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ABSTRACT. For every unit vector o € ¥3_1 and every r >0, let
Prp=[-1,11¢Nn{tcR:t -0 <1}

denote the intersection of the cube [—1,1]¢ with a half-space containing the
origin 0 € R?. We prove that if N is the d-th power of an odd integer, then
there exists a distribution P of N points in [~1,1]¢ such that

Sup/ |card(P N Ps) — N27¢|P, || do < cq(log N)?,
r20J5,

generalizing an earlier result of Beck and the first author.

1. INTRODUCTION

The half-space discrepancy is a typical problem in the study of irregularities of
point distribution, and represents a multi-dimensional variant of an open problem
first posed by Roth; see Schmidt [8, pages 124-125]. In its general form, it asks
whether it is possible to choose N points in a given bounded convex body in such
a way that after cutting it into two parts by hyperplanes in different ways, the
numbers of points in the two parts essentially depend only on the relative volumes.
More precisely, let P denote a distribution of N points in a bounded convex body
B C R?. For every unit vector ¢ € ¥4_; and every r > 0, consider the half-space
H,,={teR%:t o <r}, where - denotes the usual inner product in R%, and let
So.r = BN H, ;. The problem is whether?

inf sup |card(PNS,,)— N|B|7S,.,

card(P)=N >0
cEX 41

| (1)

is unbounded with N.

This question was first answered in the affirmative by Beck [2] in the case when
d = 2 and B is the unit disc, using Fourier transform techniques. Subsequently,
his almost sharp lower bound was improved by Alexander [1] who used integral-
geometric techniques to establish the L? result that for every distribution P of N
points in the unit disc, we have?

—1/2

/ / lcard(P N Sy.r) — N|Sy.||? drdo > eNY/2. (2)
1 J0

The unboundedness of (1) in this special case follows immediately.
In fact, this last bound (2) is sharp, in view of the amazing result of Matousek [6],
that there exist distributions P of N points in the unit disc such that

sup |card(P N Syr) — N|Sy || < eNY4,
>0
Urezl

IWe write |S| to denote the Lebesgue measure of a Lebesgue measurable set S.

2Throughout this paper, the letter ¢ denotes positive absolute constants which may vary in
value from one appearance to the next. Furthermore, the symbol ¢ with subscripts denotes positive
constants whose values may depend on the subscripts displayed, and again may vary in value from
one appearance to the next.
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whereupon the upper bound
—1/2

/ / lcard(P 1 Syp) — N|Sy |12 drdo < eNV/2
¥, J0

follows immediately.

However, if one replaces the L? norm by the corresponding L! norm, one gets a
rather different picture. No lower bound corresponding to (2) is currently known,
while Beck and the first author [4] have shown that for every bounded convex body
B C R? with centre of gravity at the origin and every natural number N, there
exists a distribution P of N points in B such that

R(o)
/ / |card(P N S,,) — N|B|_1|SJ’T|| drdo < ¢p(log N)2, (3)
. Jo

where R(o) =sup{t-o:t € B}.

A careful description of the above and related problems can be found in Matousek
[7, sections 3.2 and 6.6].

The authors wish to express their gratitude to the referee for his careful reading
of the manuscript and constructive comments.

2. MAIN RESULTS

The purpose of this paper is to establish an estimate in the spirit of (3), in several
variables and when the convex body is a cube. More precisely, let Q = [—1,1]¢.
For every unit vector o € X;_1 and every r > 0,

Po,=Qn{tcR:t-o<r}
denotes the intersection of the cube @ with one of the two half-spaces in R? created
by cutting R? by the hyperplane
Sor={teR:t.-oc=r} (4)
Our main result is the following.

Theorem 1. Let M > 1 be an integer, and let N = (2M + 1)¢. Then there exists
a distribution P of N points in the cube Q = [—1,1]¢ such that

sup/ lcard(P N P,.,.) — N274|P, .|| do < cq(log N)<.
r20J%,_ 1
For every integer M > 1, let

D, (M) = card((M + 3)P,, N Z%) — (M + )P, ,|.

Theorem 1 follows immediately from the following result on lattice points by a
simple scaling argument.

