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Abstract. The main purpose of part (III) is to give explicit geodesics and billiard
orbits in polysquares that exhibit time-quantitative density. In many instances,
we can even establish a best possible form of time-quantitative density called
superdensity.

We also study infinite flat dynamical systems, both periodic and aperiodic,
which include billiards in infinite polysquare regions. In particular, we can prove
time-quantitative density even for aperiodic systems. In terms of optics the billiard
case is equivalent to the result that an explicit single ray of light can essentially
illuminate a whole infinite polysquare region with reflecting boundary acting as
mirrors. In fact, we show that the same initial direction can work for an uncount-
able family of such infinite systems.

Some of these infinite systems belong to the class of Ehrenfest wind-tree mod-
els, introduced by physicists about 100 years ago. Thus we obtain, for the first
time, explicit density results about the time evolution of these infinite aperiodic
billiard models in physics. What makes our positive density results in the case
of the periodic Ehrenfest wind-tree models particularly interesting is the recent
discovery by Fraczek and Ulcigrai [8] about these models that for almost every
initial direction, the billiard orbit is not dense.

To prove density of explicit orbits, we use a non-ergodic method, which is an
eigenvalue-free version of the shortline method. The original eigenvalue-based
version of the shortline method, introduced and developed in [2, 3], enables us to
prove time-quantitative equidistribution of orbits. The reader does not need to be
familiar with those long papers. Here we make a serious effort to keep this paper
self-contained.

6. Time-quantitative density

6.1. From density to superdensity. Our goal in part (III) is to prove time-
quantitative density of explicit orbits, and, in many cases, even its best possible
form called superdensity.

The concept of time-quantitative density is simply a means to describing how
long it takes for a particle moving with unit speed on an explicit geodesic or a point
billiard to enter a given small target set.

Perhaps the reader is wondering: why should we care about density when we al-
ready know many uniformity results; for instance, the collection of uniformity results
in [2, Section 2.1] that are proved by ergodic methods. Well, it is true that unifor-
mity implies density, but uniformity does not imply any form of time-quantitative
density, not to mention superdensity. Note that in general even superuniformity
(meaning extremely small poly-logarithmic error term) is not strong enough to im-
ply superdensity.

Time-quantitative uniformity and time-quantitative density represent two (in gen-
eral incomparable) complementary viewpoints to describing the evenness of an in-
finite orbit in the undelying space.
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Our tool is a new eigenvalue-free version of the surplus shortline method, which,
for the convenience of the reader, will be developed here from scratch. A great
advantage of this new version is that, unlike the old eigenvalue-based version used
in [2, 3], it is flexible enough to work in higher dimensions to prove, for example, the
density of 3-dimensional billiards in cube-tiled solids, or polycube regions, as well as
to prove the density of billiard orbits in infinite aperiodic polysquare regions.

We know very, very little about 3-dimensional flat dynamical systems, where flat
refers to locally Euclidean 3-space, and similarly, we know very, very little about
the density of billiard orbits on infinite aperiodic polysquare regions. So one may
say that the most interesting results of part (III) are our density results for 3-
dimensional systems and for infinite aperiodic polysquare regions. Nevertheless, we
start the detailed discussion in the natural/historic order, meaning the case of lower
dimension and compact underlying space.

First we study superdensity, a best possible form of time-quantitative density.
Superdensity has already been mentioned in [2, Section 1.1 and Theorem 3.4.1]. For
the convenience of the reader we repeat the formal definition. The first place to see
it is Property A below, which is a special case.

We begin the discussion with the one-dimensional case, and very briefly recall
some basic facts about the density and uniformity of the irrational rotation sequence
{jα}, j = 1, 2, 3, . . . , in the unit interval [0, 1). Here α is irrational and 0 6 {x} < 1
denotes the fractional part of a real number x.

The density of the irrational rotation sequence has been known since the early
nineteenth century, through the work of Dirichlet, Chebyshev and Kronecker, etc.,
and extended to uniform distribution in the first years of the twentieth century by
Bohl, Sierpinski and Weyl. We can clearly assume that 0 < α < 1, which has an
infinite continued fraction expansion of the form

α = [a1, a2, a3, . . .] =
1

a1 + 1
a2+

1
a3+···

, (6.1.1)

with digits, or partial quotients, ai > 1. The works of Hardy and Littlewood [9, 10],
Ostrowski [22], Weyl [25], etc. around 1920 help to clarify the key role played by
the continued fraction digits ai in the quantitative aspects of the distribution of
the irrational rotation sequence. A main result of this classical work is that the
sequence {jα}, j = 1, 2, 3, . . . , is most uniformly distributed in the precise sense
that it exhibits logarithmic error, which is the minimum order of magnitude, if and
only if the average size of the digits is bounded, formally, if

lim sup
n→∞

1

n

n∑
i=1

ai <∞. (6.1.2)

An irrational number α ∈ [0, 1) is badly approximable if and only if the continued
fraction digits are bounded, i.e., there is a constant C = C(α) such that ai 6 C for
every digit ai in (6.1.1). For badly approximable numbers the average size of the
digits is trivially bounded, i.e., (6.1.2) holds. Note that every quadratic irrational
is badly approximable, since the continued fraction is eventually periodic, a result
that goes back to Euler and Lagrange.

Superdensity is closely related to this classical work about uniform distribution.
Indeed, the irrational rotation sequence exhibits superdensity if and only if α is
badly approximable. It means precisely that Property A and Property B below are
equivalent.
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Property A. There is an absolute constant C1 = C1(α) such that for every integer
n > 1 and subinterval I ⊂ [0, 1) of length 1/n, there exists 1 6 j 6 C1n such that
{jα} ∈ I.

Property B. The number α is badly approximable, i.e., there exists a constant
C = C(α) such that ai 6 C for every digit ai in (6.1.1).

It is Property A that we consider the definition of superdensity in the special case
of the irrational rotation sequence.

Lemma 6.1.1. Property A and Property B are equivalent.

A proof of this can be found in, for instance, Khinchin [19, Theorem 26]. For the
sake of completeness we include here our shorter proof, which has the extra benefit
that the reader can compare it to the more complicated proof of Lemma 6.1.2.

Proof of Lemma 6.1.1. The proof is an easy exercise by using the theory of continued
fractions. Let k > 1 be any integer. The initial segment

[a1, a2, . . . , ak] =
pk
qk

of (6.1.1) is a rational number, called the k-th convergent of the irrational number α.
Here the numerators pk = pk(α) and the denominators qk = qk(α) of the convergents
of α satisfy the recurrence relations

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, pkqk−1 − qkpk−1 = (−1)k (6.1.3)

for every integer k > 2, together with the initial conditions p0 = 0, q0 = 1, p1 = 1
and q1 = a1. The k-th convergent pk/qk gives an excellent rational approximation
of α, in the form ∣∣∣∣α− pk

qk

∣∣∣∣ < 1

qkqk+1

. (6.1.4)

The proof of Lemma 6.1.1 is based on (6.1.3) and (6.1.4), which are well known
facts in the theory of continued fractions; see any book on number theory that has
a chapter on continued fractions.

First we derive Property A from Property B. For any arbitrary integer n > 1, let
k = k(α;n) be the smallest integer such that

qk = qk(α) > 3n. (6.1.5)

Let I ⊂ [0, 1) be of length 1/n. By (6.1.5) there exists an integer 1 6 ` 6 qk such
that I contains both (`− 1)/qk and (`+ 1)/qk, with the convention that (qk + 1)/qk
denotes 1/qk. Multiplying (6.1.4) by a nonzero integer 1 6 j 6 qk, we have∣∣∣∣jα− jpk

qk

∣∣∣∣ < j

qkqk+1

<
1

qk
. (6.1.6)

From the last equation in (6.1.3), we see that pk and qk are relatively prime, so there
exists an integer 1 6 j0 6 qk such that{

j0pk
qk

}
=

`

qk
. (6.1.7)

Using (6.1.6) with j = j0, and combining it with (6.1.7), we obtain that {j0α} ∈ I
for some 1 6 j0 6 C1n, which proves Property A. Indeed, it follows from (6.1.5) and
(6.1.3) that

qk−1 6 3n and qk 6 (ak + 1)qk−1,

which imply that j0 6 qk 6 3(C + 1)n, so that j0 6 C1n if we take C1 = 3(C + 1).
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Next we derive Property B from Property A. For any positive integer k, consider
the interval

I =

[
1

3qk
,

2

3qk

]
. (6.1.8)

Multiplying (6.1.4) by a nonzero integer 1 6 j 6 qk+1/3, we have∣∣∣∣jα− jpk
qk

∣∣∣∣ < j

qkqk+1

6
1

3qk
.

This implies that

− 1

3qk
< jα− jpk

qk
<

1

3qk
, or

3jpk − 1

3qk
< jα <

3jpk + 1

3qk
.

Write x = jpk − [jα]qk. Then clearly

3x− 1

3qk
< {jα} < 3x+ 1

3qk
.

Naturally we must have 3x + 1 > 0, and so x is a non-negative integer. If x = 0,
then {jα} < 1/3qk. If x > 1, then {jα} > 2/3qk. Thus it follows that

{jα} 6∈ I for every 1 6 j <
qk+1

3
. (6.1.9)

Note from (6.1.8) that |I| = 1/n with n = 3qk. If Property A holds, then there
exists 1 6 j0 6 C1n such that {j0α} ∈ I. Combining this with (6.1.9), we have

qk+1

3
6 j0 6 C1n = 3C1qk,

and since ak+1qk < qk+1, we obtain
ak+1qk

3
<
qk+1

3
6 j0 6 3C1qk,

which implies ak+1 < 9C1. This proves Property B with the choice C = 9C1. �

Superdensity of the discrete irrational rotation sequence with badly approximable
α immediately implies superdensity of the continuous torus lines with slope α in the
unit square. The standard trick is discretization. Discretization simply means that
we look at the points where the torus line hits the sides of the square. This reduces
the problem of uniformity in the 2-dimensional case to the 1-dimensional case.

More precisely, discrete superdensity implies via discretization that an infinite
torus half-line of badly approximable slope α in the unit square [0, 1)2 has the
following remarkable property. There is an absolute constant C2 = C2(α) such that
for every integer n > 1 and for every point P ∈ [0, 1)2 in the unit square, the initial
segment of length C2n of this torus half-line gets (1/n)-close to P . This is what we
call the superdensity of the torus line in the unit square.

In higher dimensions we have Kronecker’s classical theorem concerning the density
of the torus line flow in the unit cube [0, 1)d, where d > 2 is arbitrary. Suppose that
v = (v1, . . . , vd) ∈ Rd is a vector such that its coordinates are linearly independent
over the rational numbers. Then by Kronecker’s theorem any infinite torus half-line
of direction v is dense in the unit cube [0, 1)d. And we also have the converse, that
density implies linear independence of the coordinates of the direction vector.

It is straightforward to define superdensity of the torus line in a cube in any
dimension d. An infinite torus half-line of direction vector v ∈ Rd is superdense in
the unit cube [0, 1)d if there is an absolute constant C3 = C3(v) such that for every
integer n > 1 and for every point P ∈ [0, 1)d in the unit cube, the initial segment of
length C3n

d−1 of this torus half-line gets (1/n)-close to P .
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Superdensity represents a best possible quantitative form of density in both the
discrete and the continuous case. For simplicity we just show it in the continuous
case. We prove that the polynomial order of magnitude of the length nd−1 in the
variable n is necessary to get (1/n)-close to every point. For simplicity we choose
an integer n > 2, and consider the usual decomposition of the unit cube [0, 1)d into
nd congruent subcubes. Next we decompose each one of these subcubes with side
length 1/n into 3d congruent smaller cubes, and refer to the particular cube of side
length 1/3n in the middle as a center cube. The distance between any two center
cubes is at least 2/3n. If a continuous curve C gets (1/6n)-close to every point, then
it must visit every center cube. Since there are nd center cubes, C must have length
at least

(nd − 1)
2

3n
=

2

3
nd−1 − o(1),

which gives the desired polynomial order of magnitude nd−1.
Superdensity of a torus line in a square [0, 1)2 is completely understood. The

necessary and sufficient condition for superdensity is that the slope is badly approx-
imable.

Badly approximable slopes are not typical, as they form a set of zero Lebesgue
measure. But we cannot call this set totally negligible either, since it has positive
Hausdorff measure.

For almost every slope α, the torus line exhibits almost superdensity. Here the
linear bound C3n above is replaced by a bound of slightly larger order of magnitude
n(log n)1+ε, where, as usual, ε > 0 can be arbitrarily small but fixed, assuming that
n is large enough. This follows from a classical result of Khinchin [18] in diophantine
approximation.

The problem of superdensity of a torus line in a cube [0, 1)d with d > 3 is harder.
One reason is that the theory of continued fractions does not seem to extend to
higher dimensions, and one has to find an alternative approach. What works here
is the geometry of numbers, which gives rise to some transference theorems ; see,
for instance, Cassels [4, Chapter 5]. Combining a couple of transference theorems
it is not difficult to prove the following result, which is basically a weaker form of
Lemma 6.1.1 in higher dimensions. Lemma 6.1.2 below is a one-sided result. It is a
sufficient condition for superdensity in higher dimensions. It gives infinitely many
explicit superdense directions. It is well possible that it has already been published
somewhere, but we have not been able to find it.

To understand Lemma 6.1.2, the reader needs to be familiar with at least the
simplest basic concepts of algebraic number fields.

Lemma 6.1.2 (“possibly folklore”). Let m > 1 be an integer, and let α1, . . . , αm be
any m numbers in a real algebraic number field of degree m+1 such that 1, α1, . . . , αm
are linearly independent over the rationals. Write

v = (1, α1, . . . , αm) ∈ Rm+1.

Then any torus half-line with direction v is superdense in the unit cube [0, 1)m+1.

Remark. Note that the m + 1 numbers 1, α1, . . . , αm must satisfy two conditions.
They must be linearly independent over the rationals, and they must all belong to
the same real algebraic number field of degree m+1. For the special case m = 2, we
can take α1 = 21/3 and α2 = 41/3, but not α1 =

√
2 and α2 =

√
3, as no real cubic

number field contains the numbers 1,
√

2,
√

3, although they are linearly independent
over the rationals.
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Proof of Lemma 6.1.2. Let ‖x‖ denote the distance of a real number x from a nearest
integer.

