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Abstract. Davenport’s theorem was established nearly a lifetime ago, but

there has been some very interesting recent developments. The various proofs

over the years bring in different ideas from number theory, probability theory,
analysis and group theory. In this short survey, we shall not present complete

proofs, but will describe instead some of these underlying ideas.

1. Introduction

Davenport’s theorem in geometric discrepancy theory, or irregularities of point
distribution, concerns the mean squares discrepancy of point distributions in the
unit square with respect to anchored and aligned rectangles, and shows that Roth’s
astonishing result in 1954 is best possible in dimension 2.

More precisely, let P be a set of N points in the unit square [0, 1]2. For every
x = (x1, x2) ∈ [0, 1]2, we consider the discrepancy

D[P;B(x)] = #(P ∩B(x))−Nµ(B(x)),

where #(P ∩ B(x)) denotes the number of points of P that fall into the rectangle
B(x) = [0, x1) × [0, x2), and µ denotes the usual Lebesgue area measure. We are
interesting in the L2-norm

‖D[P]‖2 =

(∫

[0,1]2
|D[P;B(x)]|2 dx

)1/2

of the discrepancy function.
In the groundbreaking paper of Roth [17] in 1954, it is shown that there exists

a positive absolute constant C1 such that for every set P of N points in [0, 1]2,

‖D[P]‖2 > C1(logN)1/2.

This lower bound is essentially best possible, in view of the following result in 1956.

Theorem (Davenport [10]). There exists a positive absolute constant C2 such that
for every integer N > 2, there exists a set P of N points in [0, 1]2 such that

‖D[P]‖2 6 C2(logN)1/2. (1)
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While Davenport’s theorem seems nearly a lifetime ago, there has been some
very interesting recent developments. The various proofs over the years bring in
different ideas from number theory, probability theory, analysis and group theory.
Here we shall describe some of these underlying ideas, and compare the similarities
and differences of some of the proofs.

To prove Davenport’s theorem, we simply need to construct point sets P of N
points that satisfy the inequality (1). However, the construction of such sets turns
out to be rather delicate, as illustrated by an observation of Lev [15] in 1996.

For any point set P and every vector t ∈ [0, 1]2, let P + t denote the image of P
under translation by t modulo [0, 1)2. Then for every positive integer N and every
point set P of N points,

sup
t∈[0,1]2

‖D[P + t]‖2 � logN.

Put simply, any effort in finding a point set P that satisfies the inequality (1) can
be wasted through a simple translation.

In this short survey, we shall present ten of the many proofs of Davenport’s
theorem, numbered in chronological order. While some of these proofs are direct
attempts at establishing the result, others have been discovered through efforts to
establish generalizations and extensions of Davenport’s theorem.

Notation. For any function f and any positive function g, we write f = O(g) or
f � g to denote that there exists a positive absolute constant C such that |f | 6 Cg,
and write f = Oδ(g) or f �δ g to denote that there exists a positive constant C(δ),
which may depend on the parameter δ, such that |f | 6 C(δ)g. For any two positive
functions f and g, we write f � g and f �δ g to denote respectively g � f and
g �δ f . We also write f � g if f � g and g � f .

For any real number z, we denote by [z] the greatest integer not exceeding z,
write {z} = z − [z] to denote the fractional part of z, and write Ψ(z) = {z} − 1

2 to

denote the sawtooth function. We also use the notation e(z) = e2πiz.
For any finite set S, we denote by #S the number of elements of S, counted with

multiplicity.

2. Diophantine Approximation Approach

We begin by making a seriously flawed attempt. For simplicity, assume that N
is the square of a positive integer. One is then tempted to partition the unit square
[0, 1]2 into N little squares of area 1/N in the natural way, and place a point at the
center of each little square, as shown in Figure 1.

CHAPTER 5

Introduction to Upper Bounds

5.1. A Seemingly Trivial Argument

Let B denote a compact and convex set in the unit torus T2. For every real
number λ ∈ [0, 1], every rotation θ ∈ [0, 2π] and every translation x ∈ T2, let

B(λ, θ,x) = {θ(λy) + x : y ∈ B}

denote the similar copy of B obtained from B by a contraction by factor λ about
the origin, followed by an anticlockwise rotation by angle θ about the origin and
then by a translation by vector x. We denote by A(B) the collection of all similar
copies of B obtained this way.