Theorem 2. For every integer M > 1, we have

sup / |Dy(M)|do < cq(log M)2.
Yda-1

r>0

Remark. If we replace the fraction % in the dilation (M + %)Pam of the set P, , by
a different number in the interval [0, 1), then we obtain the trivial conclusion that

D, (M) is of order M9~! for every o and .

The remainder of the paper is organized as follows. In Section 3, we begin our
proof of Theorem 2, and split our argument into two cases. We then discuss these
two cases separately in Sections 4 and 5.
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3. FOURIER TRANSFORM AND DIVERGENCE THEOREM

For every z € R, write

p(x) = (2 —4fz))y = max{2 — 4fz|, 0}.

The function ¢ is supported in [—3, 1], satisfies
and has Fourier transform ¢ given by
. 1/2 . 2sin(my/2 2
f) = [ ployeriman — (22 )
—1/2 ™Y

For every t = (t1,...,tq) € RY, write
D(t) = o(t1) ... p(ta).
For every positive integer M, write

oa(z) = M Yp(MP'z) and @y (t) = MY 401,

P (6) = /Rd Dy (t) e 2™t qt = (ML) = G(M e . p(M ey

for every & = (£1,...,&;) € Re. In particular, @M(O) =1.
Following a classical argument, we smooth the characteristic function X(M+3)P,.,

of the set (M+ é)Pmr by convolving it with ®,,;. We subsequently apply the Poisson
summation formula to the convolution

A (M1 P, = ®M ¥ X(M11)P,,
and deduce that

> Mnityyp,, (m) = > A rtbyp,, (M) = > ® s (m m)X(a+1)p,, (M)
mez? mezZ? mezd
)" p(m)Rp,, (M + 3)m). (6)
mezd

Observe next that the assumptions on ®j; imply

Z A4 i—m-aenyp, (M) < card((M + 5) Py N z%)

mez
< Z AM,(M+%+M7d+1)P0,T(m)7
mez
It follows from (6) that
DO’,T’(M) < Z )‘]\/I,(MJr%JrM*(Hl)Pg,T(m) - (M + %)d|Po,r|
mezZd
=(M+1+M NN By (m)Rp,, (M + L+ M )m)

o,

mezZa
- (M + %)dlpo,rl
<caM® D" Sy(m)Re, (M + 5+ M~ )m) +0(1), (7)
0£meZ4

and a corresponding estimate holds from below.
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We have to evaluate Xp, . (§) when [£| > 1. By the divergence theorem, we have
- _ “omigt g, 1 —2mi¢-t
Xparg—/ e dtfi/ e &-v(t)dsS,
) Py, 2m|¢|2 oP, . (£) dS:,

where v(t) is the outward unit vector and d.S; is the restriction of the Lebesgue mea-
sure to the boundary 0P, ., consisting of a bounded number of (d — 1)-dimensional
faces of Py . Let the polyhedron G, , q—1 denote one of these faces, and note that
v(t) is constant on Gy q—1. The study of Xp, (&) therefore reduces to that of a
finite number of terms of the form

€|£.2V I/J’\Ga,r,d—l(g)7 (8>

where ug, . ,_, is the restriction of the Lebesgue measure to G4, q4—1. We have two
cases.
CASE A;. The face G, 4—1 is entirely contained in the hyperplane s, ,; see (4).
CASE B;. The face G, 41 is entirely contained in one of the (d—1)-dimensional
faces of the cube Q.

4. THE CASE A;

In this section, we consider the case when the face G, 4—1 is entirely contained
in the hyperplane s, .

In this case, for every r, the face Gy, q—1 rotates with ¢ € ¥4_;, changing its
shape as well as the number of its lower dimensional faces. However, the number of
these lower dimensional faces and the lengths of their edges are bounded by positive
constants that depend only on the dimension d. Then a mild variation of the proof
of [5, Theorem 2.1(ii)] gives

(log [t])**

/zdl ¢

Remark. According to [5, Theorem 2.1(ii)], a d-dimensional polyhedron P satisfies

R )d*l
/ Re(p0)|do < cp
Yd-1

t-v .
|t|2l’LGa,7‘,d—l<t)’ do

N

It > 2.