The first step of the proof is to show that there exists a constant C4 > 0, depending
at most on m and α1, . . . , αm, such that∥∥∥∥∥

m∑
i=1

niαi

∥∥∥∥∥ > C4

(max16i6m |ni|)m
(6.1.10)

for all nonzero integral vectors n = (n1, . . . , nm) ∈ Zm. The assertion (6.1.10) will
follow from using the concept of norm in an algebraic number field.

Since every algebraic number is the ratio of an algebraic integer and a nonzero
rational integer, it is enough to prove (6.1.10) when αi, 1 6 i 6 m, are algebraic
integers. Let n0 be the nearest integer to the sum

∑m
i=1 niαi. The norm of the

algebraic integer n0 −
∑m

i=1 niαi is the product

m∏
j=0

(
n0 −

m∑
i=1

niα
(j)
i

)
,

where α
(0)
i = αi and α

(j)
i , 1 6 j 6 m, are the m other algebraic conjugates of αi.

Since the norm of an algebraic integer is a nonzero rational integer, and so has
absolute value at least 1, we deduce that∥∥∥∥∥

m∑
i=1

niαi

∥∥∥∥∥ =

∣∣∣∣∣n0 −
m∑
i=1

niαi

∣∣∣∣∣ > 1∏m
j=1 |n0 −

∑m
i=1 niα

(j)
i |
>

C5

(max16i6m |ni|)m

where the constant C5 > 0 depends at most on m and α1, . . . , αm. The assertion
(6.1.10) follows.

The second step of the proof is to use Mahler’s transference theorem in the relevant
special case; see Mahler [20] or Cassels [4, Chapter 5, Theorem 2].

Theorem A. A necessary and sufficient condition that there is a constant C ′ > 0
such that ∥∥∥∥∥

m∑
i=1

niαi

∥∥∥∥∥
(

max
16i6m

|ni|
)m
> C ′

for every n = (n1, . . . , nm) ∈ Zm with n 6= 0, is that there is another constant
C ′′ > 0 such that (

max
16j6m

‖nαj‖
)m
|n| > C ′′

for every n ∈ Z with n 6= 0.

The third step of the proof is to apply the following transference result, which
is a special case of a theorem of Hlawka [12] about general linear forms; see also
Cassels [4, Chapter 5, Theorem 6].

Theorem B. Let α1, . . . , αm be m > 1 real numbers such that for all N > 1,

max
16j6m

‖nαj‖ > C0N
−1/m

for every integer 1 6 n 6 N , where C0 = C0(α1, . . . , αm) > 0 is a constant indepen-
dent of N . Then for any set of m real numbers 0 < βi < 1, 1 6 i 6 m, there is an
integer 1 6 `0 6 C∗N such that

‖`0αi − βi‖ 6 C∗N−1/m

for every 1 6 i 6 m, where the constant C∗ = C∗(C0) depends only on the value
of C0.
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Lemma 6.1.2 now follows from a combination of the inequality (6.1.10) together
with Theorem A and Theorem B. �

By Lemma 6.1.1, a torus line in a square is superdense if and only if the slope is
a badly approximable number. The torus line flow in a square, the quintessential
integrable flat system, is very user-friendly in the sense that it exhibits remarkable
stability and predictability. Indeed, two particles moving on two close parallel torus
lines with the same speed remain close forever, and they preserve their distance.
This raises a natural question: When can we guarantee superdensity in the much
harder case of non-integrable flat systems, where parallel orbits split and the long-
term behavior becomes unpredictable?

The good news is that it is possible to guarantee infinitely many slopes with
superdense geodesics for every polysquare translation surface. It is based on a new
version of the shortline method. We illustrate the basic idea of the proof on the
simplest flat polysquare translation surface, the so-called L-surface.

The L-surface is a compact closed flat polysquare translation surface with 3 unit
square faces forming the letter L (L-shape). It is obtained by identifying the two
horizontal edges h1, the two horizontal edges h2, the two vertical edges v1, and the
two vertical edges v2; see Figure 6.1.1.

h1 h2

h1

h2h3

v1 v3 v1

v2 v2

Figure 6.1.1: net of the L-surface with edge identification

Unlike the cube surface, the L-surface is not the surface of a 3-dimensional solid,
so one may call it exotic. Nevertheless, it is a perfectly legitimate surface with
genus 2.

A geodesic on the L-surface is basically a generalized torus line on the L-shape,
as illustrated in Figure 6.1.2.

b

Figure 6.1.2: geodesics on the L-surface and a split singularity

The L-surface is non-integrable, since it has a split singularity, as demonstrated in
the picture on the right in Figure 6.1.2. Two geodesics close together behave rather
differently after getting close to this singularity.

In Section 6.2 we shall prove the following result.



8 BECK, CHEN, AND YANG

Theorem 6.1.1. Let α > 1 be a badly approximable number with continued fraction

α = a0 +
1

a1 + 1
a2+

1
a3+···

,

where the digits a0, a1, a2, a3, . . . are all positive and even. Then any half-infinite
1-directional geodesic with slope α exhibits superdensity on the L-surface, unless the
geodesic hits a vertex and becomes undefined.

Remark. We should explain at this point part of the reasoning for restricting the
continued fraction digits ai to even integers. Here we consider a geodesic of slope
α = [a0; a1, a2, a3, . . .]. Since a0 > 2, we clearly have α > 1. We shall call this
geodesic almost vertical. The idea is to replace part of this geodesic by part of
another geodesic which is almost horizontal, meaning that its slope has absolute
value less than 1. We elaborate on this below.

Consider the digit a0. Clearly α = a0 + {α}, where {α} = [a1, a2, a3, . . .] is the
fractional part of α.

Suppose that a0 = 2, or in general, a0 is even. It is clear from the picture on the
left in Figure 6.1.3 that a geodesic of slope α that starts from the origin, represented
by the solid line in the picture, cuts the edge v3 at the point (1, {α}). For the part
of the geodesic of slope α from the origin to this point, a shortcut can be obtained
by the geodesic of slope {α} < 1 from the origin to this point, represented by the
dashed line in the picture, and the slope of this shortcut is positive.

Figure 6.1.3: the cases a0 = 2 and a0 = 3

Suppose that a0 = 3, or in general, a0 is odd. It is clear from the picture on the
right in Figure 6.1.3 that a geodesic of slope α that starts from the origin, represented
by the solid line in the picture, cuts the edge v2 at the point (1, 1+{α}). For the part
of the geodesic of slope α from the origin to this point, a shortcut can be obtained
by the geodesic of slope with absolute value less than 1 from the top left vertex,
which is identified with the origin, to this point, represented by the dashed line in
the picture, and the slope of this shortcut is negative.

In our initial discussion, we want to avoid geodesics with negative slopes. As will
be clear later, this can be achieved by ensuring that all the continued fraction digits
ai are even.

The reader who has read [3] is probably wondering why we consider the L-surface
here, when Theorem 5.3.1 there already establishes the superdensity of L-lines for all
quadratic irrational slopes. Well, the proof of Theorem 5.3.1 comes to more than 100
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pages, and the proof of Theorem 6.1.1 in Section 6.2 is considerably shorter. This
difference clearly shows that the new eigenvalue-free version of the shortline method
here is simpler than the eigenvalue-based shortline method developed in [2, 3]. We
shall see later that this new approach is also much more flexible.

Theorem 6.1.1 provides an infinite set of good slopes such that the corresponding
geodesics are superdense on the L-surface. From the viewpoint of set theory this set
is large, since it is uncountable. From the viewpoint of topology this set is small,
since it is nowhere dense on the unit circle. In Section 6.4 we shall show how we
can extend this set to a larger set of good slopes, which is dense on the unit circle.
There we shall also generalize Theorem 6.1.1 to all polysquare translation surfaces.

Next we move to the 3-space; in particular to the class of cube-tiled solids, both
finite and infinite. This is quite interesting because, as far as we know, there is no
known density result for non-integrable systems of dimension greater than 2. We
elaborate on this.

The first non-trivial result for 2-dimensional non-integrable flat systems is a result
of Katok and Zemlyakov [17] in 1975; see [2, Theorem 2.1.1]. It concerns the density
of any infinite geodesic on a rational surface, i.e., a surface where every angle on
every polygonal face is a rational multiple of π. The proof is a clever application
of Poincare’s recurrence theorem, but it does not say anything definite about how
long it takes for a geodesic to first enter a given test set such as a small circle on a
face with radius 1/n.

For comparison note that Theorem 6.1.1 is a superdensity result, a strongest form
of time-quantitative density, and it does tell us how long it takes for a geodesic to
enter first a given test set such as a small circle on a face with radius 1/n.

To illustrate how little is known about the density of flat dynamical systems in
general, we mention the following humiliatingly long-standing open problem.

Open Problem 1. Let T be an arbitrary right triangle, and consider billiards in T .
(a) Does there exist a half-infinite billiard orbit that is dense in T ?
(b) Does there exist an explicit half-infinite billiard orbit that is dense in T ? Here

explicit means that we can express the starting point and the initial slope of the orbit
in terms of the given data of the triangle T .

(c) Does there exist a slope such that every half-infinite billiard orbit with this
initial slope is dense in T ?

(d) Is it true that for almost every real number α, every half-infinite billiard orbit
with initial slope α is dense in T ?

What Open Problem 1 really illustrates is the lack of results or methods for
handling geodesic flow on infinite flat surfaces. Indeed, if the acute angle of the right
triangle T is an irrational multiple of π, then iterated unfolding reduces billiard
flow in T to geodesic flow on an infinite flat surface; see, e.g., [2, Section 1.3].
Unfortunately we know much, much less about the case of infinite flat surfaces than
about finite flat surfaces.

Starting in Section 6.5 we are going to prove several results for infinite polysquare
translation surfaces but, unfortunately, we cannot make any progress with Open
Problem 1.

We also recall [2, Theorem 2.1.3], which extends density to uniformity for every
rational surface and for almost every slope. Unfortunately, this result, like [2, Theo-
rem 2.1.1], is a time-qualitative result that does not say anything definite about the
necessary time range, due to the fact that Birkhoff’s ergodic theorem and Poincare’s
recurrence theorem, the underlying thrust of the proof, do not have an explicit error
term.
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In Section 6.2, we introduce the size-magnification version of the shortline method
to establish Theorem 6.1.1 and identify an infinite class of slopes with superdense
geodesics on the L-surface. In Section 6.4, we discuss a generalization of Theo-
rem 6.1.1 to a large class of polysquare translation surfaces. We then extend these
ideas to square-maze surfaces in Section 6.5.

In Sections 6.7–6.9, we discuss density of aperiodic surfaces with infinite streets,
a problem motivated by the Ehrenfest wind-tree models.

Sections 6.3 and 6.6, as well as the latter part Section 6.4, have been deleted in
this version of the manuscript, as the arguments there contain a serious error.

6.2. Size-magnification version of the shortline method.

Proof of Theorem 6.1.1. We refer to geodesics on the L-surface as L-lines. We start
with the concept of surplus shortline of an L-line, and then discuss the concept of
exponentially fast zigzagging to a street corner, which has a crucial role in the new
version of the shortline process. In the rest we refer to this new eigenvalue-free
version of the process as the size-magnification version. The term size-magnification
will be justified by the arguments below.

In Figure 6.2.1 we consider an almost vertical L-line V . Assume that V is infinite
in both directions, and let α > 1 denote the slope of V . Note that we use the
term almost vertical (or almost horizontal) in the very broad sense that the slope
is greater than 1 (or it is between 0 and 1). Formally, let π/4 < θ < π/2 be the
angle between V and the horizontal side of the L-surface. Then α = tan θ; see the
picture on the left in Figure 6.2.1. Here AB and B′C are consecutive line segments
of V , and together they exhibit a left to right detour crossing of the vertical street
with corners (0, 0), (1, 0), (1, 2) and (0, 2), whereas the line segment AC represents a
shortcut street crossing of the same street. (This street is in fact a cylinder. Owing
to the intuitive meaning of street-crossing, we prefer to use the term street.) Now
AC is a line segment of the almost horizontal L-line H1. We call H1 the shortline
of V . Let π/4 < θ1 < π/2 be the angle between H1 and the vertical side of the
L-shape. Then the slope of H1 is α−11 , where α1 = tan θ1.

V

A
C

B

B′

H1

(0, 0)

(0, 2)

A
C

B′

H1

V

D

(0, 0)

(0, 2)

Figure 6.2.1: (left) H1 is the shortline of V ; (right) second detour
street crossing of V , the part of V from C to D,
with the part of the shortline H1 from C to D

By hypothesis, V has badly approximable slope satisfying

slope of V = α = a0 +
1

a1 + 1
a2+

1
a3+···

= [a0; a1, a2, a3, . . .], (6.2.1)

where the continued fraction has the even digit property, i.e., ai is positive and even
for every i > 0. Note that since α is irrational, (6.2.1) has infinitely many digits.
The geometric fact that AC is a shortcut of AB + B′C gives rise to an algebraic
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relation between the slopes of V and H1. In view of the even digit condition, the
slope of H1 is α− a0. More precisely, we have

slope of H1 = α−11 =

a1 +
1

a2 + 1
a3+

1
a4+···

−1 = [a1; a2, a3, a4, . . .]
−1. (6.2.2)

In other words, the continued fraction of the slope of H1, the shortline of V , is
obtained from the continued fraction of the slope of V by a shift followed by taking
inverse.

The three consecutive line segments of V between C and D in the picture on the
right in Figure 6.2.1 together exhibit a left to right detour crossing of the vertical
street with corners (1, 0), (2, 0), (2, 1) and (1, 1), whereas the line segment CD
represents a shortcut street crossing of the same street. Now CD is a line segment
of the almost horizontal L-line H1, the shortline of V .

Figure 6.2.1 also illustrates the crucial geometric property that any almost vertical
L-line V and its shortline H1 have precisely the same edge-cutting points on the
vertical sides of vertical streets. We refer to this as the vertical same edge cutting
property of the shortline process.

We can iterate this shortline process. To find the shortline of H1, we simply repeat
the argument above by switching the roles of horizontal and vertical. Let V2 denote
the shortline of H1, and let α2 > 1 denote the slope of the almost vertical L-line V2.
Again, in view of the even digit condition, we have an analog of (6.2.1) and (6.2.2),
in the form

slope of V2 = α2 = a2 +
1

a3 + 1
a4+

1
a5+···

= [a2; a3, a4, a5, . . .].

In other words, the continued fraction of the slope of V2, the shortline of H1, is
obtained from the continued fraction of the slope of H1 by taking inverse followed
by a shift.

We also have the analogous horizontal same edge cutting property of the shortline
process, that an almost horizontal L-line H1 and its shortline V2 have precisely the
same edge-cutting points on the horizontal sides of horizontal streets.

