an open cone' Q C R? such that for every subcone I' C Q,
.. 20 Iy 2
(8) lminfp®*  } | f(R)* >0,
kel
p<|k|<2p

then there exist positive constants A < 1 and ¢ such that if ey < A, then
@ZH(N) (UN) 2 CUNNil.

The following corollary shows that, in some sense, good sequences are never
alone. Indeed we give conditions on ey that will ensure that D4, (Ux) and
D(Uy) are comparable.

Un this paper every cone starts from the origin.
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Corollary 2. Let f, Uy and du be as given in Theorem 1.
(i) Let f be as given in part (i) of Theorem 1 and let
(NY2D(UN)Y ifa <1,
(9) en <4 Bn if =1,
N'/2D(Uy) if > 1,
where By satisfies 3% log(1+ By') = ND*(Uy). Then
D%, (Un) <cD*(Uy).
(ii) Let f and A be as given in part (ii) of Theorem 1 and let k > 0. Then
there exists ¢ > 0 such that whenever
k(NY2D(UN)Y> ifa <1,
(10) AZeny =< KON ifa=1,
kNY2D(Uy) if a > 1,
we have
D%, (Un) = ¢ D*(Uy).

Remark 3. Consider the particular case when f = x4, the characteristic function
of a convex body A C [—3, )% Then (6) holds with a = 3. Let ey = A ND*(Uy).
Then

92,0 (Un) < e D*(Uy).

If furthermore the boundary of A is smooth and has positive Gaussian curvature
then (8) holds with a = ; see, for instance, [7]. We then have

D3, (Un) = ¢ D*(Un).

We recall that if A is rotated and contracted, then a result of Beck [1] and of
Montgomery [10] says that

1 1 N 2
— Xo(rA (u»—t)—rd|A| dtdrdo > e N—1-1/4
/SO(d)/o /’Jl‘d Nj; (ret

for every choice of the point set distribution Uy; see also [2, 4, 5]. We also recall
that this is not true if the contraction is omitted; see [12, Theorem 3.1].

5. DECAY OF THE FOURIER COEFFICIENTS

The assumption (6) concerns the decay of the Fourier coefficients of f. This
behavior can be naturally related to the smoothness of the function f as follows.
Let f € L%(T%), define Ay f(x) = f(x + h) — f(z) and, for every integer £ > 1,
write Af;f = AhAf;lf. Let o > 0. We say that f belongs to the Nikol’skii space
HS(T) if there exists ¢ > 0 such that

1/2
( / A£f<x>|2dx> < c|hl®
’H‘d

for some ¢ > 1; see [11, Section 4.3.3].

Proposition 4. Let f € HS(T%). Then (6) holds.
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Proof. Since A/h\f(k) = (e2miFh _ 1) f(k), we have A/fL\J”(k) = (e2mikh _ 1)L F (). Let
h = (1/10p,0,...,0) and ' = {k € Z% : k¥ > k3 + ... + k2}. Observe that when
k€T and p < |k| < 2p, we have [e?™*" — 1| > ¢. Therefore

Yoo FmP<e Y [T ER D) PIFR)P < e D AL f(R)]
kel kel kezd
p<|k|<2p p<|k|<2p

—c [ IALS@Pdr < clbPe = cp
'[[‘d

Note here that h is tailored on I'. Since we can cover Z¢ with a finite number of
cones, the proposition follows from the above argument applied to different choices
of h. 0

We begin the proof of Theorem 1 with a technical lemma.

Lemma 5. Let dv be a probability measure supported on [—%, %)d, Then either

(i) dv is the Dirac measure &, at a point to € [—3,2)%; or
(i) 1—12()? = O(|¢]?) as € — 0, and any open cone in R? contains an open

subcone T such that 1 — |U(€)|? = c¢|€|? for small £ €T.

Proof. Since dv is compactly supported, its Fourier transform 7 is smooth and has
Taylor expansion

D(€) =1+ VD(0) - € + $Hp(0)¢ - € + o([€]?),
and so

L= [P = 1= 2(€)p(=¢) = (VP(0) - §)* — Hp(0)¢ - & + o([¢]*) = O(¢]).

Let F(£) = (VU(0)-€)? — H5(0)¢ - €, and assume that F' does not vanish identically.
Let Xg_1 = {¢ € R?: |¢| = 1}. Since F is a polynomial, it cannot vanish on an open
set and therefore {{ € £4_1 : F(€) = 0} has empty interior in ¥4_1. Since F is
homogeneous and continuous, it follows that for every open cone in R?, we can find
an open subcone I' such that |F(€)| > c[¢]? for € € T'. Therefore 1 — |7(€)]? > ¢|¢|?
for small £ € T.

Assume now that F' = 0. Observe that

ov )
6—51(0) = —27i /[Fd xjdv(zx)
and
0%y
8@2@ (0) = —4r? /[rd zjz,dr(z).
Then
Vr(0)- ¢ = 727ri/ (z-&)dv(z)
Td
and

Hol0)e € = ~in* ) [t seate) = —as* [ (€2 avia)
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Hence

0= (Vi(0) - €) — Hp(0)¢ - € = —dn? ( / (@) du(ac)) C / (€ av(a)

= 47 /Td (x-f—/w(tf) du(t))zdu(x).

Let
t():/ th(t).
Td

Since dv(z) is positive, it follows that for every fixed &, we have
v({z 1z — &t #0}) =0.

Since ¢ is arbitrary, we conclude that v({x : z—to # 0}) = 0, so that dv is supported
at tp. Since dv is a probability measure, we have dv = dy,. O

6. PROOF OF THEOREM 1

By Lemma 5, we have
L= [N ()P =1~ |a(enk)]” = Oy [k[?)-

As dy is a probability measure, we have

—

0<1— M (k) < min{l, cely|k[*}.
By (6), we have

1) SO IFERP - )P < Y 1FER)P min{l, ced k)

kezd kezd

+o0 +oo
< Zmin{l,cs?\ﬂzj} Z If(k)|? < chin{l,E?\,sz}Q*Qj“
=0 29 <[k| <2941 =0

<cexy Z 2272005 4 ¢ Z 2 e,

2i<e! 21 >ey"

There are three cases. If a < 1, we have
S FRPA— [pN(E)?) < cer
0#£keZe

If @« =1, we have

> FREQ -~ ™ (R)?) < cek log(1 + 7).

0#£keZ4

If > 1, we have

D 1FBPA - s k)P < ceh.
0£keZ?
Since du is a probability measure, we have
(12) ID(-, Un) * dpall 2 (ra,a0) < D(Un).
In view of (11) and (12), the inequality (7) follows from (3).
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Let us now prove (ii). By Lemma 5 there exists a subcone I' C € such that
1—[a(&)? = my€|? for [£] < ma, £ € T. By (8) there exist mg and my such that
for p > ms we have

Yo FR)P = map
kel
p<|k|<2p

Thus, for ey < min{msy/4mg, 1}, we have

1
D200 (UN) 2 3 (171 oo.any = 1 * A g a0 )

1 ~ —~
=% 3 IFWPC - laExk)?)
0#£keZ4
1 -~ —~
> 2 Y. WP laenk)?)
me <2< gmacy’ 27<|’l€~:.\€£27+1
2
€ C2ian2i _
>WNm1m4 Z 9—2ja92] >ceny N7

m3<2 < Emaey!
This completes the proof of Theorem 1.

Remark 6. The estimates from below for BD?M(N)(U ~) contained in Theorem 1
and Corollary 2 depend on suitable estimates for the first term

1
= (1B a1 * A0

in (3). We observe that in our setting the second term may vanish even in rather
natural examples. Indeed, let

f(I) — Z ﬁe%rikm

k0

for some v > d/2 + 1. One can easily check that (8) holds with a = v — d/2. Let

Un be as in (1) and u be the (normalized) Lebesgue measure restricted to [—%, 1)¢,

272
so that, taking ey = 1/M, we have

d .
TN (1) sin(mk; /M)
1) (k) lel[1 -

By (4) we have

-~ 1 1 c
2 _ E 2 _ E —
k#0 k#0

and
ID(, Un) % dp™ | popa .y = D |F(ME)[? | (ME)|* = 0.
k#0
On the other hand observe that, for large IV,
1 1
eny =37 2 ;N2 D(Ux) = e MY

and therefore we can apply part (ii) of Corollary 2 and obtain the inequality
gimm(UN) > CDz(UN)~
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7. CONCLUSION
Let du® be defined on (T4)N by

/ pdu® = / / p(v1 —uy,...,oN — uN)d,u(N)(vl) . ..d,u(N)(vN).
(T4)N Td Td
We can now state and prove the result introduced in the abstract.

Corollary 7. Let f, Uy and du be as given in Corollary 2.

(i) Let f and ey be as given in part (i) of Corollary 2. Then for every A
satisfying 0 < A < 1, there exists a constant ¢y > 0, independent of Uy
and such that du®({Vy : D(Vy) < exD(Un)}) = .

(ii) Let f, A and ey be as given in part (ii) of Corollary 2. Then for a suitable
constant ¢ > 0, we have du®({Vy : D(Vy) = ¢D(Uy)}) > 0.

Proof. Tf (9) holds, then Corollary 2 gives

/ .. | D*(Vn)du®(Vy) < e D*(Un).
Td Td
By the Chebyshev inequality, we have
c
du®({V : D(Vv) > exD(UN)}) < 7,
A

and so .
du®({VN : D(VN) < C)\D(UN)}) 2 1-— 07

A suitable choice of ¢y completes the proof of part (i). If (10) and (8) hold, then
Corollary 2 gives

/ .. | D*(Vy)du®(Vy) > ¢ D*(Ux)
Td Td
which easily implies du®({Vy : D(Vy) = ¢D(Un)}) > 0. O
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