(log p

pt
If the diameter and the number of the faces of P are bounded, then the constant
cp can be replaced by a constant ¢q. The proof of (9) starts with the divergence
theorem, and then proceeds by induction on the dimensions of the faces of P in the
following way. Write 0 = (cos@,nsing) € X4_1, with n € X459 and 0 < ¢ < 7.
By the induction assumption, we have

p=2. (9)

)d—l

N 1 (7 (log psinp)?=2 lo
/ IXp(po)|do < cp f/ (gp.—i),l (sing)?~2dp < cp {log )™
Sus plo (psing)

with the induction starting from the simple inequality

N |
/ Ibln(ebln@)ldwgc 0gp
o psing p

In the present case, the edges of P, , change in number and lengths under rotation
and translation, but this does not affect the induction argument. For the first step,
let v(p,r) denote the length of a given edge on the boundary of P, ,. Then

/” | sin(py(p, ) sin )| /2
0 sin ¢

d@<2+2/ dy < clog p,

1/p Sing

and the contribution of Case A; to the estimate of

/ |Dyr (M)] do
Sa-1
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is bounded above (see (7)) by

= log M|m]|)* !
Me P (—
Cq Z | M(m)| (M|m|)d
0#£mezd
_ ~ 1 = (log [m|)*~*
<callog M)t ) |(I)M(m)|W+Cd > |‘I’M(m)|W
0 |m|< M1 [m|>Md—1

= 0, + Oy, (10)

say. Recall that the constants c¢; may change in value from one occurrence to the
next. N N
We observe that 0 < ®p7(m) < ®5,(0) = 1, and shall bound ©; by showing that

1
> [m|d < calog M, (11)
0<|m|<Ma1
m120,...,mq20

where m = (myq,...,mg). We shall achieve this by using induction to show that

1
> m] < cqlog M (12)
0<|m|< Mt
m120,...,m 20
mk+1:0,...,md:()
holds for every k =1,...,d.
Indeed, it is trivial to show that the inequality (12) holds for & = 1, noting that
d > 2. Suppose now that this inequality holds for every k =1,2,...,d — 1. Let

Td:d{m:(m17...,md)€Zd:m1217~~-7md>17maxmj>2}' (13)
J

Then

1 1 1 1
= — ettt > 14
Z |m)|d Z |m|d " dd/2 Im|d (14)
0<|m|<Mt 0<|m|<Mt 0<|m|< Mt
m120,...,mqg >0 min; m;=0 meT

Observe that the first sum on the right hand side of (14) is a sum of a bounded
number of terms of the form

0<|m|< Mt
mj, 20,...,m_7k >0
m;=0if j&{j1,.-..Jk}

with & < d. Their overall contribution does not exceed c4log M by the induction
hypothesis — note that the quantity (15) is invariant under permutation of the
variables myq, ..., mg, and is therefore equal to the left hand side of (12). To study
the last term on the right hand side of (14), we consider the bijection (see (13))

To3m=(my,...,mg) —— (mg —1,mq] X ... x (mg —1,myg] d:CfQ,m

and note that the union of the cubes ., satisfies

U @m = (0,400)%\ (0, 1)7.

meT
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Then

PR Y

0<|m|<M1 m|<Mit m
meT mGT

1
d / 7(1 dl’
| 1<|zj<ma |7

M 1
:cd/ —ds = cqlog M.
1 S

This completes the proof of the inequality (11).
We now conclude from (10) and (11) that

01 < ca(log M)~ (16)

To study the term O, note first of all that for every m = (my,...,mq), there
| > |m|/Vd. Tn view of (5), we have

d d . _ 2
H —d+1l,, ) H (QSIH(”M d+1mj/2))
TM—d+ 1,
=1 j=1 J
. —d+1 . 2
< 2sin(mM mj«/2) < e M2 1 .
M~ lm . |m|?

<.

It follows that

_ log |m/|)?—1!
@2 § CdMQd 2 Z (|||dL?2 (17)
‘m|>Md_1 m
For s > M? ', the function
(log s)**

S
5d+2

decreases with s. We can then apply the earlier argument and control the right
hand side of (17) with an integral, which can then be handled using integration by
parts d — 1 times. More precisely, we have

Oy < cgM?42 /+OO 7(10g S)d_1 ds

= Md—1 83
+oo 1 d—2

< CdM2d72 (M22d(10g M)d71 +/ (Og 33) d5>
Md—1 S

2d—2 2-2d d—1 2-2d d—2 2 (logs)?—*
< egM M="¢(log M)*™* + M*~**(log M)“~= + —a ds
Md—1
< ... < cq(log ML, (18)

Combining (10), (16) and (18), we conclude that the contribution of Case A; to

the estimate of
/ |DU,T (M)l do
Ba-1

is bounded above by c4(log M)<.

5. THE CASE B,

In this section, we consider the case when the face G, 4—1 is entirely contained
in one of the (d — 1)-dimensional faces of the cube (. Our proof is inductive in
nature.
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Without loss of generality, we may assume that v = (0,...,0,1), so that the face
Gy r.d—1 is contained in the hyperplane t; = 1. Then (8) becomes

v —27i —27i 1) cota—1
£|§|2 lLLGa,r,d—l(f) = |§d2 e 2 fd/F e 2mi(€15v€a—1)(t1, . ta )dtl dty
o,md—1
gd O, ~
= |£‘2 e ? ngFo‘,r,d—l(£17"'7£d*1)7 (19)

where F, ;g1 = Gord—1 — v can be interpreted as a polyhedron in R41, with
characteristic function xr, , ,_,. To study (19), we consider two cases.

CASE C;. We have |(£1, . 7£d71)| <1

CASE D;. We have |(§1, - 7§d71)| > 1.

We begin with Case Cy. Recall that m € Z9, so |(my,...,mq_1)| < 1 clearly
implies m; = ... = mg_1 = 0. The contribution of this case to an upper estimate
for (7) therefore does not exceed

[ Mg 1 on 1 ag-dtt
M ST () g ]

Md-1 Mmd
0#£my€Z
too ; —d+1
_( mgq \ sin2wM mq
= 2Faraal| 3 0™ (57at) = grarny, | SHAK (0)
mdzl
where
M m sin 2r M —9+1m
__od mg d d
H=2 21(_1) Kz (Md—l) M—d+1m,
mqg=
and
K — o = Jymaz (M sin 2r M~ my,
= ; 1+1(_ )" e <Md71) M—d+1m,
mq= -

Remark. Note that the equality in (20) depends on the fraction % in the dilation
(M + %)Pg,r of the set P, ,.

For the sum H, note that we have 0 < M—d+1m, < 1, and that we can split the
interval 0 < x < 1 into a bounded number of subintervals where the function

N sin 27
r— o(z)

x
is monotone and does not change sign. It follows that the sum H is not greater
than the sum of a bounded number of Leibniz sums, and this implies H < ¢q.

For the sum in K, note that

+ . —
f my )sm27rM d+lm,

(71)md$(Md—1 M—d+1m,
mg=M3a—141

oo (1M . _
- Zo:o J Z (_l)md@( mq ) sin 27 M —4+1my,
- d— —d

= magei MA=241 Md-1 M—dtlm,

400 M o fdt
= 2T Y 0B (4 ) S e
j=1 1 Ma=1) 4+ M—d+1m,

= e

It is an exercise in the calculus to show the existence of a positive constant ¢ such
that for every index j, there are at most ¢ subintervals of the interval 0 < = < 1
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where the function
sin 27

j+x

r— () +2)

is monotone and does not change sign. Then
—+oo
K <c¢q Zj_?’ < ¢q.
j=1

Next, we turn our attention to Case D;. Applying the divergence theorem to
the polyhedron F, , q—1, we meet cases similar to Case A; and Case Bi. At the
{-th step, where 1 < ¢ < d— 1, the divergence theorem leads to one of the following
two cases.

CASE Ay. We have a (d — ¢)-dimensional face entirely contained in some hyper-
plane in R4~*+1 analogous to s,

CASE By. We have a (d — ¢)-dimensional face entirely contained in one of the
(d — ¢)-dimensional faces of the cube [—1, 1]¢~¢+1,

In Case Ay, we proceed as in Case Aj.

In Case By, we need to study terms of the form

{—1

M S TS m) | R (M + 5+ M my, o mae)),  (21)
0#mezd \j=0

where, for 0 < 7 </ —1,
. Md—j (M+5+M "ma

= PN —2mi(M+3+M ™ ymg_
—;\m) = 2 .
5(m) W(Md—l)|(M—|—%+M—d+1)(m1,...,md_j)|2

[§]

We split the sum (21) into the following two cases.

Case Cy. We have |[(mq,...,mg—¢)| < 1.
CASE Dy. We have |[(my,...,mg_¢)| > 1.
Since m1; = ... =mg_y = 0 in Case Cy, the contribution of this case to the sum

(21) is equal to

{—1

A=MYF a0l > 0 Y | TIEim)

O;ﬁ’rndfg+1 €Z 0#maq€Z \j=0

To study this sum, write

B(mg_eq1,...,mg-1) = Z Eo(m)

0#£my€EZL
7 QM a1 = A( mq )( ma M=%y sin 20 M 4+ 1my,
S M4 5+ Mo A T |[M=a+10,...,0,ma—¢s1,- - -, ma)|?’
d=

and observe that the function

. rsin 2mx
T — @) 10,0, M= Tmy_pr, ... M= my_y, z)2
is bounded in x, uniformly for mgq_sy1,...,mg—1. Applying the earlier argument
for the sum H to each of these functions, we conclude that
|MdB(md_g+1, cooyma—1)] < cq.
Then
-1

A=MYFypael > . [1Eim) | Bma—esa, ... .ma)

Oimd,g+1€Z O#Wd71€Z j=1
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satisfies
-1
Al<ea Y 0 > =5 (m)|
0#£my_¢41€Z 0#mg_1€Z \j=1
-1 m 1
~ d—j
S € Z Z H’¢<Md—1>’Mmd .
0#£my_¢41€Z 0#mg_1€Z \j=1 -
-1
+oo
k 1
—0+1 ~
< caM (Z 2 (Md1> ’ k)
k=1
+1 M RV -
< caM > T > 3
k=1 k=Md=141
< cgM 1 (log M), (22)
using (5).

Remarks. (1) The upper bound (22) is more than we need. However, the problem
of bounding the sum A is not entirely trivial, since simply putting absolute values
inside the sums B(mg_g¢41, ..., m4—1) does not lead to a useful estimate. Again we
have used the cancellations given by the term % in the dilation (M + %)Pam of the
set Py .

(2) It appears that we are studying the contribution of the boundary of @ to the
discrepancy, but we know that this contribution is actually zero, as a consequence
of the term % in the dilation, at least as far as whole faces of () are concerned. The
delicate point here is that we are not estimating the actual discrepancy arising from
the boundary, but have arrived at the boundary through the Poisson summation
formula and the divergence theorem. Thus this approach does not seem to allow us
to state mathematically that the contribution of the boundary must be negligible.

In case Dy, we again apply the divergence theorem, and meet cases similar
to Case Ay and Case By. At the last step, we have part of an edge of @, say
{t,1,..., 1}p(o,r)<t<1- Then we need to bound the sum

d 1
Md Z @M(m) H Tj (m) / e—27ri(]V[+%+Mfd+1)mls ds, (23)
0£meZd j=2 b(o,r)

where, for 2 < j < d,

(M + 3+ M- )m;
(M + 5+ M=) (my, ... my)|?

o 1A —dtly,,
T](m) _ e 2mi(M+5+M )m].

The part of the sum (23) where m; = 0 is Case C4—1. For m; # 0, we compute the
integral and bound the sum (23), uniformly in o and ¢, by

<ol m; 1 = k 1\’
Md_Hl 2 ‘@(Md]ﬂ)‘ Mm; | — (Z 82<Md—1)‘/c>
el

m;=1 k=1
< cgM~4(log M),

as in (22).
This completes the proof of Theorem 2.
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