Of course we can define in a similar way the shortline of V2, and so on. Thus we
obtain an infinite sequence

V → H1 → V2 → H3 → V4 → H5 → · · · , (6.2.3)

where, for every i > 0,

H2i+1 is the shortline of V2i and V2i+2 is the shortline of H2i+1, (6.2.4)

V2i and H2i+1 satisfy the vertical same edge cutting property, (6.2.5)

and

H2i+1 and V2i+2 satisfy the horizontal same edge cutting property. (6.2.6)

Combining (6.2.3)–(6.2.6) we obtain an exponentially fast zigzagging to a street
corner; see Figure 6.2.2.
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(1, 0) c = (2, 0)
1

2

3

4

5

6

7

Figure 6.2.2: exponentially fast zigzagging to a street corner

Assume, for example, that the line segment 12 in Figure 6.2.2 belongs to an
almost horizontal L-line H2i+5, say, in (6.2.3). The term exponentially fast zigzagging
means the following. By (6.2.5) the line segment 23 in Figure 6.2.2 belongs to the
almost vertical L-line V2i+4 in (6.2.3). By (6.2.6) the line segment 34 belongs to the
almost horizontal L-line H2i+3. By (6.2.5) the line segment 45 belongs to the almost
vertical L-line V2i+2. By (6.2.6) the line segment 56 belongs to the almost horizontal
L-line H2i+1. Finally, by (6.2.5) the line segment 67 belongs to the almost vertical
L-line V2i. Thus these line segments of the successive ancestor L-lines zigzag towards
a singularity c of the L-surface.

The zigzagging in Figure 6.2.2 represents an exponentially fast convergence to the
street corner c = (2, 0). More precisely, since the slope of H2i+5 is α−12i+5, we have

length(1c)

length(2c)
= α2i+5. (6.2.7)

Similarly,

length(2c)

length(3c)
= α2i+4,

length(3c)

length(4c)
= α2i+3,

length(4c)

length(5c)
= α2i+2,

length(5c)

length(6c)
= α2i+1,

length(6c)

length(7c)
= α2i.

(6.2.8)

We can also write (6.2.7)–(6.2.8) in the equivalent form

length(2c) =
length(1c)

α2i+5

, length(3c) =
length(1c)

α2i+5α2i+4

,

length(4c) =
length(1c)

α2i+5α2i+4α2i+3

, length(5c) =
length(1c)

α2i+5α2i+4α2i+3α2i+2

,

length(6c) =
length(1c)

α2i+5α2i+4α2i+3α2i+2α2i+1

,

length(7c) =
length(1c)

α2i+5α2i+4α2i+3α2i+2α2i+1α2i

.

We return to the chain (6.2.3). Let V ∗ be a finite initial segment of this almost
vertical L-line V with slope α > 1, and assume that V ∗ is long. It is clear that V ∗

consists of a number of whole detour crossings and a fractional detour crossing at
the end. Clearly the length of V ∗ is some multiple of (1+α2)1/2, the common length
of detour crossings of slope α of vertical streets. In other words,

length(V ∗) = m0(1 + α2)1/2 for some large positive real number m0, (6.2.9)
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where the integer part of m0 is the number of whole detour crossings in V ∗. Each
whole detour crossing in V ∗ has a shortcut, which is part of the almost horizontal
shortline H1 of V . The fractional detour crossing at the end in V ∗, if extended to a
full detour crossing, also has a shortcut, which is also part of the almost horizontal
shortline H1 of V . For this fractional detour crossing, we shorten its shortcut by
the same fraction and at the appropriate end to obtain a fractional shortcut. We
then take the union of these shortcuts and this fractional shortcut. This union is a
segment of H1 that we denote by H∗1 . Clearly the length of H∗1 is some multiple of
(1+α2

1)
1/2, the common length of detour crossings of slope α−11 of horizontal streets.

In other words,

length(H∗1 ) = m1(1 + α2
1)

1/2 for some positive real number m1.

We keep iterating this. Let

length(V ∗2 ) = m2(1 + α2
2)

1/2 for some positive real number m2,

length(H∗3 ) = m3(1 + α2
3)

1/2 for some positive real number m3,

and so on. Consider the decreasing sequence

m0 > m1 > m2 > m3 > · · · . (6.2.10)

At this point, we make the assumption that the continued fraction digits ai,
i = 0, 1, 2, 3, . . . , have a common upper bound ai < U , where U is an integer. In
other words, the number α is badly approximable. This implies, in particular, that
for every i = 0, 1, 2, 3, . . . , we have the bound

αi < U. (6.2.11)

It is almost trivial to note that

α1m1 = m0. (6.2.12)

Indeed, we have the general form that for every j > 0,

αj+1mj+1 = mj. (6.2.13)

Iterating (6.2.13) we deduce that

mk = m0

k∏
j=1

1

αj
. (6.2.14)

Let us return to the sequence (6.2.10). We need the following lemma.

Lemma 6.2.1. There is a member m` of the sequence (6.2.10) that satisfies the
inequalities 2U + 1 6 m` 6 4U5 and the corresponding V ∗` or H∗` , depending on the
parity of `, exhibits all six types of corner cuts illustrated in Figure 6.2.3.

Figure 6.2.3: six types of corner cuts of the L-surface
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Remark. The requirementm` > 2U+1 is motivated by a later application of (6.2.14),
while the other requirement m` 6 4U5 will be clear from the proof of the lemma.

Before we can prove Lemma 6.2.1, we need to introduce the concept of almost
vertical units of an almost vertical L-line and almost horizontal units of an almost
horizontal L-line.

Suppose that V is an almost vertical L-line of slope γ > 1. An almost vertical
unit of this L-line is a finite segment of V , of length (1 +γ−2)1/2, that goes from one
horizontal edge of the L-surface to another horizontal edge. There are six different
types of almost vertical units, illustrated in Figure 6.2.4.

h1h3 h1h2

h3h1

h2h2

h2h3

h3h
∗
1

h1 h2

h1

h2

h3

v1 v3 v1

v2 v2

h1 h2

h1

h2

h3

v1 v3 v1

v2 v2

Figure 6.2.4: six types of almost vertical units

In Figure 6.2.4, the almost vertical unit h1h3 in the picture on the left starts from
the edge h1 and ends on the edge h3, and is clearly of length (1 + γ−2)1/2 since its
slope is γ. In the picture on the left, the almost vertical units h1h2 and h3h1 are also
illustrated. Likewise, the almost vertical unit h2h2 is illustrated in the picture on
the right. As shown in the picture on the right, the two almost vertical units h2h3
and h3h

∗
1 are each broken into two pieces. We can write h2h3 = h2v1h3 to emphasize

the fact that this almost vertical unit is broken at the edge v1. Likewise, we can
write h3h

∗
1 = h3v2h1 to emphasize the fact that this almost vertical unit is broken

at the edge v2. Note that h3h1 and h3h
∗
1 both start from the edge h3 and end on the

edge h1. While the former is in one piece, the latter is broken at the edge v2.
Suppose that H is an almost horizontal L-line of slope γ−1, where γ > 1. An

almost horizontal unit of this L-line is a finite segment of H, of length (1 + γ−2)1/2,
that goes from one vertical edge of the L-surface to another vertical edge. There are
six different types of almost horizontal units, illustrated in Figure 6.2.5.

v1v3
v3v1

v1v2

v3v
∗
1v2v3

v2v2

h1 h2

h1

h2

h3

v1 v3 v1

v2 v2

h1 h2

h1

h2

h3

v1 v3 v1

v2 v2

Figure 6.2.5: six types of almost horizontal units

Next we need to introduce the concept of ancestor units.
Consider first an almost horizontal L-line H2i+1, with shortline V2i+2. Then any

almost vertical unit of V2i+2 is the shortcut of an almost horizontal detour crossing
of a horizontal street, made up of some almost horizontal units of H2i+1, together
with some fractional units at the two ends. To illustrate this, the reader is referred
to Figure 6.2.6.
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v3v1

v2v3

v1v3

v3v
∗
1

h1h2

v3v1
v2v3

v1v2

h1h3

h1 h2

h1

h2

h3

v1 v3 v1

v2 v2

h1 h2

h1

h2h3

v1 v3 v1

v2 v2

Figure 6.2.6: ancestor units of the almost vertical units h1h2 and h1h3

In the picture on the left, it is shown that the almost vertical unit h1h2 is the
shortcut of an almost horizontal detour crossing of a horizontal street, made up of a
fractional unit v2v3, followed by two complete units v3v1 and v1v3, and ending with
a fractional unit v3v

∗
1.

In general, there may be extra copies of the whole units v3v1 and v1v3, if the slope
of the almost horizontal detour crossing of the horizontal street is very small.

Extension rule. Extend the fractional units at either end of the detour crossing
to whole units.

Applying the extension rule, the ancestor units of h1h2 must contain types v2v3,
v3v1, v1v3 and v3v

∗
1, and we denote this fact by writing

h1h2 ↪→ v2v3, v3v1, v1v3, v3v
∗
1, (6.2.15)

with the convention that ancestor units present with multiplicity are listed only
once. In the picture on the right, we start with the almost vertical unit h1h3. Using
a similar analysis and applying the extension rule, the ancestor units of h1h3 must
contain types v2v3, v3v1 and v1v2, and we denote this fact by writing

h1h3 ↪→ v2v3, v3v1, v1v2. (6.2.16)

Analagous considerations give

h2h2 ↪→ v3v
∗
1, v1v3, (6.2.17)

h2h3 ↪→ v3v
∗
1, v1v3, v3v1, v1v2, (6.2.18)

h3h1 ↪→ v1v2, v2v2, v2v3, (6.2.19)

h3h
∗
1 ↪→ v1v2, v2v2, v2v3. (6.2.20)

Consider next an almost vertical L-line V2i+2, with shortline H2i+3. Then any
almost horizontal unit of H2i+3 is the shortcut of an almost vertical detour crossing
of a vertical street, made up of some almost vertical units of V2i+2, together with
some fractional units at the two ends. Analogous to (6.2.15)–(6.2.20), we have

v1v2 ↪→ h2h3, h3h1, h1h3, h3h
∗
1, (6.2.21)

v1v3 ↪→ h2h3, h3h1, h1h2, (6.2.22)

v2v2 ↪→ h3h
∗
1, h1h3, (6.2.23)

v2v3 ↪→ h3h
∗
1, h1h3, h3h1, h1h2, (6.2.24)

v3v1 ↪→ h1h2, h2h2, h2h3, (6.2.25)

v3v
∗
1 ↪→ h1h2, h2h2, h2h3. (6.2.26)
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Consider now the chain

H2i+1 → V2i+2 → H2i+3 → V2i+4. (6.2.27)

Starting with almost vertical units in V2i+4 and identifying their ancestors three
times iteratively, using (6.2.15)–(6.2.26), we obtain

h1h2 ↪→ v2v3, v3v1, v1v3, v3v
∗
1 ↪→ h3h

∗
1, h1h3, h3h1, h1h2, h2h2, h2h3

↪→ v1v2, v2v2, v2v3, v3v1, v1v3, v3v
∗
1, (6.2.28)

h1h3 ↪→ v2v3, v3v1, v1v2 ↪→ h3h
∗
1, h1h3, h3h1, h1h2, h2h2, h2h3

↪→ v1v2, v2v2, v2v3, v3v1, v1v3, v3v
∗
1, (6.2.29)

h2h2 ↪→ v3v
∗
1, v1v3 ↪→ h1h2, h2h2, h2h3, h3h1

↪→ v2v3, v3v1, v1v3, v3v
∗
1, v1v2, v2v2, (6.2.30)

h2h3 ↪→ v3v
∗
1, v1v3, v3v1, v1v2 ↪→ h1h2, h2h2, h2h3, h3h1, h1h3

↪→ v2v3, v3v1, v1v3, v3v
∗
1, v1v2, v2v2, (6.2.31)

h3h1 ↪→ v1v2, v2v2, v2v3 ↪→ h2h3, h3h1, h1h3, h3h
∗
1, h1h2

↪→ v3v
∗
1, v1v3, v3v1, v1v2, v2v2, v2v3, (6.2.32)

h3h
∗
1 ↪→ v1v2, v2v2, v2v3 ↪→ h2h3, h3h1, h1h3, h3h

∗
1, h1h2

↪→ v3v
∗
1, v1v3, v3v1, v1v2, v2v2, v2v3. (6.2.33)

Proof of Lemma 6.2.1. Since V ∗ is long, we can clearly assume that m0 > 4U5. Let
` be the unique positive integer satisfying the inequalities

m` 6 4U5 < m`−1. (6.2.34)

Then it follows from (6.2.11), (6.2.13) and (6.2.34) that

m` >
m`−1

U
> 4U4 > 2U + 1 and m`+3 >

m`−1

U4
> 4U. (6.2.35)

Without loss of generality, suppose that ` is odd. To show that H∗` exhibits all six
types of corner cuts illustrated in Figure 6.2.3, it suffices to show that it contains at
least one copy of each of the three horizontal units v1v2, v2v3 and v3v

∗
1. We shall in

fact show that H∗` contains at least one copy of each of the six types of horizontal
units.

Note that it follows from the second set of inequalities in (6.2.35) that m`+3 > 4.
This means that V ∗`+3 contains at least 3 whole almost vertical detour crossings of
vertical streets. Take one such whole almost vertical detour crossing in the middle.
This must contain one of the six almost vertical units. In finding its ancestors,
the use of the extension rule is justified. The ancestors of this almost vertical unit
contains various types of almost horizontal units, all of which must be in H∗`+2.
Their ancestors contain various types of almost vertical units, all of which must be
in V ∗`+1. In turn, their ancestors contain various types of almost horizontal units, all
of which must be in H∗` .

Taking the chain (6.2.27) to be the chain H` → V`+1 → H`+2 → V`+3, and
noting the ancestor relations (6.2.28)–(6.2.33), it is clear that H∗` contains at least
one copy of each of the six types of horizontal units. This completes the proof of
Lemma 6.2.1. �

Remark. Note that our proof of Lemma 6.2.1 here is a brute force exercise which
does not give us any insight into what really is going on. Furthermore, this approach
is only possible for the L-surface where we have very precise information on the
almost horizontal and almost vertical units. If we consider surfaces other than
this particular L-surface, the corresponding brute force exercise may well turn out
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to be an extremely unpleasant exercise. Indeed, in Section 6.4, we shall consider
generalizations of the L-surface, leading to infinitely many analogs. Lemma 6.4.1 is
the generalized version of Lemma 6.2.1, and we shall develop there a substantially
simpler proof which also gives us more insight into the problem.

We next describe an iterative process for obtaining vertical and horizontal open
intervals on the edges of the L-surface. The L-surface is the simplest interesting
example of a polysquare translation surface, to be defined in Section 6.4. We adopt
the following simple rule concerning where flow images on such surfaces should lie.

Rule for magnification in a polysquare. Suppose, without loss of generality,
that the edges of a polysquare translation surface P lie on lines of the form x = x0
and y = y0, where x0 and y0 are integers. Let I be an open interval lying entirely
within an edge of P , and let γ > 1.

(i) Suppose that I lies on a vertical edge of a square face of P . Then there exist
integers y1 and y2 satisfying y2−y1 = 1 and such that the bottom edge of the square
face lies on the line y = y1 and the top edge of the square face lies on the line y = y2.
If we project I by the forward almost horizontal γ−1-flow, then the image of I lies
on edges of P that form part of the line y = y2. If we project I by the reverse almost
horizontal γ−1-flow, then the image of I lies on edges of P that form part of the line
y = y1.

(ii) Suppose that I lies on a horizontal edge of a square face of P . Then there
exist integers x1 and x2 satisfying x2 − x1 = 1 and such that the left edge of the
square face lies on the line x = x1 and the right edge of the square face lies on the
line x = x2. If we project I by the forward almost vertical γ-flow, then the image of
I lies on edges of P that form part of the line x = x2. If we project I by the reverse
almost vertical γ-flow, then the image of I lies on edges of P that form part of the
line x = x1.

For the L-surface, the only possible choices for (x1, x2) and (y1, y2) are (0, 1) and
(1, 2).

Suppose that I0 is an open interval on a vertical edge of the L-surface. Figure 6.2.7
shows examples of this where I0 lies on the vertical edge v1 of the bottom left square
face. This edge v1 lies between the horizontal lines y = 0 and y = 1. We wish to
project this interval to edges of the L-surface that lie on these two lines using the
forward or reverse almost horizontal α−11 -flow.

I1

I0

I0

I1

v1

v2

v1

v2

h1 h2

h1

h2

v3

h3

v1

v2

v1

v2

h1 h2

h1

h2

v3

h3

Figure 6.2.7: examples of good almost-horizontal flows for I0

The forward almost horizontal α−11 -flow from left to right gives rise to an image
of I0 on horizontal edges that lie on the line y = 1. Clearly the image falls on either
the edge h3 of the bottom left square face or the top edge h2 of the right square
face, as shown in Figure 6.2.7, or it is split between these two edges.

Likewise, in view of the identification of the two vertical edges v1 of the L-surface,
the reverse almost horizontal α−11 -flow from right to left gives rise to an image of I0
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on horizontal edges that lie on the line y = 0. The image falls on either the bottom
edge h1 of the bottom left square face or the bottom edge h2 of the right square
face, or it is split between these two edges.

We say that this forward or reverse flow is good for the interval I0 if the image
does not hit a vertex of the L-surface and is an open interval on a single horizontal
edge. The examples given in Figure 6.2.7 are good flows.

In this case, we define I1 to be the corresponding open horizontal interval on the
appropriate horizontal edge.

There are clearly instances when the forward almost horizontal α−11 -flow from left
to right acting on an open vertical interval I0 on some vertical edge of the L-surface
fails to deliver an image that does not hit a vertex of the L-surface, resulting in one
or more splits.

This happens precisely when the flow encounters the top right vertex of one of
the three constituent square faces of the L-surface, causing the flow to split. In this
case, we say that this flow is bad for the interval I0. The image I1 will contain a
split singularity and may be in multiple pieces.

However, apart from these, its precise structure is not of any serious concern in
our discussion.

The more pertinent question is the effect of the split singularity.
There are three separate cases.
Case 1. The flow hits the split singularity which is the top right vertex of the

bottom left square face, as shown in the picture on the left in Figure 6.2.8.

b
I ′1 I ′′1 b

I ′1 I ′′1

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

Figure 6.2.8: bad almost-horizontal α−11 -flow,
hitting the top right vertex of the bottom left square face

Case 2. The flow hits the split singularity which is the top right vertex of the
top square face, as shown in the picture on the left in Figure 6.2.9, where we have
placed the interval I ′1 on the bottom edge, in view of edge identification.

b

I ′1

I ′′1

b

b

I ′1

I ′′1

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

Figure 6.2.9: bad almost-horizontal α−11 -flow,
hitting the top right vertex of the top square face

Case 3. The flow hits the split singularity which is the top right vertex of the
right square face, as shown in the picture on the left in Figure 6.2.10, where we have
placed the interval I ′1 on the bottom edge, in view of edge identification.
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b

I ′1

I ′′1

b

b

I ′1

I ′′1

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

corner cuts
H∗

ℓ , V
∗
ℓ−1, . . .

Figure 6.2.10: bad almost-horizontal α−11 -flow,
hitting the top right vertex of the right square face

We remark that in any of the three cases, the interval I ′′1 can possibly take up a
whole edge of the L-surface or even more.

There are also instances when the reverse almost horizontal α−11 -flow from right to
left acting on an open vertical interval I0 on some vertical edge of the L-surface fails
to deliver an image that does not hit a vertex of the L-surface. This happens precisely
when the flow encounters the bottom left vertex of one of the three constituent square
faces of the L-surface, causing the flow to split.

Assume for the time being that the forward almost horizontal α−11 -flow from left
to right or the reverse almost horizontal α−11 -flow from right to left takes the open
interval I0 to a single open interval on an appropriate horizontal edge without cap-
turing any vertex of the L-surface along the way, and that this leads to an open
interval I1, as shown in the picture on the left in Figure 6.2.11.

We may apply the forward almost vertical α2-flow from left to right on the inter-
val I1. This may result in a single open interval I2 on an appropriate vertical edge
of the L-surface, as shown in the picture on the right in Figure 6.2.11, or the flow
encounters the top right vertex of one of the three constituent square faces of the
L-surface.

I1

I0

I1

I2

Figure 6.2.11: chain I0 → I1 → I2 given by a good α−11 flow and a good α2-flow

We may also apply the reverse almost vertical α2-flow from right to left on the
interval I1. This may result in a single open interval I2 on an appropriate vertical
edge of the L-surface, or the flow encounters the bottom left vertex of one of the
three constituent square faces of the L-surface.

And so on.
We thus have an iterative process, bearing in mind that the process may cease

when a flow encounters a vertex of one of the three constituent square faces of the
L-surface.

Suppose for the moment that we have some chain

I0 → I1 → I2 → I3 → I4 → · · · (6.2.36)

of alternate open vertical and horizontal intervals on appropriate edges of the L-
surface. Owing to the slopes, these tilted projections magnify the intervals, as can
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clearly been seen in Figure 6.2.11. It is easy to give a quantitative description of
the magnification process (6.2.36). It is clear from Figure 6.2.11 that

length(I1)

length(I0)
= α1 and

length(I2)

length(I1)
= α2,

and so on.
Suppose further that I0 is a V ∗-free open interval on some vertical edge of the

L-surface, meaning that it does not contain any edge-cutting points of V ∗. The
forward or reverse almost horizontal α−11 -flow projects I0 to an open interval I1
on some appropriate horizontal edge of the L-surface. By the same edge cutting
property, I1 does not contain any edge-cutting points of H∗1 . The forward or reverse
almost vertical α2-flow projects I1 to an open vertical interval I2 on some appropriate
vertical edge of the L-surface. By the same edge cutting property, I2 does not contain
any edge-cutting points of V ∗2 . And so on.

Lemma 6.2.2. Every V ∗-free open interval I0 on a vertical edge of the L-surface
satisfies

length(I0) 6
2

α1α2α3 · · ·α`−1α`
, (6.2.37)

where ` is the index of m` in Lemma 6.2.1. If there are several such indices, we
choose the smallest one.

The main idea of the proof of Lemma 6.2.2, that of zigzagging towards a split
singularity, can be summarized in the proof of the following crucial step.

Lemma 6.2.3. Suppose that under the hypotheses of Lemma 6.2.2, the inequality

length(I0) >
2

α1α2α3 · · ·α`−1α`
(6.2.38)

holds. Then the forward or reverse α−11 -flow projects I0 to an H∗1 -free interval I1 on
some horizontal edge of the L-surface, so that I1 does not contain a split singularity.
Furthermore, we have

length(I1) = α1 length(I0) >
2

α2α3α4 · · ·α`−1α`
. (6.2.39)

Proof. Suppose on the contrary that I1 contains a split singularity. For convenience,
we assume that we are using the forward α−11 -flow, and the flow hits the top right
vertex of the bottom left square face, as described in Case 1 earlier. The other two
cases, as well as the case of reverse α−11 -flow, can be treated in almost the same way,
with only very minor modifications. The similarities and differences of the three
cases concerning the forward α−11 -flow are illustrated in Figures 6.2.8–6.2.10.

We define the temporary intervals I ′1 and I ′′1 as indicated in the picture on the
left in Figure 6.2.8. Here the interval I ′′1 cannot be the whole top edge of the right
square face, for otherwise I ′′1 , and hence also I1, would contain an edge-cutting point
of H∗1 , a contradiction.

Without loss of generality, suppose that the index ` of m` in Lemma 6.2.1 is
odd, so that the corresponding L-line segment is the almost horizontal H∗` . By
Lemma 6.2.1, H∗` exhibits all six types of corner cuts. Figure 6.2.12 shows part of
the top square face of the L-surface as well as a corner cut of H∗` .
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Figure 6.2.12: zigzagging towards the split singularity

By the vertical same edge cutting property, this corner cut of H∗` intersects a
corner cut of V ∗`−1 at a point on a vertical edge of the L-surface. As shown in
Figure 6.2.12, the corner cut of V ∗`−1 is closer to the split singularity, indicated by
the big dot. From the corner cut of V ∗`−1, we can find a corner cut of H∗`−2 that
is again closer to the split singularity, and so on. Eventually we arrive at a corner
cut of H∗1 . This is very close to the split singularity; in Figure 6.2.12, the parts
within the dotted circles are magnified. We denote by E1 and E2 the endpoints of
the corner cut of H∗1 in the top square face.

An analogous argument can be carried out in the right square face, with corner
cuts getting closer to the same split singularity. We denote by E3 and E4 the
endpoints of a corresponding corner cut of H∗1 in this square face.

Our next step is to estimate the distances of these endpoints from the split sin-
gularity. We shall show that they are exponentially close to the split singularity.

It is clear from Figure 6.2.12 that the distance of the furthest point on the corner
cut of H∗` from the split singularity is less than 1. Since H∗` has slope α−1` , it follows
that the distance of the furthest point on the corner cut of V ∗`−1 from the split

singularity is less than α−1` . Since V ∗`−1 has slope α`−1, it follows that the distance
of the furthest point on the corner cut of H∗`−2 from the split singularity is less

than α−1` α−1`−1. Clearly E1 is the point on the corner cut of H∗1 which is furthest from
the split singularity. Iterating, we conclude that the distance of E1 from the split
singularity is less than

1

α`α`−1α`−2 · · ·α3α2

.

Similarly, the distance of E3 from the split singularity is less than this same quantity.
Hence the distance distance(E1, E3) between E1 and E3 satisfies the inequality

distance(E1, E3) <
2

α`α`−1α`−2 · · ·α3α2

. (6.2.40)

The forward α−11 -flow projects the V ∗-free interval I0 to an interval I1 on some
horizontal edges of the L-surface, temporarily represented by I ′1 and I ′′1 as shown in
Figure 6.2.8, and containing the split singularity.

Under the assumption (6.2.38), it follows that

length(I ′1) + length(I ′′1 ) = α1 length(I0) >
2

α2α3α4 · · ·α`−1α`
. (6.2.41)

Combining (6.2.40) and (6.2.41), we conclude that

distance(E1, E3) < length(I ′1) + length(I ′′1 ). (6.2.42)
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Since the points E1 and E3 fall on different sides of the split singularity, the inequality
(6.2.42) implies that I ′1∪ I ′′1 must contain at least one of these two points, and so an
edge-cutting point of H∗1 , clearly contradicting that I1 is H∗1 -free. Thus I1 does not
contain a split singularity, so does not split and therefore is a single interval, and
(6.2.39) holds. �

Proof of Lemma 6.2.2. Lemma 6.2.3 sets up an iterative process. Suppose that
(6.2.38) holds. Then the forward or reverse α−11 -flow projects I0 to an H∗1 -free
interval I1 on some horizontal edge of the L-surface, so that I1 does not contain a
split singularity, and (6.2.39) holds.

Then the forward or reverse α2-flow projects I1 to I2, which is a V ∗2 -free interval
on some vertical edge of the L-surface. With the roles of (6.2.38), I0 and I1 replaced
respectively by (6.2.41), I1 and I2, an analogous argument shows that I2 does not
contain a split singularity, so does not split and is therefore a single interval, and

length(I2) = α2 length(I1) >
2

α3α4α5 · · ·α`−1α`
. (6.2.43)

We now keep repeating this argument.
After a finite number of steps, we obtain an analog of (6.2.41) and (6.2.43), that

I`−1 is a V ∗`−1-free interval on some vertical edge of the L-surface, and

length(I`−1) = α`−1 · · ·α1 length(I0) >
2

α`
. (6.2.44)

We now consider the effect of the forward or reverse α−1` -flow on I`−1.
Figure 6.2.13 illustrates the interval I`−1 and its projection by the forward α−1` -

flow. Consider the horizontal line that contains the top edge of a square face of the
L-surface that contains I`−1 as part of its left edge. Suppose that a line of slope
α−1` that passes through the top end point of I`−1 intersects this horizontal line at
a point A. Then a line of the same slope α−1` that passes through the bottom end
point of I`−1 intersects the same horizontal line at a point B which is a distance
of precisely α` length(I`−1) > 2 to the right of A. The interval AB must therefore
contain a subinterval J of length 1 that can be identified with a horizontal edge of
the L-surface. This means that I` must contain a whole edge of the L-surface, and
therefore cannot be H∗` -free.

Iℓ−1

J
b bA B

Figure 6.2.13: I`−1 and its projection by the α−1` -flow

A similar conclusion can be drawn if we use the reverse α−1` -flow on I`−1.
We therefore arrive at a contradiction. This contradiction proves that (6.2.38) is

false, and completes the proof of Lemma 6.2.2. �

Remark. The expression (6.2.44) is very simple. However, the crucial argument in
the proof is that there is no splitting throughout the process I0 → I1 → . . .→ I`−1
caused by the singularities of the L-surface. This guarantees that the interval J at
the last step can be identified with a horizontal edge of the L-surface and is not split
into parts that are identified with different edges of the L-surface.

We recall (6.2.9), that

length(V ∗) = m0(1 + α2)1/2,
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as well as (6.2.14) with k = `, that

m` = m0

∏̀
j=1

1

αj
.

It follows that

length(V ∗) = (1 + α2)1/2m`α1α2α3 · · ·α`−1α`,
which can be rewritten in the form

2

α1α2α3 · · ·α`−1α`
=

2(1 + α2)1/2m`

length(V ∗)
. (6.2.45)

Recall that the integer U , given by (6.2.11), is an upper bound of the continued
fraction digits of the badly approximable number α. It then follows from (6.2.37),
(6.2.45) and Lemma 6.2.1 that every V ∗-free vertical interval I0 on a vertical edge
of the L-surface satisfies

length(I0) 6
16U6

length(V ∗)
. (6.2.46)

In general, V ∗ can be taken to be an arbitrary segment of the L-line V , so the
inequality (6.2.46) proves superdensity under the condition that V has a slope α
which is a badly approximable number with even continued fraction digits. This
completes the proof of Theorem 6.1.1. �

6.4. Generalization of Theorem 6.1.1. We now switch from the L-surface to
a large class of finite polysquare translation surfaces, and show how we can find
superdense geodesics.

A finite polysquare region P is an arbitrary connected, but not necessarily simply-
connected, polygon on the plane tiled with finitely many closed unit squares, called
the atomic squares or squares faces of P , such that the following conditions are
satisfied:

(i) Any two atomic squares in P either are disjoint, or intersect at a single point,
or have a common edge.

(ii) Any two atomic squares in P are joined by a chain of atomic squares where
any two neighbors in this chain have a common edge.

Given a finite polysquare region P , we can convert it into a finite polysquare trans-
lation surface P by identifying pairs of parallel boundary edges with inward normals
in opposite directions. It is equipped with flat metric, so it is a Riemann surface,
with possible conical singularity or singularities, where every square face has zero
curvature. The total curvature 2πχ(S) in the Gauss–Bonnet formula, where χ(S)
is the Euler characteristic of the polysquare translation surface S, is concentrated
in the finitely many conical singularities. Geodesic flow on such a surface is then
1-direction geodesic flow.

The simplest boundary pairing comes from perpendicular translation as in the
case of the L-surface, first introduced in Section 6.1.

A finite polysquare surface which is not a translation surface is the cube surface
shown in Figure 6.4.1. The boundary pairing, involving non-parallel edges, is more
complicated. As on the L-surface, geodesic flow on the cube surface has singularities
at the vertices, so it is non-integrable. It is a 4-direction flow, as seen in the picture
on the right in Figure 6.4.1.
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Figure 6.4.1: orbit singularity of geodesic flow on the cube surface
leading to perpendicular directions on the net

Figure 6.4.2 illustrates a trick to reduce this 4-direction geodesic flow on the cube
surface to a 1-direction flow on a 4-times larger surface.
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f4 g3

Figure 6.4.2: translation surface which is a 4-fold covering of the cube surface

We take four 90-degree rotated copies of the net in Figure 6.4.1, and glue them
together by making some specific edge-identifications between the different copies.
Figure 6.4.2 shows a translation surface obtained by gluing together the boundary
edges with identical labels, which are parallel with inward normals in opposite di-
rections, mapped to each other via translation. For example, the edge b2 in the
lower-left copy is identified with the edge b2 in the lower-right copy of the net of
the cube surface, and they are parallel vectors. And so on. This surface is a 4-fold
covering of the cube surface, and its geodesics form a 1-direction flow. This 4-copy
construction works for any polysquare surface with 4-direction geodesic flow. Hence
it suffices to study 1-direction flow.

Similar 4-copy construction works for any billiard in a polysquare polygon. We
refer to the polysquare polygon in Figure 6.4.3 as the snake. Figure 6.4.3 shows
how the snake billiard on the left is converted into a 1-direction flow on the right,
where the 4-times larger polysquare surface obtained by gluing together 4 copies of
the snake via iterated reflection across sides, called unfolding, and using the given
boundary pairing which does not contain perpendicular pairs, and the result is a
translation surface. We refer to this polysquare surface as the snake-cross surface.
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Figure 6.4.3: snake billiard and unfolding to obtain the snake-cross surface

The polysquare translation surface on the left in Figure 6.4.4 has a missing square
face, illustrated by the shaded region.

GAP

HOLE

v1 v2 v2 v1

v3 v3 v4 v4
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v1 v1 v2 v2

h1

h1

h2

h2

Figure 6.4.4: surfaces with gap, wall or hole

Note that the edge pairings make this missing part behave like a gap. For instance,
when a geodesic hits the edge v2 on the left of this gap, it jumps to the corresponding
point on the identified edge v2 on the right of this gap, then continues on its way at
the same slope. It also has a double edge, illustrated by the thick line segment, that
behaves like a wall. For instance, when a geodesic hits the edge v3 on the left side of
this wall, it jumps back to the corresponding point on the identified edge v3 further
back, then continues on its way at the same slope. Note that the squares on the top
row form a horizontal street of length 3, as do the squares on the second row from
the top and the squares on the third row from the top. Furthermore, each of the
squares on the second row from the bottom forms a horizontal street of length 1,
while the squares on the bottom row form a horizontal street of length 2. Thus this
surface has two horizontal streets of length 1, one horizontal street of length 2, and
three horizontal streets of length 3. It also has one vertical street of length 1, one
vertical street of length 3, one vertical street of length 4, and one vertical street of
length 5. So the street-LCM, the least common multiple of all the street lengths, is
3× 4× 5 = 60.

The polysquare translation surface on the right in Figure 6.4.4 also has a missing
square face, illustrated by the shaded region. But it behaves like a thick wall in
both the horizontal and vertical direction. We may call it a hole.

Note that some of the boundary pairings are omitted from the pictures, since they
come from the simplest form of perpendicular translation.



26 BECK, CHEN, AND YANG

Remark. We use the words gap, wall and hole purely for convenience. They do not
have any formal meaning, and the precise details are given by the edge identification
process. Indeed, there can be missing squares that can be hybrid-gap-holes, in the
sense that it may act like a gap in the horizontal direction and like a hole in the
vertical direction. Furthermore, there may be edge identifications that make missing
squares or walls far more complex than we have described so far. The important
point always to bear in mind is that the edge pairings are what matter.

As Figure 6.4.2 shows, the street-LCM of the translation surface of the cube
surface is 4, since every street has length 4.

Similarly, the street-LCM of the surface in Figure 6.4.3 is also 4, since every street
has length 2 or 4.

We have the following generalization of Theorem 6.1.1.

Theorem 6.4.1. Let P be an arbitrary finite polysquare translation surface. Let α
be a badly approximable number with continued fraction expansion

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 + 1
a2+

1
a3+···

(6.4.1)

such that for every i > 0, the digit ai is divisible by the street-LCM of P. Then any
half-infinite 1-directional geodesic with slope α exhibits superdensity on P.

Using unfolding such as that illustrated in Figure 6.4.3, we can show that a 4-
directional billiard trajectory in a polysquare region can be reduced to a 1-directional
geodesic on a translation surface which can be viewed as a 4-copy version of the
polysquare region. In particular, the conclusion of Theorem 6.4.1 applies also to
billiards in a finite polysquare region.

Let α > 0 be any badly approximable number satisfying (6.4.1), with the extra
restriction that every digit ai is divisible by 4. Theorem 6.4.1 implies that any geo-
desic on the cube surface with slope equal to this α exhibits superdensity. Similarly,
any billiard trajectory in the snake region given in Figure 6.4.3 with initial slope
equal to this α exhibits superdensity.

Let α > 0 be any badly approximable number satisfying (6.4.1), with the extra
restriction that every digit ai is divisible by 60. Theorem 6.4.1 implies that any
geodesic on the surface in the picture on the left in Figure 6.4.4 with slope equal to
this α exhibits superdensity.

Proof of Theorem 6.4.1. The proof is a fairly straightforward adaptation of the proof
of Theorem 6.1.1. The key concept of street in the general case means a maximal
size strip of ` consecutive square faces arranged horizontally or vertically. We call `
the length of the street. The concept of street corner, such as those in Figures 6.2.2
and 6.2.3 for the L-surface, in the general case means the intersection of a horizontal
side of a horizontal street and a vertical side of a vertical street.

The missing ingredient is a suitable analog of Lemma 6.2.1 in the general case.
However, the discussion between the statement of Lemma 6.2.1 and its proof sets
the tone of this discussion.

The reader may recall that our earlier discussion in connection with the proof
of Lemma 6.2.1 involves working out ancestors of almost vertical units and almost
horizontal units by brute force, where we diligently list ancestors at every stage and
make use of the extension rule. Whereas for any given finite polysquare translation
surface P , we can repeat this brute force approach with a possibly extremely tedious
exercise, in the general case, we have no precise information on the structure of the
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polysquare translation surface P to even contemplate such a crude approach. As it
turns out, the solution is relatively simple.

Instead of listing all possible almost vertical units, we classify them into two types.
Consider a given square face of the polysquare translation surface, and consider
almost vertical units that start from the bottom edge of this square face. We say
that the almost vertical unit is of type ↑ in the square face if it starts from the
bottom edge of the square face and arrives at the top edge of the same square face
without intersecting a vertical side along the way, as shown in the picture on the
left in Figure 6.4.5. We say that the almost vertical unit is of type −↑ in the square
face if it starts from the bottom edge of the square face but then hits the right edge
of the same square face, as shown in the picture on the right in Figure 6.4.5. The
unit then continues into the square face with left edge identified with the right edge
of this square face.

Figure 6.4.5: almost vertical units ↑ and −↑ in the square face

Likewise, instead of listing all possible almost horizontal units, we classify them
into two types. Consider a given square face of the polysquare translation surface,
and consider almost horizontal units that start from the left edge of this square face.
We say that the almost horizontal unit is of type → in the square face if it starts
from the left edge of the square face and arrives at the right edge of the same square
face without intersecting a horizontal side along the way, as shown in the picture
on the left in Figure 6.4.6. We say that the almost vertical unit is of type +→ in the
square face if it starts from the left edge of the square face but then hits the top
edge of the same square face, as shown in the picture on the right in Figure 6.4.6.
The unit then continues into the square face with bottom edge identified with the
top edge of this square face.

Figure 6.4.6: almost horizontal units → and +→ in the square face

Recall that Lemma 6.2.1 concerns exhibiting corner cuts. It is clear that a corner
cut is a unit of type −↑ or +→, but not one of type ↑ or →. We shall also start our
ancestor process by assuming that the first unit is part of a much longer geodesic,
so that we may use the extension rule.

First we define the P-distance between any two distinct square faces S1 and S2 in
the polysquare translation surface P . We say that their P-distance is 1 if they belong
to the same horizontal street or vertical street. Otherwise, we consider a shortest
sequence of alternate horizontal and vertical streets such that the first contains S1,
the last contains S2, and any two consecutive streets in the sequence intersect. Then
the length of this sequence is the P-distance between S1 and S2.

In Figure 6.4.7, the two square faces S1 and S2 have P-distance 2. They are not
on the same street. In the picture on the left, the horizontal street containing S1

intersects the vertical street containing S2, although the vertical street containing
S1 may not necessarily intersect the horizontal street containing S2. In the pic-
ture on the right, the vertical street containing S1 intersects the horizontal street
containing S2.
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Figure 6.4.7: square faces S1 and S2 with P-distance 2

The P-diameter is then the maximum P-distance between any two square faces
of P .

The shortline process discussed earlier replaces a detour crossing with a shortcut.
Here we study the reverse process. Given a finite almost vertical (resp. horizontal)
geodesic, we can break it up into a number of whole units, and possibly two fractional
units at the end. Each whole unit is the shortcut of an almost horizontal (resp.
vertical) detour crossing. Each of the fractional units, if extended to a full unit, is
also the shortcut of an almost horizontal (resp. vertical) detour crossing. For these,
we shorten the almost horizontal (resp. vertical) detour crossing by the same fraction
and at the appropriate end. We then take the union of these almost horizontal (resp.
vertical) detour crossings and fractional almost horizontal (resp. vertical) detour
crossings. The union is a finite almost horizontal (resp. vertical) geodesic. We call
this the ancestor geodesic of the original almost vertical (resp. horizontal) geodesic.

Lemma 6.4.1. Suppose that P is a finite polysquare translation surface with P-
diameter K. Suppose further that V is a 1-direction almost vertical geodesic of slope
α which is an irrational number given by (6.4.1), where every continued fraction digit
is a positive integer multiple of the street-LCM of P. Let V (resp. H) denote a finite
almost vertical (resp. horizontal) geodesic made up of 4 successive detour crossings
of the i-generation shortline of V for some even (resp. odd) integer i > 2K. Then
in every square face of P, the 2K-generation ancestor geodesic of V (resp. H) gives
rise to an almost vertical unit of type −↑ (resp. horizontal unit of type +→) in the
square face.

We shall only prove Lemma 6.4.1 for V , as the argument for H is similar. We
need the following.

Replacement rule. Replace a unit by another unit in the same detour crossing.

We first prove the following intermediate result.

Lemma 6.4.2. Under the hypotheses of Lemma 6.4.1, suppose that S ′ and S ′′ are
two square faces of P that lie on the same horizontal or vertical street. Suppose that
A is an almost vertical unit of type ↑ or −↑ in S ′. Suppose further that the extension
rule and the replacement rule apply. Then S ′′ contains an almost vertical unit of
type −↑ in S ′′ that is a 2-generation ancestor of A or some almost vertical unit of
type ↑ or −↑ replacing A.

Proof. (i) Suppose that S ′ and S ′′ lie on the same horizontal street. Consider the
almost horizontal detour crossing for which A is the shortcut. This detour crossing
must contain a fractional part of an almost horizontal unit of type +→ that intersects
the starting point of A. This fractional unit intersects the square face S ′. Since the
extension rule applies, we may assume that this fractional unit is extended to a full
unit, as shown in Figure 6.4.8 if A is of type ↑ in S ′ and in Figure 6.4.9 if A is of
type −↑ in S ′. On the other hand, this almost horizontal detour crossing also gives
rise to a unit of type → in every other square face that is in the same horizontal
street that contains S ′.
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Note that each of these almost horizontal units +→ and → is a 1-generation an-
cestor of A, with the end point intersecting the right edge of the square face. This
almost horizontal unit is the shortcut of an almost vertical detour crossing that
contains a fractional part of an almost vertical unit of type −↑ that intersects the
end point of the almost horizontal unit under consideration. Since the extension
rule applies, we may assume that this fractional unit is extended to a full unit, as
shown in Figure 6.4.8 by the bold arrows (note that we have not inserted these in
Figure 6.4.9), and this unit is a 2-generation ancestor of A.

S′

A

Figure 6.4.8: working along a horizontal street starting with a unit of type ↑

S′ A

Figure 6.4.9: working along a horizontal street starting with a unit of type −↑
In particular, each of the two square faces S ′ and S ′′ contains such a 2-generation

ancestor of A.
(ii) Suppose that S ′ and S ′′ lie on the same vertical street. Note that the almost

vertical unit A in the square face S ′ is part of an almost vertical detour crossing of
the vertical street containing S ′. This detour crossing has an almost vertical unit in
every square face in this vertical street. Thus the square face S ′′ contains an almost
vertical unit B that is in the same almost vertical detour crossing as A. Using the
replacement rule, we replace A by B. Starting with B in S ′′ and considering the
horizontal street containing S ′′, it follows from (i) that S ′′ contains a 2-generation
ancestor of B. �

Proof of Lemma 6.4.1. Let A be an almost vertical unit in the two middle detour
crossings in V that intersects the bottom edge of some square face S1 in P . Since
any other square face S in P has P-distance at most K from S1, there exists a
sequence of square faces S2, . . . , SL, where L < K, such that any consecutive pair of
square faces lie on the same horizontal or vertical street, and such that S1 and S2 lie
on the same horizontal or vertical street, and SL and S lie on the same horizontal
or vertical street. Applying Lemma 6.4.2 iteratively at most K times gives us the
desired result. It remains to justify the use of the extension rule and replacement
rule in Lemma 6.4.2.

The extension rule means that ancestor units that are only fractional in the detour
crossing for which A is the shortcut are counted in full. Such an ancestor unit is also
part of the ancestry of an almost vertical unit in V adjoining A. To make sure that
the unit −↑ at the end of the proof is a genuine 4-generation ancestor of some unit
in V , and not there merely as a consequence of the extension rule, we start with a
geodesic V with four detour crossings and pick a unit A in the two middle detour
crossings. The two detour crossings at either end of V then give us ample cover.
These extra detour crossings also justify the use of the replacement rule. �

Lemma 6.4.1 is precisely the generalization of Lemma 6.2.1 that we need to com-
plete the proof of Theorem 6.4.1. We can now prove Theorem 6.4.1 with a fairly
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straightforward adaptation of the magnification process of empty intervals, the ba-
sic idea of the proof of Theorem 6.1.1 for the L-surface, as long as the rule for
magnification in a polysquare is followed. �

The restriction that the continued fraction digits of α are divisible by the street-
LCM in Theorem 6.4.1 implies that the superdense slopes α satisfying this digit
condition form a nowhere dense set in the unit interval. There is, however, a simple
geometric trick to extend this set of superdense slopes to a dense set in the unit
interval for every finite polysquare translation surface.

The idea is that every finite polysquare translation surface generates infinitely
many new finite polysquare translation surfaces as follows.

Consider, for instance, the L-surface of 3 square faces. By drawing the two diag-
onals on each one of the 3 square faces, i.e., putting a × in every square face, we
obtain a new polysquare translation surface with 6 smaller square faces, each with
half the area; see Figure 6.4.10. The genus remains the same. By using the boundary
pairing in the picture on the right in Figure 6.4.10, we obtain the so-called diagonal
subdivision surface of the L-surface, or DS-L-surface. Here the DS-L-surface is not
in the usual horizontal-vertical position, but rotating the picture by 45 degrees does
not alter the nature of the question at hand.
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Figure 6.4.10: L-surface and DS-L-surface

The concept of diagonal decomposition into smaller squares has a far-reaching
generalization. For example, Figure 6.4.11 below shows the (k, 1)-decomposition of
a square face in the special cases k = 2 and k = 3. The full generalization comes
from choosing relatively prime integers k and ` satisfying 1 6 ` < k.

Figure 6.4.11: (2, 1)-decomposition and (3, 1)-decomposition

Applying the corresponding (k, `)-decomposition on every square face of of an
arbitrary polysquare translation surface P with 1-direction geodesic flow, we obtain
a polysquare translation surface (k, `)-S-P , where S stands for subdivision. Here
we emphasize the fact that the slope `/k can be any rational number between 0
and 1, and of course the rationals form a dense set. The last step is to apply
Theorem 6.4.1 for an arbitrary polysquare translation surface (k, `)-S-P . Thus we
obtain the following result.

Corollary of Theorem 6.4.1. Let P be any finite polysquare translation surface
with 1-direction geodesic flow. Then the set of slopes for which every infinite geodesic
flow of this slope exhibits superdensity on P is dense in the unit interval.
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6.5. Time-quantitative density in a square-maze. Here we describe a large
class of infinite polysquare translation surfaces for which geodesic flow exhibits
density. As usual, we are interested in the time-quantitative aspects of density.

We call an infinite polysquare translation surface a square-maze translation surface
if the lengths of the horizontal and vertical streets are uniformly bounded. Let
` > 2 be any integer. Then we call a square-maze translation surface an `-square-
maze translation surface if every street, whether horizontal or vertical, has length
at most `, and there is a street that has length equal to `. We choose an arbitrary
square face of P , choose any of its 4 corner points, and refer to this particular corner
point as the origin 0.

Remark. If geodesic flow on a square-maze surface or region is a 4-direction flow, like
in the case of billiards, then of course we can apply the standard trick of a 4-copy
construction as in Figure 6.4.2 or the trick of unfolding like in Figure 6.4.3. Such a
geometric trick converts the original problem to an equivalent problem of geodesic
flow on a (4-copy) square-maze translation surface with 1-direction flow.

The class of square-maze translation surfaces forms a very rich family of infinite
surfaces. Note that for a fixed positive integer `, there are `-square-maze translation
surfaces with completely different growth-rate of the neighborhood, i.e., the rate of
growth of the number of square faces that are at a P-distance at most N from
a given square face as a function of N . Nevertheless, somewhat surprisingly, this
growth-rate of the neighborhood does not show up in our time-quantitative density
result Theorem 6.5.1 below.

Along the way, we give examples of square-maze translation surfaces that exhibit
linear, or quadratic, or cubic, or exponential growth-rate of the neighborhood.

We call our first example an infinite shark ; see Figure 6.5.1 below. The alternating
vertical walls, from above and below, resemble shark-teeth, explaining the name.
To obtain an infinite flat surface in Figure 6.5.1, we use the simplest perpendicular
boundary pair identification: horizontal translation for vertical edges and vertical
translation for horizontal edges. In the resulting surface every street has length 2,
so it is a 2-square-maze translation surface.

v1 v1 v3 v3 v5 v5

v2 v2 v4 v4

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

Figure 6.5.1: infinite shark surface as a 2-square-maze
and 1-direction geodesic flow

For ` > 3, we have the freedom to change the gaps between the teeth of the shark.
This gives an uncountable set of aperiodic `-square-maze translation surfaces with
linear growth-rate of the neighborhood similar to that in Figure 6.5.1.

Figure 6.5.2: infinite down-staircase and infinite up-staircase
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By the way, the set of all 2-square-maze translation surfaces is uncountable. To
justify this claim we can introduce the infinite staircase in Figure 6.5.2 below. Mov-
ing from left to right the staircase goes down, so we refer to it as a down-staircase.
Reflecting it across a vertical line we obtain an infinite up-staircase.

Figure 6.5.2 shows the infinite staircase region, which is a 45-degree tilted tower of
infinitely many 2× 1 rectangles. The infinite staircase surface is obtained from the
infinite region by the simplest boundary identification: pairs of vertical boundary
edges are identified by horizontal translation, and pairs of horizontal boundary edges
are identified by vertical translation.

A 2-square-maze translation surface is intuitively an infinite snake, where we have
an infinite degree of freedom of going up-or-down and left-or-right and by using walls
if necessary. For example, start with any finite down- or up-staircase surface, glue
to it any finite shark surface, next glue to it any finite down- or up-staircase surface,
next glue to it any finite shark surface, and so on. This simple construction already
provides an uncountable set of 2-square-maze translation surfaces. Of course every
2-square-maze translation surface has a linear growth-rate of the neighborhood.

Figure 6.5.3 shows a double-periodic 3-square-maze translation surface, which
clearly exhibits quadratic growth-rate of the neighborhood. Here the building blocks
are 3×3 squares with holes in the middle, and these blocks are glued together by 1×1
squares in such a way that they form a 2-dimensional lattice (somewhat like Z2),
creating further holes. We use gray color for the holes, which we also indicate by the
letter H, and the boundary pair identification, some of which are indicated, ensures
that these holes are no-go zones as opposed to the gap in Figure 6.4.4. Here every
right vertical edge of a hole is identified with the left vertical edge (on the same
horizontal street) of the next hole to the right, and every top horizontal edge of a
hole is identified with the bottom horizontal edge (on the same vertical street) of
the next hole above. Thus we obtain a translation surface where every street has
length 3.

v1 v1

v2 v2 v3 v3

h1

h1

h2

h2

H H H

H H H

H H H H

H H H H

H H H H

Figure 6.5.3: 3-square-maze with holes

Remark. All missing squares in this section are holes.

If ` is substantially larger than 3, then we have all the freedom to change the size
of the building blocks. For example, we can replace the 3× 3 square with an 8× 8
square, replace the hole size to 4 × 4, and locate the hole inside the 8 × 8 square
arbitrarily. This way we can construct an uncountable set of aperiodic `-square-
maze translation surfaces with quadratic growth-rate of the neighborhood similar
to that in Figure 6.5.3.

Another way to construct an uncountable set of aperiodic square-maze translation
surfaces is based on Figure 6.5.4. Type + on the left shows 4 unit size gray squares
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(holes) inside a 4×4 big square such that every row and column has one gray square
and the distance between any two gray squares is at least one. Type − on the right
shows another configuration of 4 gray squares with the same property. Divide the
plane into 4× 4 squares, and in each one place a type + or a type − configuration
arbitrarily. The cardinality of the number of different infinite configurations is the
cardinality of 2Z2

. Thus we obtain an uncountable family of aperiodic j-square-
maze translation surfaces where j 6 6. They all exhibit quadratic growth-rate of
the neighborhood.

H

H

H

H H

H

H

H

Figure 6.5.4: type + on the left and type − on the right

This idea can be generalized to larger square blocks. Let p > 2 be a prime, and
consider a p × p block of unit size squares. For ease of description, suppose that
the bottom left vertex is (0, 0) and the top right vertex is (p, p), and that for every
0 6 i, j < p, S(i, j) denotes the unit size square with bottom left vertex (i, j). Let
q be a prime distinct from p. For every 0 6 i < p, let 0 6 yi < p be the unique
solution of the congruence yi ≡ qi mod p. Now consider a building block where each
square S(i, yi), 0 6 i < p, is a unit size gray square (hole). Then every row and
column of the p×p block has precisely one gray unit size square. We can call this the
type (p, q) configuration. On the other hand, we can repeat the same argument with
another prime q′ different from both p and q, and obtain a type (p, q′) configuration.
Divide the plane into p × p squares, and in each one place a type (p, q) or a type
(p, q′) configuration arbitrarily. Thus we obtain an uncountable family of aperiodic
j-square-mazes where j 6 2p− 2.

To give an example of a polysquare surface, not necessarily a translation surface,
for which the growth-rate of the neighborhood is cubic, we consider first an infinite
polycube region, i.e., cube tiled solid region, where the building blocks are illustrated
in the picture on the left in Figure 6.5.5.
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Figure 6.5.5: polycube and holes on the corridor

More precisely, consider all integer lattice points n = (n1, n2, n3) ∈ Z3 such that
every coordinate ni is divisible by 6, and place an aligned 3× 3× 3 cube centered at
each such lattice point n. We then join these 3×3×3 cubes by corridors. These are
1 × 1 × 3 boxes, with the two ends attached to the middle squares on the relevant
faces of the neighboring 3× 3× 3 cubes.
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The polysquare surface of this infinite polycube typically exhibits cubic growth-
rate of the neighborhood. This is an infinite polysquare surface where all the streets
are finite. To see this, observe that the square faces annotated by 1–8 form part of
a street of length 20. Hence a street that contains a square of a corridor has length 4
or 20. Clearly any street that does not contain a square of a corridor has length 12.
The surface is therefore a 20-square-maze surface.

The 12 square faces of a typical corridor form a polysquare surface with boundary
which is a 4 × 3 rectangle with edge pairings given in the picture on the right in
Figure 6.5.5. We can modify the surface by removing arbitrarily some of these square
faces by holes as shown.

For an integer ` substantially larger than 12, we have the freedom to change the
lengths of the corridors and the arrangement of the holes. This way we can easily
construct an uncountable family of `-square-maze surfaces for which the growth-rate
of the neighborhood is cubic.

We can go even further. Given any integer d > 4, it is not difficult to construct an
uncountable family of square-mazes for which the growth-rate of the neighborhood
is a d-th power.

What is more, it is not difficult to achieve exponential growth-rate of the neigh-
borhood. For example, let us go back to the two 4× 4 squares of types + and − in
Figure 6.5.4. Instead of dividing the plane into 4× 4 squares and placing a type +
or type − configuration arbitrarily in each of them, where the cardinality of distinct
configurations is the cardinality of 2Z2

, we shall follow a different pattern. We can
build a 4-regular infinite tree, i.e., an infinite connected cycle-free graph where every
degree is 4. What we get then is an abstract or exotic polysquare surface, but a
perfectly well-defined legitimate surface nonetheless.

More precisely, we start with a 4× 4 square of type + or type −. For each of the
4 sides, we attach a new 4 × 4 square of type + or type −, with arbitrary choice.
Each of these new 4× 4 squares has 3 free sides, and for each of these, we attach a
new 4 × 4 square of type + or type −, again with arbitrary choice, and call them
second-round new. Each of the second-round new 4× 4 squares has 3 free sides, and
for each of these, we attach a new 4 × 4 square of type + or type −, again with
arbitrary choice, and call them third-round new. And so on, we keep going forever.
Then the growth-rate of the n-th neighborhood is exponential in the range of 3n.

Of course there are many, many more ways to construct an uncountable set of
aperiodic square-mazes.

Let P be an infinite polysquare translation surface which is an `-square-maze
translation surface for some integer ` > 2, with 1-direction geodesic flow.

Since every square face in P is the intersection of a horizontal and a vertical
street, and P is square-face-connected by definition, we can define the concept of
P-distance between distinct square faces in P as in Section 6.4.

We say that the P-distance between two distinct square faces S1 and S2 is 1 if
they belong to the same horizontal street or vertical street. Otherwise, we consider
a shortest sequence of alternate horizontal and vertical streets such that the first
contains S1, the last contains S2, and any two consecutive streets intersect. Then
the length of this sequence is the P-distance between S1 and S2.

Note that the P-distance is a metric on the collection of all square faces in P if
we further define the P-distance of any square face and itself to be 0.

For simplicity we restrict our attention to slopes of the form

α = α(a) = [a; a, a, a, . . .] = a+
1

a+ 1
a+ 1

a+···

, (6.5.1)
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where the common digit a > `! is divisible by `!. This condition implies that every
street length is a divisor of the common digit a in (6.5.1), and may be replaced by
the weaker condition that a is divisible by the lowest common multiple of 2, . . . , `.

Our goal is to prove the following time-quantitative density result in a square-maze
translation surface.

Theorem 6.5.1. Suppose that P is an `-square-maze translation surface for some
integer ` > 2. For any fixed constant ε > 0, there exist infinitely many numbers α
of the form (6.5.1), where the common continued fraction digit a > `! is divisible
by `!, such that the half-infinite geodesic V (α; t), t > 0, starting at the origin 0, with
slope α and with arc-length parametrization, exhibits time-quantitative density in P
in the following precise sense. For any square face S of P, there is an effectively
computable threshold constant c0 = c0(S; ε;α) such that for every integer n > c0 and
every point Q ∈ S, the initial segment V (α; t), 0 < t < n3(logα)/(logα−log 2)+ε, gets
(1/n)-close to Q.

Remark. We cannot prove ergodicity, but we can prove a time-quantitative form of
density of individual orbits. Note that ergodicity and time-quantitative density are
not compatible, and neither one implies the other. Each says something relevant
about the dynamics from two different viewpoints.

Open Problem 3. Is the assumption that the starting point V (0) of V is a square
corner in Theorem 6.5.1 necessary? Can we have an arbitrary starting point?

Proof of Theorem 6.5.1. We shall adopt the magnification process in the proof of
Theorem 6.1.1, but do not use the trick of exponentially fast zigzagging to a street
corner; see Figure 6.2.2. Thus the argument here is somewhat simpler than that of
the proof of Theorem 6.1.1.

As usual, we assume that every square face of P has side length one. We pick an
arbitrary square face of P , pick one of its 4 corner points, and call it 0.

Let V (t) = V (0;α; t), t > 0, denote the almost vertical geodesic in P that starts
from 0 and has slope α. Let H(t) = H(0;α; t), t > 0, denote the almost horizontal
geodesic in P that starts from 0 and has slope α−1.

By hypothesis every street length in P is a divisor of the common digit a in (6.5.1),
which implies that the almost horizontal H(t), t > 0, and the almost vertical V (t),
t > 0, are shortlines of each other. That is, they are mutual shortlines, where the
concept of shortline is introduced at the beginning of Section 6.2.

We follow closely the argument in Section 6.2. First we recall the so-called vertical
same edge cutting property of the shortline process, which says that the almost
vertical V (t), t > 0, and its shortline H(t), t > 0, have precisely the same edge-
cutting points on the vertical sides of vertical streets. We also have the analogous
horizontal same edge cutting property, which says that the almost horizontal H(t),
t > 0, and its shortline V (t), t > 0, have precisely the same edge-cutting points on
the horizontal sides of horizontal streets.

Let V ∗ be a finite initial segment of V (t), t > 0, and assume that V ∗ is long. It is
clear that V ∗ consists of a number of whole detour crossings and possibly a fractional
detour crossing at the end. Clearly the length of V ∗ is some multiple of (1 +α2)1/2,
the common length of detour crossings of vertical streets. In other words,

length(V ∗) = m0(1 + α2)1/2 for some large positive real number m0, (6.5.2)

where the integer part of m0 is the number of whole detour crossings in V ∗. Each
whole detour crossing in V ∗ has a shortcut, which is part of the almost horizontal
shortline H of V . The last fractional detour crossing in V ∗, if extended to a full
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detour crossing, also has a shortcut, which is also part of the almost horizontal
shortline H of V . For this last fractional detour crossing, we shorten its shortcut by
the same fraction and at the appropriate end to obtain a fractional shortcut. We
the take the union of these shortcuts and this fractional shortcut. This union is a
segment of H that we denote by H∗1 . Clearly the length of H∗1 is some multiple of
(1 + α2)1/2, the common length of detour crossings of horizontal streets. In other
words,

length(H∗1 ) = m1(1 + α2)1/2 for some real number m1.

We keep iterating this. Let

length(V ∗2 ) = m2(1 + α2)1/2 for some real number m2,

length(H∗3 ) = m3(1 + α2)1/2 for some real number m3,

and so on. Consider the decreasing sequence

m0 > m1 > m2 > m3 > · · · .
Repeating the argument of (6.2.12)–(6.2.14), we obtain the analogous result

mk = m0α
−k. (6.5.3)

Let I0 be a V ∗-free interval on a vertical edge of a square face on a vertical street
of P , so that I0 and V ∗ are disjoint. It follows from the vertical same edge cutting
property of the shortline process that the almost horizontal α−1-flow projects (tilted
parallel projection) the interval I0 to an H∗1 -free interval on a horizontal edge of a
horizontal street of P . The reader may want to go back to Figures 6.2.7 and 6.2.11
for illustration. Let I1 denote this H∗1 -free interval. Then I1 is a subinterval of a
horizontal edge of a square face on a horizontal street if the α−1-flow does not split
the image. We now iterate this. It follows from the horizontal same edge cutting
property of the shortline process that the almost vertical α-flow projects the interval
I1 to a V ∗2 -free interval on a vertical edge of a vertical street of P . Let I2 denote
this V ∗2 -free interval. Then I2 is a subinterval of a vertical edge of a square face
on a vertical street if the α-flow does not split the image. And then the almost
horizontal α−1-flow projects the interval I2 to an H∗3 -free interval on a horizontal
edge of a horizontal street of P . Let I3 denote this H∗3 -free interval. Then I3 is a
subinterval of a horizontal edge of a square face on a horizontal street if the α−1-flow
does not split the image. And so on, always observing the rule for magnification in
a polysquare.

Remark. Unlike in Section 6.2, here we cannot use the trick of exponentially fast
zigzagging to a street corner; see Figure 6.2.2. By using that trick in Section 6.2 we
can prevent the appearance of bad flow, when a singularity splits some image into
two intervals. Here we have no choice but to accept the possibility of such splitting,
and deal with it as a possible worst case scenario. It means that if splitting occurs,
then of course we take the longer part.

It is well possible that already I1, the α−1-flow image of the starting V ∗-free
interval I0, splits. Let J1 ⊂ I1 denote the longer part, so that J1 is an H∗1 -free
interval and a subinterval of a horizontal edge of a square face on a horizontal street
of P . Clearly |J1| > min{1, |I0|α/2}, where |J | denotes the length of an interval J .
In the next step the almost vertical α-flow projects the interval J1 to a V ∗2 -free
interval, which may split. We take the longer part and denote it by J2. Now J2 is
a V ∗2 -free interval and a subinterval of a vertical edge of a square face on a vertical
street of P . Clearly |J2| > min{1, |J1|α/2}. And so on.
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Thus this magnification process produces a chain of intervals

I0 = J0 → J1 → J2 → J3 → · · · → Jk → · · · (6.5.4)

such that, writing V ∗0 = V ∗, for every integer i > 0,
(1) J2i is a V ∗2i-free interval and a subinterval of a vertical edge of a square face

on a vertical street of P ;
(2) J2i+1 is an H∗2i+1-free interval and a subinterval of a horizontal edge of a square

face on a horizontal street of P ; and
(3) |Ji+1| > min{1, |Ji|α/2}.
It is not an accident that in (6.5.3) and (6.5.4) we use the same unspecified index k.

We complete the proof of Theorem 6.5.1 by making an appropriate choice of this
common index.

Let k = k0 be the smallest even integer such that

|I0|(α/2)k > 2. (6.5.5)

Then it follows from (3) that |Jk0| = 1. Combining this with (1), we conclude that
Jk0 is a whole vertical edge of a square face on a vertical street of P , and this vertical
edge is V ∗k0-free.

We recall that the square face corner 0 is the common starting point V (0) = H(0)
of the two particular geodesics V and H that are shortlines of each other.

Let S0 denote a square face of P that contains the common starting point 0. Let
S1 denote a square face of P that contains the V ∗-free interval I0, the first interval
in the chain (6.5.4), on its left boundary, and let S2 denote a square face of P that
contains the V ∗k0-free edge Jk0 on its right boundary.

For 0 6 ξ, η 6 2, let d(ξ, η) denote the P-distance between the square faces Sξ
and Sη.

The upper bound d(1, 2) 6 k0 is a straightforward corollary of the k0-step con-
struction of the magnification process (6.5.4) with k = k0. Indeed, in each step,
the P-distance increases by at most 1, as a consequence of the triangle inequality.
Combining this with the triangle inequality we deduce that the P-distance d(0, 2)
between the square faces S0 and S2 has the upper bound

d(0, 2) 6 d(0, 1) + d(1, 2) 6 d(0, 1) + k0. (6.5.6)

We recall some key facts. First of all, Jk0 is a V ∗k0-free edge on the boundary of
the square face S2 in P . Next, by (6.5.2) and (6.5.3) we have a very good estimation
for the length of V ∗k0 , given by

length(V ∗k0) = mk0(1 + α2)1/2 and length(V ∗) = m0(1 + α2)1/2, (6.5.7)

where
mk0 = m0α

−k0 . (6.5.8)

We apply a variant of Lemma 6.4.1 to the `-square-maze translation surface P ,
noting that in the proof of Lemma 6.4.1, we have not used at all the fact that the
polysquare translation surface is finite. We need to make some simple modification
to Lemma 6.4.1 as we start the geodesic here at the origin 0, so that we can talk
about the first detour crossing which is a whole detour crossing.

Lemma 6.5.1. Suppose that ` > 2 and P is an `-square-maze translation surface,
with 1-direction geodesic V starting at the origin 0 and of slope α which is an
irrational number given by (6.5.1), where the continued fraction digit a is a positive
integer multiple of `!. Let S ′ be a given square face of P, and let V denote the finite
almost vertical geodesic made up of the first 3 detour crossings of the i-generation
shortline of V for some even integer i > 4. Suppose that a unit contained in the first
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two detour crossings in V intersects the bottom edge of S ′. Then in every square face
S ′′ of P for which the P-distance between S ′ and S ′′ is at most 2, the 4-generation
ancestor geodesic of V gives rise to an almost vertical unit of type −↑ in the square
face.

Remark. Note that the first detour crossing of V and of V ∗ are the same.

Recall that V ∗ is a long initial segment of the special almost vertical V (t), t > 0.
We start with 2 whole detour crossings of V ∗, of total length 2(1 + α2)1/2. Let

h0 > 4 be any integer that is divisible by 4. The h0-step shortcut-ancestor process,
where at each stage we include fractional units proportionally, now gives rise to an
initial segment of V ∗ with length

2αh0(1 + α2)1/2. (6.5.9)

We know from h0/4 iterations of Lemma 6.5.1 that for every square face with P-
distance at most h0/2 from the square face S0, this initial segment of V ∗ of length
(6.5.9) gives rise to an almost vertical unit of type −↑ in the square face.

We now specify the parameter h0 to satisfy the requirement that this segment is
contained in V ∗k0 , so that

length(V ∗k0) > 2αh0(1 + α2)1/2. (6.5.10)

Comparing (6.5.8) and (6.5.9), we see that a condition like

m0α
−k0 > 2αh0 (6.5.11)

implies (6.5.10).
We next claim that

h0
2
< d(0, 1) + k0, (6.5.12)

where d(0, 1) denotes the P-distance between the square faces S0 and S1. The proof
is by contradiction. Suppose on the contrary that (6.5.12) does not hold. Then
it follows from (6.5.6) that h0/2 > d(0, 2), and so for every square face with P-
distance at most d(0, 2) from the square face S0, the particular initial segment of
V ∗ of length (6.5.9) gives rise to an almost vertical unit of type −↑ in the square
face. It then follows from (6.5.10) that for every square face with P-distance at
most d(0, 2) from the square face S0, V

∗
k0

gives rise to an almost vertical unit of
type −↑ in the square face. It follows that the right edge of the square face S2 is
not a V ∗k0-free vertical edge. But this is a contradiction, since we know that Jk0 is
a V ∗k0-free vertical edge on the boundary of the square face S2, and it is the whole
edge. This contradiction proves (6.5.12).

Recall that k = k0 is the smallest even integer such that (6.5.5) holds. This
implies

2(α/2)−k0 < |I0| 6 2(α/2)−k0+2.

Combining (6.5.7) and (6.5.11), we have

length(V ∗) > 2(1 + α2)1/2αh0+k0 . (6.5.13)

In view of (6.5.12), it follows that the choice

length(V ∗) > 2(1 + α2)1/2α2d(0,1)+3k0

clearly implies the inequality (6.5.13).
We conclude, therefore, that if we specify the length of the initial segment V ∗ of

the special geodesic V (t), t > 0, starting from 0 with slope α, as

length(V ∗) = C ′(α)α2d+3k0 , (6.5.14)
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where the constant C ′(α) is sufficiently large, then the longest V ∗-free interval on
any edge of a square face with P-distance at most d from the square face S0 is short.
More precisely, such a V ∗-free interval has length roughly at most 2(α/2)−k0+2.

Let ε > 0 be arbitrarily small but fixed. We choose the integer variable n to
satisfy

n− 1 < 2(α/2)k0−2 6 n. (6.5.15)

Then by (6.5.14) and (6.5.15),

length(V ∗) = C ′(α)α2d+3k0 6 C ′′(S;α)n3(logα)/(logα−log 2)+ε,

provided that n is sufficiently large depending on ε > 0 and noting that d depends
on S. This completes the proof of Theorem 6.5.1. �

Remark. An important consequence of the shortline method is that dense geodesics
exhibit super-slow escape rate to infinity.

We can describe this phenomenon in terms of the concept of the P-diameter
restricted to a finite geodesic. Suppose that L is a finite geodesic on a polysquare
translation surface P . To calculate the P-diameter restricted to the geodesic L, we
simply consider the P-distance between any two square faces of P visited by L, and
find the maximum value among these.

Using the notation of the proof of Theorem 6.5.1, we consider the decreasing chain

V ∗ = V ∗0 → H∗1 → V ∗2 → H∗3 → . . .→ V ∗2i → H∗2i+1 → . . .

of geodesic segments. This is decreasing exponentially fast, in the sense that the
ratio of the lengths of consecutive segments is equal to α. On the other hand, the
shortline method implies that the P-diameter restricted to any of these geodesic
segments does not exceed the P-diameter restricted to the next geodesic segment in
the chain by more than 1. Thus the dense geodesic exhibits logarithmic escape rate
to infinity in terms of the restricted P-distances.

6.7. Density on aperiodic surfaces with infinite streets (I). What can we
say about those infinite polysquare surfaces which are very different from a maze?
For instance, what can we say about those polysquare surfaces which have infinite
streets?

In terms of optics, the billiard case of Theorem 6.5.1 is equivalent to the result
that, for any ` > 2, there are slopes α such that every `-square-maze with reflecting
boundary (mirrors) can be illuminated by a single ray of light from a carefully chosen
point and with slope α. This represents an uncountable family of infinite billiards.

The infinite aperiodic billiards with square obstacles belong to the class that physi-
cists call the Ehrenfest wind-tree models. In 1912 Ehrenfest and Ehrenfest wrote a
long important encyclopaedia article on the foundations of statistical mechanics;
see [7]. The Appendix of Section 5 in the first chapter of the article introduces a
much simplified model, as the Ehrenfests called it, to illustrate the works of Maxwell–
Boltzmann. In this model a point particle (wind) moves freely on the plane and col-
lides with the well known reflection law of geometric optics with an infinite number
of irregularly placed congruent square scatterers (trees). In the rest we refer to the
particle (wind) as a billiard, and call it the Ehrenfest wind-tree (billiard) model.

The Ehrenfests raised the problem of studying the individual billiard orbits in the
wind-tree model. They wanted to understand the dynamics of this billiard model.

Unfortunately relatively little is known about this original aperiodic version of
the problem. The best known result is due to Sabogal and Troubetzkoy [24]. They
can show that in a well-defined class of aperiodic wind-tree models, for a generic, in
the sense of Baire, configuration of the obstacles, the wind-tree dynamics is ergodic
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in almost every direction. This is very interesting, but unfortunately their method
does not give explicit results. They do not give any explicit configuration of the
obstacles that is ergodic in almost every direction. They cannot even provide an
explicit configuration that is ergodic in a single explicit direction.

However, there are many recent results on the dynamics of the periodic version of
the wind-tree model, introduced by Hardy and Weber [11] around 1980. It concerns
the double-periodic arrangement of identical squares, or identical rectangles, where
one obstacle is centered at each integer lattice point on the plane. Here every
rectangle (scatterer) has the same size a × b with 0 < a, b < 1, and they are
placed in the usual horizontal/vertical position, with horizontal and vertical periods
both equal to 1. So these double-periodic models all have infinitely many infinite
horizontal and vertical streets.

Figure 6.7.1: double-periodic wind-tree billiard model with side length 1/2

Figure 6.7.1 illustrates the simplest special case a = b = 1/2 of such a model, with
square scatterers of side length 1/2. The symbolic dotted square in the lower-right
corner represents a table-period.

There are many recent results in this periodic case, but none of these results
guarantee density.

A natural way to make these periodic models aperiodic is to drop infinitely many
obstacles at some irregularly chosen lattice points.

The uncountable family of f-configurations. The idea of f -configurations is
a natural way to produce an uncountable family of explicit aperiodic configurations
of obstacles. We divide the plane into a union of 3× 3 squares

Q(i, j) =

[
3i− 3

2
, 3i+

3

2

)
×
[
3j − 3

2
, 3j +

3

2

)
, (i, j) ∈ Z2,

each centered at the lattice point (3i, 3j) ∈ Z2.
Let F denote the family of all functions f : Z2 → {±1}. Clearly F is an uncount-

able set.

b b b

b

b

b

3i− 1 3i 3i+ 1

3j − 1

3j

3j + 1

b b b

b

b

b

3i− 1 3i 3i+ 1

3j − 1

3j

3j + 1

Figure 6.7.2: the 3× 3 square Q(i, j) with f(i, j) = +1 and with f(i, j) = −1

For each (i, j) ∈ Z2, we now place an obstacle in the form of an aligned square of
side length 1/2 centered at each of the 8 lattice points in Q(i, j) that is distinct from
the lattice point (3i, 3j). For each function f ∈ F , we place an extra obstacle in



NON-INTEGRABLE SYSTEMS (III) 41

the form of an aligned square of side length 1/2 centered at the lattice point (3i, 3j)
if f(i, j) = +1, but do not place such an extra obstacle if f(i, j) = −1. We refer
to this configuration of obstacles as the f -configuration of Q(i, j), as illustrated in
Figure 6.7.2.

Notice that in every f -configuration an empty lattice point without obstacle is
surrounded by 24 non-empty lattice points with obstacles, as shown in Figure 6.7.3
below.

Figure 6.7.3: a lattice point without obstacle in the f -configuration

In fact, all we need in a configuration is that the distance between any two empty
lattice points is greater than 2.

The set of double-periodic f -configurations is countable, negligible compared to
the uncountable total, implying that the overwhelming majority of f -configurations
are aperiodic.

We claim that there are infinitely many explicit starting points and infinitely
many explicit quadratic irrational slopes such that the corresponding billiard orbits
exhibit time-quantitative density for all f -configurations with f ∈ F .

To prove this, the obvious difficulty is that we cannot directly apply Theorem 6.5.1
in the original horizontal/vertical way, since this wind-tree model has horizontal and
vertical streets that are infinite, so it is not a square-maze translation surface. The
trick is to apply it in an indirect way by working with tilted streets.

In the simpler case when f(i, j) = +1, so that there is no missing obstacle, we
can consider finite ±45-degree streets as illustrated in Figure 6.7.4. Note that this
tilted street has two orientations: clockwise and counter-clockwise. For example, in
the clockwise direction, we go from 1 to 2, illustrated in lighter shade, then from 2
to 3, illustrated in darker shade, then from 3 to 4, illustrated in lighter shade, and
finally from 4 back to 1, illustrated in darker shade.

1

2

3

4

Figure 6.7.4: finite tilted street in the case f(i, j) = 1

In the other case when f(i, j) = −1, so that there is a missing obstacle, we can
consider finite ±45-degree streets as illustrated in Figure 6.7.5. Note that this tilted
street also has two orientations. For example, we can go from 1 to 2, illustrated in
lighter shade, then from 2 to 3, illustrated in darker shade, and so on, and finally
from 12 back to 1, illustrated in darker shade.
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Figure 6.7.5: finite tilted street in the case f(i, j) = −1

While the basic idea of proving density by combining the finite tilted streets with
Theorem 6.5.1 is very simple, the technical details are somewhat complicated. We
shall therefore first give a detailed discussion in a simpler case where there is only one
infinite street. For this case, it is much easier to visualize the corresponding infinite
polysquare translation surface with 1-direction geodesic flow. After that discussion
it will be easier to understand the more complicated case of wind-tree models such
as those illustrated in Figures 6.7.1–6.7.2 that have infinitely many infinite streets.

One of the simplest examples involving a single infinite street is the ∞-L-strip
billiard shown in Figure 6.7.6.

Figure 6.7.6: ∞-L-strip region as an infinite billiard table

For this ∞-L-strip, Figure 6.7.7 shows an explicit slope-2 street. The slope-2
billiard flow, illustrated by the dashed arrows, first maps the interval AB to the
interval CD (via reflection on a horizontal edge), illustrated in lighter shade, then
onwards to the interval EF (via reflection on a vertical edge), illustrated in darker
shade, then to the intervals CB, AG, HI and then back to AB. Reversing the
orientation, we have a reverse cycle in the same street, the slope-(−2) version of the
tilted street.

A B C D

EF

G

H I

Figure 6.7.7: slope-2 street in the ∞-L-strip billiard

Next we use the classical trick of unfolding that reduces the study of the ∞-L-
strip billiard, a 4-direction flow, to a 1-direction geodesic flow on an appropriate
infinite polysquare translation surface. We call this surface the translation surface
of the ∞-L-strip billiard, and denote it by Bil(∞; 1). To find this infinite polysquare
translation surface, we glue together 4 reflected copies of the ∞-L-strip region in a
suitable way.
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Note that the L-shape is the building block of the∞-L-strip region, as illustrated
in Figure 6.7.8. The ∞-L-strip region can be split into a doubly-infinite sequence
. . . , Li−1, Li, Li+1, . . . of L-shapes.

Li−1 Li Li+1

Figure 6.7.8: the L-shape as building blocks of the ∞-L-strip region

To describe Bil(∞; 1), we take 4 reflected copies of each of the L-shapes Li; see
Figure 6.7.9. We then obtain Bil(∞; 1) by gluing together the infinitely many copies
of these 4-copy-Li.

Li

Figure 6.7.9: building the 4-copy version of the L-shape Li

Clearly there is billiard flow from each L-shape Li to its two immediate neighbours
Li−1 and Li+1. We therefore need to identify corresponding edges of these 4-copy
versions very carefully. A simple examination will convince the reader that the
edge identifications can be as illustrated in Figure 6.7.10. Note that a 1-direction

geodesic with positive slope on Bil(∞; 1) that goes from the vertical edge v
(i)
2 to the

vertical edge v
(i−1)
2 corresponds to a billiard path with negative slope going from Li

to Li−1, whereas a 1-direction geodesic with positive slope on Bil(∞; 1) that goes

from the vertical edge v
(i−1)
3 to the vertical edge v

(i)
3 corresponds to a billiard path

with positive slope going from Li−1 to Li.

v
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1 v
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4-copy-Li 4-copy-Li+1

Figure 6.7.10: 4-copy-Li and 4-copy-Li+1 together with edge identifications

It is much easier to visualize the somewhat messy picture of the slope-2 street
and the corresponding slope-(−2) street in Figure 6.7.7 on the surface Bil(∞; 1).
Figure 6.7.11 gives a good visualization of the slope-2 street.
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Figure 6.7.11: visualizing the slope-2 street in Figure 6.7.7

Figure 6.7.12 gives a good visualization of the slope-(−2) street.
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Figure 6.7.12: visualizing the slope-(−2) street in Figure 6.7.7

If we return to Figure 6.7.7 and work out a slope-2 street starting with the inter-
val GA, then the darker shaded region in Figure 6.7.13 gives a good visualization
of this new slope-2 street. Note that the union of the shaded areas in Figure 6.7.13
gives precisely one 4-copy L-shape. For simplicity, we shall refer to NE′i and NE′′i
as the two slope-2 streets, or north-east streets, in the 4-copy-Li. Similarly, we
can refer to NW′

i and NW′′
i as the slope-(−2) streets, or north-west streets, in the

4-copy-Li. Thus the infinite families

NE′i,NE′′i , i ∈ Z,

and

NW′
i,NW′′

i , i ∈ Z,
of streets, linked together, give a street decomposition of the flat surface Bil(∞; 1).
These are pairs of congruent finite streets in two directions: slope-2 (north-east) and
slope-(−2) (north-west). For convenience, we call them NE-streets and NW-streets
respectively.

1

1

1

2

2

3

3

4

4

5

6

1′

1′

2′

2′

3′

3′

4′
4′

4′

5′

6′

A BG

Figure 6.7.13: two slope-2 streets in Figure 6.7.7

This setup is very similar to the situation in Theorem 6.5.1, where we have finite
streets of bounded length in the horizontal and vertical directions. Indeed, we can
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use this decomposition to convert the flat surface Bil(∞; 1) into a maze translation
surface.

This is, however, not a square-maze translation surface, but a rhombus-maze
translation surface. We can clearly split each of the 4-copy-L-shapes into a union of
rhombi as illustrated in Figure 6.7.14. Note that edge identification clearly plays a
key role in the partitions of the 4-copy-L-shapes.

1 1

2 2

3 3

4 4

5 5

6 6

7 8

9 10 11 12

13 14

7 8

9 10 11 12

13 14

15 16 17

18 19 20 21

22 23 24 25 26 27

28 29 30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45

46 47 48

Figure 6.7.14: splitting the 4-copy-Li into a union of rhombi

Let us look at the NE-street that contains the rhombus A, say, in Figure 6.7.15
below. If we now move north-east, starting at the rhombus A, then it is easy to
see that the NE-street comprises the 24 rhombi A,B,C, . . . , X as illustrated by the
shaded part. Thus the street length of any NE-street is equal to 24.

A

B

C

C

D D

E

F

G

HH

I

I

J

K

L L

M

N

O

O

P

Q

R

S

T

U

U

V

W

X

Figure 6.7.15: a street NEi

A similar argument will show that the street length of any NW-street is also equal
to 24.

This gives rise to a rhombus-maze translation surface where every street has
length 24.

We have the following result concerning time-quantitative density in a rhombus-
maze translation surface which is an analog of Theorem 6.5.1.

Theorem 6.7.1. Let P be an `-rhombus-maze translation surface, where ` > 2 is
a fixed integer. For any fixed constant ε > 0, there exist infinitely many quadratic
irrational numbers α such that the geodesic V (α; t), t > 0, on P, starting at the
origin 0, with slope α and with arc-length parametrization, exhibits time-quantitative
density in the following precise sense. There exists a computable positive constant
α∗ = α∗(α) > 1, depending at most on α, such that for any rhombus face S0

of P, there is an effectively computable threshold constant c0 = c0(S0; ε;α) such
that for every integer n > c0 and every point Q ∈ S0, the initial segment V (α; t),
0 < t < n3α∗+ε, gets (1/n)-close to Q.

To deduce this from Theorem 6.5.1, we simply need a linear transformation to con-
vert the rhombi to squares. The linear transformation converts geodesics and their
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shortlines in the corresponding square-maze translation surface into their counter-
parts in the rhombus-maze translation surface.

Recall that a 4-direction billiard orbit in the ∞-L-strip region corresponds to
a 1-direction geodesic flow in Bil(∞; 1) which can be viewed as a rhombus-maze
translation surface. Theorem 6.7.1 thus leads immediately to the following result.

Theorem 6.7.2. There are infinitely many explicit quadratic irrational slopes such
that every billiard trajectory in the ∞-L-strip region starting from a corner and
having such a slope exhibits time-quantitative density.

6.8. Density on aperiodic surfaces with infinite streets (II). The ