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DISCREPANCY FOR RANDOMIZED RIEMANN SUMS

LUCA BRANDOLINI, WILLIAM CHEN, GIACOMO GIGANTE,

AND GIANCARLO TRAVAGLINI

Abstract. Given a finite sequence UN = {u1, . . . , uN} of points contained

in the d-dimensional unit torus, we consider the L2 discrepancy between the
integral of a given function and the Riemann sums with respect to translations

of UN . We show that with positive probability, the L2 discrepancy of other

sequences close to UN in a certain sense preserves the order of decay of the
discrepancy of UN . We also study the role of the regularity of the given

function.

1. Introduction

Let N ∈ N be a given large number, let UN = {u1, . . . , uN} be a distribution
of N points in the unit cube [− 1

2 ,
1
2 )d, treated as the torus Td, and let f be a real

function on Td. Suppose that for suitable choices of UN and f , the Riemann sums

1
N

N∑
j=1

f(uj − x)

are, after an L2 average on the variable x ∈ Td, good approximations of the integral∫
Td

f(s) ds.

What corresponding statement can we make concerning those sequences close to
the sequence UN? Do such sequences mostly share the same good behavior?

2. A Randomization Argument

In order to start discussing these questions, we introduce the following random-
ization of UN ; see [3, 6] and also [8, 9]. Let dµ denote a probability measure on Td.
For every j = 1, . . . , N , let dµj denote the measure obtained after translating dµ
by uj . More precisely, for any integrable function g on Td, we have∫

Td

g(t) dµj =
∫

Td

g(t− uj) dµ.
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Let dt denote the Lebesgue measure on Td. For every sequence VN = {v1, . . . , vN}
in Td and every function f ∈ L2(Td,dt), we introduce, for every t ∈ Td, the dis-
crepancy

D(t, VN ) def=
1
N

N∑
j=1

f(vj − t)−
∫

Td

f(s) ds.

Observe that D(·, VN ) is a periodic function with Fourier series

∑
06=k∈Zd

 1
N

N∑
j=1

e−2πik·vj

 f̂(k)e2πik·t,

and the Parseval identity yields

D2(VN ) def= ‖D(·, VN )‖2L2(Td,dt) =
∑

06=k∈Zd

∣∣∣∣∣∣ 1
N

N∑
j=1

e2πik·vj

∣∣∣∣∣∣
2

|f̂(k)|2.

We now average D(VN ) in L2(Td,dµj) for every j = 1, . . . , N , and consider

Ddµ(UN ) def=
(∫

Td

. . .

∫
Td

D2(VN ) dµ1(v1) . . . dµN (vN )
)1/2

.

In this paper we study the relation between Ddµ(UN ) and D(UN ). In the case
N = Md, where M ∈ N, and

(1) UN =
1
M

Zd ∩
[
−1

2
,

1
2

)d
,

the above quantities were studied in relation to the sharpness of a result of Beck [1]
and of Montgomery [10] on irregularities of distribution; see Remark 3 below. In
[6] two of the authors compared the quantities D(UN ) and Ddµ(UN ) in the case (1)
and when f is the characteristic function of a ball. Here we study the problem in
our more general setting, and we are mainly interested in whether the inequality

(2) Ddµ(UN ) 6 cD(UN )

holds.
Throughout this paper, the letters c, C, . . . will denote positive constants, possi-

bly depending on f but independent of N , and which may change from one step to
the next. On the other hand, different letters B, κ, . . . will denote constants which
will not change throughout the paper.
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3. An Explicit Formula

We first use a slight modification of an argument in [6] to obtain an explicit
formula for Ddµ(UN ). We have

D2
dµ(UN )(3)

=
∫

Td

. . .

∫
Td

∑
06=k∈Zd

∣∣∣∣∣∣ 1
N

N∑
j=1

e2πik·vj

∣∣∣∣∣∣
2

|f̂(k)|2 dµ1(v1) . . . dµN (vN )

=
∑

0 6=k∈Zd

|f̂(k)|2

 1
N

+
1
N2

N∑
j,`=1
j 6=`

∫
Td

∫
Td

e2πik·vj e−2πik·v` dµj(vj)dµ`(v`)


=

∑
06=k∈Zd

|f̂(k)|2

×

 1
N

+
1
N2

N∑
j,`=1
j 6=`

e2πik·(u`−uj)

∫
Td

∫
Td

e2πik·vj e−2πik·v` dµ(vj)dµ(v`)


=

∑
06=k∈Zd

|f̂(k)|2

 1
N

+ |µ̂(k)|2


∣∣∣∣∣∣ 1
N

N∑
j=1

e2πik·uj

∣∣∣∣∣∣
2

− 1
N




=
1
N

∑
06=k∈Zd

|f̂(k)|2(1− |µ̂(k)|2) +
∑

06=k∈Zd

|f̂(k)|2|µ̂(k)|2
∣∣∣∣∣∣ 1
N

N∑
j=1

e2πik·uj

∣∣∣∣∣∣
2

=
1
N

(
‖f‖2L2(Td,dt) − ‖f ∗ dµ‖2L2(Td,dt)

)
+ ‖D(·, UN ) ∗ dµ‖2L2(Td,dt).

There are two natural extremal measures. The first one is dµ = δ0, the Dirac
measure centred at 0. In this case, we have

Dδ0(UN ) = D(UN ).

On the other hand, when dµ = dt, we have

D2
dt(UN ) =

1
N

(
‖f‖2L2(Td,dt) −

∣∣∣∣∫
Td

f(t) dt
∣∣∣∣2
)
,

the classical Monte-Carlo error.
Note that if ND2(UN ) > c, then Ddt(UN ) 6 c1D(UN ), and (2) follows easily.
Another very peculiar case is when D(UN ) = 0. We observe that in general this

does not imply Ddµ(UN ) = 0, so that (2) does not hold. Indeed, let UN be given
by (1). Then

(4)
1
N

N∑
j=1

e2πik·uj =
{

1 if k ∈MZd,
0 otherwise.
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Now choose f(t) = exp(2πik0 · t) for some k0 ∈ Zd \MZd. Then D(UN ) = 0. On
the other hand, it follows from (3) that

D2
dµ(UN ) =

1
N

(1− |µ̂(k0)|2) 6= 0

whenever |µ̂(k0)| 6= 1, which is easily fulfilled, particularly by several measures with
small support around the origin.

Hence, throughout the paper, we will be interested only in the case when

0 < D(UN ) < N−1/2.

Let 0 < εN 6 1. For every probability measure dµ supported on the unit cube
[− 1

2 ,
1
2 )d, let dµ(N) denote the probability measure defined by

(5)
∫

Rd

g(ξ) dµ(N)(ξ) =
∫

Rd

g(εNξ) dµ(ξ).

Then dµ(N) is supported on the subcube [− 1
2εN ,

1
2εN )d, and can be regarded as a

measure on Td.

4. Main Result

We first state our main result.

Theorem 1. Let f ∈ L2(Td,dt) and let UN = {u1, . . . , uN} be a distribution of
N points in the cube [− 1

2 ,
1
2 )d. Assume that 0 < D(UN ) < N−1/2. Let dµ be a

non-Dirac probability measure on Td, let dµ(N) be defined by (5) with 0 < εN 6 1,
and let

ηN =


ε2α
N if α < 1,
ε2
N log(1 + ε−1

N ) if α = 1,
ε2
N if α > 1.

(i) If for some α > 0 and for every ρ > 1 we have

(6)
∑

ρ6|k|<2ρ

|f̂(k)|2 6 c ρ−2α,

then

(7) D2
dµ(N)(UN ) 6 c ηNN−1 +D2(UN ).

(ii) If there exists an open cone1 Ω ⊆ Rd such that for every subcone Γ ⊆ Ω,

(8) lim inf
ρ→+∞

ρ2α
∑
k∈Γ

ρ6|k|<2ρ

|f̂(k)|2 > 0,

then there exist positive constants ∆ 6 1 and c such that if εN 6 ∆, then

D2
dµ(N)(UN ) > c ηNN−1.

The following corollary shows that, in some sense, good sequences are never
alone. Indeed we give conditions on εN that will ensure that Ddµ(N)(UN ) and
D(UN ) are comparable.

1In this paper every cone starts from the origin.
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Corollary 2. Let f , UN and dµ be as given in Theorem 1.
(i) Let f be as given in part (i) of Theorem 1 and let

(9) εN 6

 (N1/2D(UN ))1/α if α < 1,
βN if α = 1,
N1/2D(UN ) if α > 1,

where βN satisfies β2
N log(1 + β−1

N ) = ND2(UN ). Then

D2
dµ(N)(UN ) 6 cD2(UN ).

(ii) Let f and ∆ be as given in part (ii) of Theorem 1 and let κ > 0. Then
there exists c > 0 such that whenever

(10) ∆ > εN >

 κ(N1/2D(UN ))1/α if α < 1,
κβN if α = 1,
κN1/2D(UN ) if α > 1,

we have
D2

dµ(N)(UN ) > cD2(UN ).

Remark 3. Consider the particular case when f = χA, the characteristic function
of a convex body A ⊆ [− 1

2 ,
1
2 )d. Then (6) holds with α = 1

2 . Let εN = ∆ ND2(UN ).
Then

D2
dµ(N)(UN ) 6 cD2(UN ).

If furthermore the boundary of A is smooth and has positive Gaussian curvature
then (8) holds with α = 1

2 ; see, for instance, [7]. We then have

D2
dµ(N)(UN ) > cD2(UN ).

We recall that if A is rotated and contracted, then a result of Beck [1] and of
Montgomery [10] says that∫

SO(d)

∫ 1

0

∫
Td

∣∣∣∣∣∣ 1
N

N∑
j=1

χσ(rA)(uj − t)− rd|A|

∣∣∣∣∣∣
2

dtdr dσ > cN−1−1/d

for every choice of the point set distribution UN ; see also [2, 4, 5]. We also recall
that this is not true if the contraction is omitted; see [12, Theorem 3.1].

5. Decay of the Fourier Coefficients

The assumption (6) concerns the decay of the Fourier coefficients of f . This
behavior can be naturally related to the smoothness of the function f as follows.
Let f ∈ L2(Td), define ∆hf(x) = f(x + h) − f(x) and, for every integer ` > 1,
write ∆`

hf = ∆h∆`−1
h f . Let α > 0. We say that f belongs to the Nikol’skĭı space

Hα
2 (Td) if there exists c > 0 such that(∫

Td

|∆`
hf(x)|2 dx

)1/2

6 c |h|α

for some ` > 1; see [11, Section 4.3.3].

Proposition 4. Let f ∈ Hα
2 (Td). Then (6) holds.
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Proof. Since ∆̂hf(k) = (e2πik·h− 1)f̂(k), we have ∆̂`
hf(k) = (e2πik·h− 1)`f̂(k). Let

h = (1/10ρ, 0, . . . , 0) and Γ = {k ∈ Zd : k2
1 > k2

2 + . . . + k2
d}. Observe that when

k ∈ Γ and ρ 6 |k| 6 2ρ, we have |e2πik·h − 1| > c. Therefore∑
k∈Γ

ρ6|k|<2ρ

|f̂(k)|2 6 c
∑
k∈Γ

ρ6|k|<2ρ

|(e2πik·h − 1)`|2|f̂(k)|2 6 c
∑
k∈Zd

|∆̂`
hf(k)|2

= c

∫
Td

|∆`
hf(x)|2 dx 6 c |h|2α = c ρ−2α.

Note here that h is tailored on Γ. Since we can cover Zd with a finite number of
cones, the proposition follows from the above argument applied to different choices
of h. �

We begin the proof of Theorem 1 with a technical lemma.

Lemma 5. Let dν be a probability measure supported on [− 1
2 ,

1
2 )d. Then either

(i) dν is the Dirac measure δt0 at a point t0 ∈ [− 1
2 ,

1
2 )d; or

(ii) 1− |ν̂(ξ)|2 = O(|ξ|2) as ξ → 0, and any open cone in Rd contains an open
subcone Γ such that 1− |ν̂(ξ)|2 > c |ξ|2 for small ξ ∈ Γ.

Proof. Since dν is compactly supported, its Fourier transform ν̂ is smooth and has
Taylor expansion

ν̂(ξ) = 1 +∇ν̂(0) · ξ + 1
2Hbν(0)ξ · ξ + o(|ξ|2),

and so

1− |ν̂(ξ)|2 = 1− ν̂(ξ)ν̂(−ξ) = (∇ν̂(0) · ξ)2 −Hbν(0)ξ · ξ + o(|ξ|2) = O(|ξ|2).

Let F (ξ) = (∇ν̂(0) · ξ)2−Hbν(0)ξ · ξ, and assume that F does not vanish identically.
Let Σd−1 = {ξ ∈ Rd : |ξ| = 1}. Since F is a polynomial, it cannot vanish on an open
set and therefore {ξ ∈ Σd−1 : F (ξ) = 0} has empty interior in Σd−1. Since F is
homogeneous and continuous, it follows that for every open cone in Rd, we can find
an open subcone Γ such that |F (ξ)| > c|ξ|2 for ξ ∈ Γ. Therefore 1− |ν̂(ξ)|2 > c|ξ|2
for small ξ ∈ Γ.

Assume now that F ≡ 0. Observe that

∂ν̂

∂ξj
(0) = −2πi

∫
Td

xj dν(x)

and
∂2ν̂

∂ξjξ`
(0) = −4π2

∫
Td

xjx` dν(x).

Then

∇ν̂(0) · ξ = −2πi
∫

Td

(x · ξ) dν(x)

and

Hbν(0)ξ · ξ = −4π2
∑
i,j

∫
Td

ξjξ`xjx` dν(x) = −4π2

∫
Td

(ξ · x)2 dν(x).
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Hence

0 = (∇ν̂(0) · ξ)2 −Hbν(0)ξ · ξ = −4π2

(∫
Td

(x · ξ) dν(x)
)2

+ 4π2

∫
Td

(ξ · x)2 dν(x)

= 4π2

∫
Td

(
x · ξ −

∫
Td

(t · ξ) dν(t)
)2

dν(x).

Let

t0 =
∫

Td

tdν(t).

Since dν(x) is positive, it follows that for every fixed ξ, we have

ν({x : x · ξ − ξ · t0 6= 0}) = 0.

Since ξ is arbitrary, we conclude that ν({x : x−t0 6= 0}) = 0, so that dν is supported
at t0. Since dν is a probability measure, we have dν = δt0 . �

6. Proof of Theorem 1

By Lemma 5, we have

1− |µ̂(N)(k)|2 = 1− |µ̂(εNk)|2 = O(ε2
N |k|2).

As dµ is a probability measure, we have

0 6 1− |µ̂(N)(k)|2 6 min{1, c ε2
N |k|2}.

By (6), we have∑
k∈Zd

|f̂(k)|2(1− |µ̂(N)(k)|2) 6
∑
k∈Zd

|f̂(k)|2 min{1, c ε2
N |k|2}(11)

6
+∞∑
j=0

min{1, c ε2
N22j}

∑
2j6|k|<2j+1

|f̂(k)|2 6 c
+∞∑
j=0

min{1, ε2
N22j}2−2jα

6 c ε2
N

∑
2j<ε−1

N

2(2−2α)j + c
∑

2j>ε−1
N

2−2jα.

There are three cases. If α < 1, we have∑
0 6=k∈Zd

|f̂(k)|2(1− |µ̂(N)(k)|2) 6 c ε2α
N .

If α = 1, we have ∑
06=k∈Zd

|f̂(k)|2(1− |µ̂(N)(k)|2) 6 c ε2
N log(1 + ε−1

N ).

If α > 1, we have ∑
06=k∈Zd

|f̂(k)|2(1− |µ̂(N)(k)|2) 6 c ε2
N .

Since dµ is a probability measure, we have

(12) ‖D(·, UN ) ∗ dµ‖L2(Td,dt) 6 D(UN ).

In view of (11) and (12), the inequality (7) follows from (3).
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Let us now prove (ii). By Lemma 5 there exists a subcone Γ ⊂ Ω such that
1 − |µ̂(ξ)|2 > m1|ξ|2 for |ξ| 6 m2, ξ ∈ Γ. By (8) there exist m3 and m4 such that
for ρ > m3 we have ∑

k∈Γ
ρ6|k|<2ρ

|f̂(k)|2 > m4ρ
−2α.

Thus, for εN < min{m2/4m3, 1}, we have

D2
dµ(N)(UN ) >

1
N

(
‖f‖2L2(Td,dt) − ‖f ∗ dµ(N)‖2L2(Td,dt)

)
=

1
N

∑
06=k∈Zd

|f̂(k)|2(1− |µ̂(εNk)|2)

>
1
N

∑
m362j6 1

2m2ε
−1
N

∑
k∈Γ

2j6|k|<2j+1

|f̂(k)|2(1− |µ̂(εNk)|2)

>
ε2
N

N
m1m4

∑
m362j6 1

2m2ε
−1
N

2−2jα22j > c ηNN
−1.

This completes the proof of Theorem 1.

Remark 6. The estimates from below for D2
dµ(N)(UN ) contained in Theorem 1

and Corollary 2 depend on suitable estimates for the first term
1
N

(
‖f‖2L2(Td,dt) − ‖f ∗ dµ(N)‖2L2(Td,dt)

)
in (3). We observe that in our setting the second term may vanish even in rather
natural examples. Indeed, let

f(x) =
∑
k 6=0

1
|k|γ

e2πikx

for some γ > d/2 + 1. One can easily check that (8) holds with α = γ − d/2. Let
UN be as in (1) and µ be the (normalized) Lebesgue measure restricted to [− 1

2 ,
1
2 )d,

so that, taking εN = 1/M , we have

µ̂(N)(k) = N

d∏
j=1

sin(πkj/M)
πkj

.

By (4) we have

D2(UN ) =
∑
k 6=0

|f̂(Mk)|2 =
1

M2γ

∑
k 6=0

1
|k|2γ

=
cγ
M2γ

and
‖D(·, UN ) ∗ dµ(N)‖L2(Td,dt) =

∑
k 6=0

|f̂(Mk)|2|µ̂(N)(Mk)|2 = 0.

On the other hand observe that, for large N ,

εN =
1
M
> cγN

1
2D(UN ) = cγM

d/2−γ

and therefore we can apply part (ii) of Corollary 2 and obtain the inequality
D2

dµ(N)(UN ) > cD2(UN ).
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7. Conclusion

Let dµ⊗ be defined on (Td)N by∫
(Td)N

ϕdµ⊗ =
∫

Td

. . .

∫
Td

ϕ(v1 − u1, . . . , vN − uN ) dµ(N)(v1) . . . dµ(N)(vN ).

We can now state and prove the result introduced in the abstract.

Corollary 7. Let f , UN and dµ be as given in Corollary 2.
(i) Let f and εN be as given in part (i) of Corollary 2. Then for every λ

satisfying 0 < λ < 1, there exists a constant cλ > 0, independent of UN
and such that dµ⊗({VN : D(VN ) 6 cλD(UN )}) > λ.

(ii) Let f , ∆ and εN be as given in part (ii) of Corollary 2. Then for a suitable
constant c > 0, we have dµ⊗({VN : D(VN ) > cD(UN )}) > 0.

Proof. If (9) holds, then Corollary 2 gives∫
Td

. . .

∫
Td

D2(VN ) dµ⊗(VN ) 6 cD2(UN ).

By the Chebyshev inequality, we have

dµ⊗({VN : D(VN ) > cλD(UN )}) 6 c

c2λ
,

and so
dµ⊗({VN : D(VN ) 6 cλD(UN )}) > 1− c

c2λ
.

A suitable choice of cλ completes the proof of part (i). If (10) and (8) hold, then
Corollary 2 gives ∫

Td

. . .

∫
Td

D2(VN ) dµ⊗(VN ) > cD2(UN )

which easily implies dµ⊗({VN : D(VN ) > cD(UN )}) > 0. �
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