We begin our discussion here by making an inadequate attempt to establish the
following variant of Theorem 3.4.

Theorem 5.1. Let B denote a compact and convex set in T2. For every natural
number N ! 2, there exists a distribution P of N points in T2 such that

sup
A∈A(B)

|D[P;A]| "B N
1
4 (log N)

1
2 .

Such simple and perhaps naive attempts often play an important role in the study
of upper bounds. Remember that we need to find a good set of points, and we often
start by toying with some specific set of points which we hope will be good. Often
it is not, but sometimes it permits us to bring in some stronger techniques at a
later stage of the argument.

For simplicity, let us assume that the number of points is a perfect square, so
that N = M2 for some natural number M . We may then choose to split the unit
torus T2 in the natural way into a union of N = M2 little squares of side length
M−1, and then place a point in the centre of each little square.

! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !

Suppose that A ∈ A(B) is a similar copy of a given fixed compact and convex
set B. We now attempt to estimate the discrepancy D[P;A]. Let S denote the
collection of the N = M2 little squares S of side length M−1. The additive property

31

Fig.1. A seriously flawed attempt

As one moves the top boundary of B(x) across a row of points, the discrepancy
function D[P;B(x)] jumps by an amount which can be as large as N1/2, and so
the estimate ‖D[P]‖2 � N1/2 is as much as we can deduce from this construction.
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However, if we rotate a suitably sized square lattice by a suitable angle, then
our task is not as hopeless if it may seem. Here we appeal to the famous results of
Hardy and Littlewood [13, 14] concerning lattice points in a right angled triangle.
We place a right angled triangle on the square lattice Z2 in such a way that the
horizontal edge is precisely halfway between two consecutive rows of lattice points
and the vertical edge is precisely halfway between two consecutive columns of lattice
points, as shown in Figure 2.

CHAPTER 7

Upper Bounds in the Classical Problem

7.1. Diophantine Approximation and Davenport Reflection

We begin by making a fatally flawed attempt to establish1 Theorem 2.10.
Again, for simplicity, let us assume that the number of points is a perfect square,

so that N = M2 for some natural number M . We may then choose to split the
unit square [0, 1]2 in the natural way into a union of N = M2 little squares of
sidelength M−1, and then place a point in the centre of each little square. Let P
be the collection of these N = M2 points.

Let ξ be the second coordinate of one of the points of P. Clearly, there are
precisely M points in P sharing this second coordinate. Consider the discrepancy

(7.1) D[P;B(1, x2)]

of the rectangle B(1, x2) = [0, 1) × [0, x2). As x2 increases from just less than ξ to
just more than ξ, the value of (7.1) increases by M . It follows immediately that

‖D[P]‖∞ ! 1

2
M # N

1
2 .

Let us make a digression to the work of Hardy and Littlewood on the distribution
of lattice points in a right angled triangle. Consider a large right angled triangle
T with two sides parallel to the coordinate axes. We are interested in the number
of points of the lattice Z2 that lie in T . For simplicity, the triangle T is placed so
that the horizontal side is precisely halfway between two neighbouring rows of Z2

and the vertical side is precisely halfway between two neighbouring columns of Z2.

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!!!!!!!!!!!!!!!!

Note that the lattice Z2 has precisely one point per unit area, so we can think of
the area of T as the expected number of lattice points in T . We therefore wish
to understand the difference between the number of lattice points in T and the
area of T , and this is the discrepancy of Z2 in T . The careful placement of the
horizontal and vertical sides of T means that the discrepancy comes solely from the
third side of T . In the work of Hardy and Littlewood, it is shown that the size of
the discrepancy when T is large is intimately related to the arithmetic properties

1It was put to the author by a rather preposterous engineering colleague many years ago that

this could be achieved easily by a square lattice in the obvious way. Not quite the case, as an
obvious way would be far from so to this colleague.

41

Fig.2. Lattice points in a right angled triangle

We now approximate the number of lattice points in the triangle by the area of the
triangle, and the estimate is good when the slope of the hypothenuse is a badly
approximable number.

Our seventh proof of Davenport’s theorem, by Beck and Chen [4], makes use of
this idea. We consider the lattice L = (N−1/2Z)2 which contains N points per unit
area. Let L(θ) denote the image of L under anticlockwise rotation by an angle θ,
where tan θ is a badly approximable number. Then the point set

P = L(θ) ∩ [0, 1)2 (2)

contains roughly N points. Unfortunately, this is insufficient to give an estimate of
the form (1). We shall return to this approach later.

This seventh proof, given only implicitly in [4], essentially follows the same ideas
as the original proof by Davenport. The paper [4] concerns the general problem of
point distributions with respect to homothetic copies of a given convex polygon, and
uses a result of Davenport [11] in 1964 on simultaneous diophantine approximation.
Davenport’s theorem can essentially be considered a special case of this study.

We now describe Davenport’s original approach in [10].
Consider the set

Q = Λ ∩ ([0, 1)× [0, N)) (3)

of N points in [0, 1)× [0, N), where Λ is the lattice generated by the vectors (1, 0)
and (φ, 1). The corresponding discrepancy function is given by

E[Q;B(x, y)] = #(Q∩B(x, y))− xy,
where B(x, y) = [0, x)× [0, y) ⊆ [0, 1)× [0, N). It can then be shown that

E[Q;B(x, y)] =
∑

06=m∈Z

(
1− e(−mx)

2πim

)
 ∑

06n<y

e(φnm)


+O(1). (4)

Here the term 1 arises from the hypothesis that B(x, y) is anchored at the origin,
and causes technical difficulties.

To overcome this handicap, Davenport considers the mirror image of Λ across
vertical axis. More precisely, consider the set Q′ = Λ′ ∩ ([0, 1)× [0, N)) of N points
in [0, 1)× [0, N), where Λ′ is the lattice generated by the vectors (1, 0) and (−φ, 1).
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For the set Q∗ = Q∪Q′ of 2N points in [0, 1)× [0, N), the discrepancy function is
now given by

F [Q∗;B(x, y)] = #(Q∗ ∩B(x, y))− 2xy.

It can then be shown that

F [Q∗;B(x, y)] =
∑

06=m∈Z

(
e(mx)− e(−mx)

2πim

)
 ∑

06n<y

e(φnm)


+O(1).

Integrating with respect to x ∈ [0, 1] and applying Parseval’s identity, the problem
is then reduced to showing that

∞∑

m=1

1

m2

∣∣∣∣∣∣
∑

06n<y

e(φnm)

∣∣∣∣∣∣

2

� φ logN (5)

if φ is badly approximable. This is sufficient to deduce Davenport’s theorem.
This technique is now known as Davenport’s reflection principle.
Our second proof, by Roth [18] in 1979, has Davenport’s construction (3) as

the starting point. However, instead of using reflection, Roth considers horizontal
translations of the lattice Λ through a period. For every t ∈ [0, 1], consider the
translate Λ(t) = Λ + (t, 0) of Λ. For the set

Q(t) = Λ(t) ∩ ([0, 1)× [0, N))

of N points in [0, 1)× [0, N), the discrepancy function is now given by

E[Q(t);B(x, y)] = #(Q(t) ∩B(x, y))− xy.
It can then be shown that

E[Q(t);B(x, y)] =
∑

06=m∈Z

(
1− e(−mx)

2πim

)
 ∑

06n<y

e(φnm)


 e(tm) +O(1).

Integrating with respect to t ∈ [0, 1] and applying Parseval’s identity, the problem
is again reduced to the estimate (5) if φ is badly approximable. This enables
us to deduce an average version of Davenport’s theorem over the parameter t.
Davenport’s theorem is thus realized for some value of t ∈ [0, 1].

This is the first instance when probability is used in discrepancy theory, and is
now known as Roth’s probabilistic method. Note that using this technique, we can
only show that sets P that satisfy the estimate (1) exist, but we cannot give them
explicitly.

At this point, let us make a digression and return to our seventh proof which we
described in part at the beginning of this section. To proceed with our proof, we
need to consider translates P + t of the set (2), and estimate the integral

∫

R

|D[P + t;B(x)]|2 dt,

where R denotes a fundamental region of the lattice L(θ).
Let us now return to Davenport’s approach using the set (3) for some badly

approximable number φ. Recall that Davenport uses mirror reflection and Roth
uses periodic translation. The question now arises as to whether either of these is
necessary.
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Our fourth proof, given by Sós and Zaremba [20] in a paper submitted in 1980 and
published in 1982 in a volume dated 1979, gives a partial answer to this question.
This involves the continued fractions expansion of φ, and we shall only describe
this briefly. Write

φ = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

in continued fractions notation, where the partial quotients a1, a2, a3, . . . are positive
integers if φ is irrational. If the partial quotients are all equal, such as when

φ =
1 +
√

5

2
= [1; 1, 1, 1, 1, 1, 1, . . .]

is the golden ratio, then the set P of N points in [0, 1)2, obtained by a linear
contraction in the vertical direction from the set Q ⊂ [0, 1) × [0, N) given by (2),
satisfies the estimate (1), and so gives a proof of Davenport’s theorem without
mirror reflection or periodic translation.

The complete solution to this question is given by Bilyk [6] recently.
For the remainder of this section, we shall assume that the number φ is badly

approximable, so that the partial quotients are bounded.
Consider the main term in the expression (4), given by

My(x) =
∑

06=m∈Z

(
1− e(−mx)

2πim

)
 ∑

06n<y

e(φnm)


 .

For fixed y, we now perform Fourier analysis on the variable x. It then follows from
Parseval’s identity that

‖My‖22 6 |M̂y(0)|2 + C

∞∑

m=1

1

m2

∣∣∣∣∣∣
∑

06n<y

e(φnm)

∣∣∣∣∣∣

2

(6)

for some positive absolute constant C. Recall now the estimate (5) when φ is badly
approximable. Thus our problem is reduced to studying the term

M̂y(0) =
∑

06=m∈Z

1

2πim


 ∑

06n<y

e(φnm)


 = −

∑

06n<y

Ψ(φn).

For convenience, we change notation once more, and write

Sy(φ) =
∑

06n<y

Ψ(φn). (7)

Then the inequality (6) becomes

‖My‖22 6 S2
y(φ) + Cφ logN,

where Cφ is a positive constant depending at most on φ. We can now integrate
over y ∈ [0, N) and rescale the set Q to obtain a set P in [0, 1)2 such that

‖D[P]‖22 6 1

N

N−1∑

y=0

S2
y(φ) + Cφ logN.
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Thus Davenport’s theorem will follow without the need for mirror reflection or
periodic translation if and only if

1

N

N−1∑

y=0

S2
y(φ)�φ logN.

Sums of the type (7) have been studied extensively by Beck. In [2, Theorem 3.2],
it is shown that for the Cesaro mean

TN (φ) =
1

N

N−1∑

y=0

Sy(φ)

of these sums, we have the estimate

TN (φ) =
1

12

n∑

k=1

(−1)kak +O

(
max
16i6n

ai

)
,

where n is smallest index for which qn > N , where qn is the denominator of the
n-th convergent to φ. It is well known that n � logN . In the same paper, it is
shown that the second moments VN (φ) of these sums satisfy

VN (φ) =
1

N

N−1∑

y=0

(Sy(φ)− TN (φ))2 �
∑

qm6N

a2m �φ logN. (8)

Furthermore, it is shown in [2, Theorem 4.1] that the central limit theorem holds
for these sums, in the form

lim
N→∞

1

N
#

{
0 6 y 6 N − 1 :

Sy(φ)− TN (φ)√
VN (φ)

6 λ

}
=

1√
2π

∫ λ

−∞
e−t

2/2 dt. (9)

One can then deduce that

TN (φ) 6
(
N−1∑

y=0

S2
y(φ)

)1/2

�φ TN (φ) +
√

logN.

Here the first inequality is simply the Cauchy–Schwarz inequality, while the second
inequality can be deduced from (8) and (9). We thus conclude that

‖D[P]‖22 �φ max





∣∣∣∣∣
n∑

k=1

(−1)kak

∣∣∣∣∣

2

, logN



 ,

This means that the set P gives a proof of Davenport’s theorem directly, without
mirror reflection or periodic translation, if and only if the number φ satisfies

∣∣∣∣∣
n∑

k=1

(−1)kak

∣∣∣∣∣�φ

√
n.

Note that this last condition is satisfied by
√

2 = [1; 2, 2, 2, 2, 2, 2, . . .], but not

by
√

3 = [1; 1, 2, 1, 2, 1, 2, . . .].
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3. Use of van der Corput Point Sets

The van der Corput set Ph of 2h points in [0, 1)2 is given by

Ph = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1}} (10)

in binary notation.
There are h + 1 ways of partitioning [0, 1)2 into congruent rectangles of area

2−h. These will give rectangles with side lengths 2−h1 and 2−h2 , where the integers
h1, h2 > 0 satisfy h1 + h2 = h. If we use the convention that all rectangles are
closed on the bottom and left edges and open on the top and right edges, then each
rectangle arising from any such partition contains precisely one point of Ph.

The van der Corput point sets have nice periodicity properties that are very use-
ful in our attempt to establish Davenport’s theorem. This can be easily illustrated
by studying P5 in Figure 3.• If we only show [12 , 5

8 )× [0, 1), of area 1
8 , then there are 32× 1

8 = 4 points
of P5 in this rectangle, with vertical distance 1

4 apart.

• In fact, for any integers m and h satisfying 0 ≤ h ≤ s and 0 ≤ m < 2h,
the rectangle [m2−h, (m+1)2−h)× [0, 1) contains 2s−h points of Ps, with
vertical distance 2h−s apart.

• Any rectangle of the form [0, y1) × [0, y2) is contained in a union of at
most s+1 sets of the form [m2−h, (m+1)2−h)× [0, y2), where 0 ≤ h ≤ s
and 0 ≤ m < 2h. Each such set has discrepancy less than 1, and so the
discrepancy of the set [0, y1) × [0, y2) is at most s + 1 # log N . This
is the trivial estimate, obtained by Lerch in 1904 and is essentially best
possible for the extreme discrepancy!

• (C + Skriganov) For every s ∈ N, the set Ps of 2s points satisfies
∫

[0,1]2
|D[Ps;B(y)]|2 dy = 2−6s2 + O(s),

and so does not give desired upper bound.

Fig.3. The van der Corput set P5 with the rectangle [ 12 ,
5
8 )× [0, 1) highlighted

The vertical distribution of the points of P5 within the rectangle [ 12 ,
5
8 ) × [0, 1) is

periodic.
Let (x1, x2) ∈ [0, 1]2 be given. Suppose first of all that x1 ∈ 2−hZ. Then the

periodicity property of the van der Corput set Ph leads to an expression of the form

D[Ph;B(x1, x2)] =

h∑∗

i=1

(
αi −Ψ

(
x2 + βi

2i−h

))
, (11)

where ∗ indicates that some terms are not present, and that the summation depends
on x1. In fact, the restriction x1 ∈ 2−hZ can be removed at the expense of an error
O(1) in (11). This error is insignificant.

The functions Ψ form a quasi-orthogonal system with respect to the variable x2.
Without the terms αi, which arise from the hypothesis that B(x1, x2) is anchored
at the origin, Davenport’s theorem will follow on squaring the expression (11) and
integrating first with respect to x2 and then trivially with respect to x1.

Unfortunately, in Halton and Zaremba [12], it is shown that the term

h∑∗

i=1

h∑∗

j=1

αiαj

leads to the estimate

‖D[Ph]‖22 = 2−6h2 +O(h), (12)

so that Ph fails to give Davenport’s theorem.
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Our sixth proof of Davenport’s theorem is by Proinov [16] in 1988, and uses a
variant of Davenport’s reflection principle. Consider the image

P ′h = {(p1, 1− p2) : (p1, p2) ∈ Ph}

of the van der Corput set Ph under reflection across the line x2 = 1
2 . Then apart

from a negligible error of O(1), we have an expression of the form

D[P ′h;B(x1, x2)] =

h∑∗

i=1

(
−αi −Ψ

(
x2 + γi

2i−h

))
.

Combining this with (11), we conclude that

D[Ph ∪ P ′h;B(x1, x2)] = −
h∑∗

i=1

(
Ψ

(
x2 + γi

2i−h

)
+ Ψ

(
x2 + βi

2i−h

))
,

a sum of quasi-orthogonal functions in the variable x2. Davenport’s theorem now
follows on squaring this expression and integrating first with respect to x2 and then
trivially with respect to x1.

Our third proof of Davenport’s theorem arises from the work of Roth [19] on the
generalization of Davenport’s theorem to arbitrary dimensions, and builds on his
probabilistic technique developed in [18] and described in the last section. We now
consider vertical translation modulo 1. For every t ∈ [0, 1], consider the image

Ph(t) = Ph + (0, t)

of the van der Corput set Ph under translation modulo [0, 1)2 . Then, apart from
a negligible error of O(1), the analog of the expression (11) is now given by

D[Ph(t);B(x1, x2)] =

h∑∗

i=1

(
Ψ

(
zi + t

2i−h

)
−Ψ

(
wi + t

2i−h

))
,

a sum of quasi-orthogonal functions in the probabilistic variable t. Squaring this
expression and integrating first with respect to t and then trivially with respect to x1
and x2, we obtain an average version of Davenport’s theorem over the parameter t.
Davenport’s theorem is thus realized for some value of t ∈ [0, 1].

Recently, this probabilistic approach of Roth has been derandomized through
the work of Bilyk [5]. This constitutes our ninth proof.

The starting point is to obtain a better understanding of the estimate (12). For
convenience, we introduce the notation N = 2h and p = (p1, p2) ∈ Ph. Then it is
easy to deduce that

∑

p∈Ph

p1p2 =
N

4
− 1

2
+

1

4N
+
h

8
. (13)

This leads to the identity

∫

[0,1)2
D[Ph;B(x)] dx =

∑

p∈Ph

p1p2 −
N

4
+ 1 =

h

8
+

1

2
+

1

4N
.
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Clearly
(∫

[0,1)2
|D[Ph;B(x)]|2 dx

)1/2

>
∫

[0,1)2
|D[Ph;B(x)]|dx

>
∣∣∣∣∣

∫

[0,1)2
D[Ph;B(x)] dx

∣∣∣∣∣ >
h

8
.

Thus the term h/8 in (13) is solely responsible for the term 2−6h2 in (12).
Recall the definition (10) of the van der Corput set Ph, and now view the digits

a1, . . . , ah as independent random variables, with values 0 or 1 equally likely. Then

E(aiaj) =

{
E(ai)E(aj) = 1

4 , if i 6= j;

E(a2i ) = E(ai) = 1
2 , if i = j.

We now view the expression
1

2h

∑

p∈Ph

p1p2

as the expectation of the value of p1p2. Note that

∑

p∈Ph

p1p2 =

h∑

i=1

h∑

j=1

1

4
2j−i−1 +

h∑

i=1

1

4
2−1 =

h∑

i=1

h∑

j=1

1

4
2j−i−1 +

h

8
.

For simplicity, let us assume that the integer h is even. We now modify the van der

Corpot set Ph to a set P̃h by shifting half of the digits in second coordinate. More
precisely, write

P̃h = {(0.a1 . . . ah, 0.ãh . . . ã1) : a1, . . . , ah ∈ {0, 1}},
where

ãi =

{
ai, if i is odd;

1− ai, if i is even.

It follows that

E(aiãj) =





E(ai)E(ãj) = 1
4 , if i 6= j;

E(a2i ) = E(ai) = 1
2 , if i = j is odd;

E(aiãi) = E(ai(1− ai)) = 0, if i = j is even.

We thus conclude that ∫

[0,1)2
D[P̃h;B(x)] dx =

1

2
+

1

4N
.

Using this as motivation, Bilyk can find a specific value t∗ ∈ [0, 1] such that the
translated van der Corput set Ph(t∗) = Ph + (0, t∗) modulo [0, 1)2 gives a proof
of Davenport’s theorem. We have t∗ = 1 − 2−hk, where the integer k is given in
binary notation in the form

k = 0 . . . 0︸ ︷︷ ︸
h0

00001111 . . . 00001111︸ ︷︷ ︸
h1

000111 . . . 000111︸ ︷︷ ︸
h2

,

where

h0 < 568, 8 | h1, 6 | h2, h0 + h1 + h2 = h and
h2
h1

=
54

17
.
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4. Group Structure and Orthogonality

Our fifth proof of Davenport’s theorem by Chen [7] is motivated by the existence
of sets other than van der Corput sets which have nice distribution properties
but do not possess the necessary periodicity properties. Thus Roth’s probabilistic
technique by translation cannot be applied to these sets. We therefore wish to find
an alternative to this where we can dispense with periodicity.

Our study here is motivated by a very simple observation on the van der Corput
sets. Let us return to Figure 3, and look at the rectangle [ 12 ,

5
8 ) × [0, 1). Take the

left half of the white strip and translate the two points upwards by 1
4 modulo 1.

Alternatively, replace the left half of white strip, together with its two points, by
the right half of the white strip, together with its two points. Clearly we have the
same effect. Note now that the latter is achieved by shifting the digit a3 in the
first coordinates of the points. This suggests that the Roth translation variable t
can be replaced by the collection of all possible digit shifts of the first coordinates
of the points of Ph. At the time of its discovery, this technique only serves to give
alternative proofs of Davenport’s theorem and its generalizations. Later, it serves an
extremely important role as a catalyst to the solution of the explicit construction
problem in generalizations of Davenport’s theorem to higher dimensions, where
explicit point sets are not known until 2002. We now proceed to describe these new
ideas, and shall return to digit shifts at the end of this survey.

Our eighth proof of Davenport’s theorem is due to Chen and Skriganov [8, 9] in
2002.

Consider the van der Corput set Ph given by (10). Let ⊕ denote coordinatewise
and digitwise addition modulo 2. Then (Ph,⊕) is a group isomorphic to the additive
group Zh2 . The characters of these groups are the Walsh functions, with values ±1.
It is well known that the collection of Walsh functions forms an orthonormal basis
for L2([0, 1]). This suggests the use of Fourier–Walsh analysis and series.

Next, we generalize the van der Corput sets to base p, where p is a prime. These
more general van der Corput sets are of the form

Ph = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1, . . . , p− 1}}

in p-ary notation. Let ⊕ denote coordinatewise and digitwise addition modulo p.
Then (Ph,⊕) is a group isomorphic to the additive group Zhp . The characters of
these groups are the base p Walsh functions, with values p-th roots of unity. As in
the binary case, the collection of base p Walsh functions forms an orthonormal basis
for L2([0, 1]). This suggests the use of base p Fourier–Walsh analysis and series.
For Davenport’s theorem, we use 2-dimensional base p Fourier–Walsh series. It can
be shown that there are explicitly constructed relatives P∗h of Ph such that good
approximations of the discrepancy function D[P∗h;B(x1, x2)] can be expressed as
a 2-dimensional base p Fourier–Walsh series with orthogonal coefficients, provided
that the prime p is large enough, for instance, p > 11. Thus orthogonality leads to
the best upper bounds for ‖D[P∗h]‖2, and therefore no probabilistic considerations
are required.

Suppose now that we take p = 2 and the Fourier–Walsh coefficients are not
orthogonal or even quasi-orthogonal. We return to our fifth proof and use digit
shifts. For the van der Corput set Ph given by (10), consider digit shifts

(b, c) = (b1, . . . , bh, ch, . . . , c1) ∈ Z2h
2 ,
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and denote by P(b,c)
h the set of points obtained from Ph where the digits ai in

the first coordinates of the points are replaced by ai ⊕ bi and the digits ai in the
second coordinates of the points are replaced by ai ⊕ ci. The digit shifts form a
group isomorphic to Z2h

2 , and the characters are 2-dimensional Walsh functions,
with orthogonality conditions of the form

∑

t∈Z2h
2

Wl′(t)Wl′′(t) =

{
4h, if l′ = l′′;
0, otherwise.

Through the digit shifts, we recover some orthogonality through the orthogonality
of the Walsh functions.
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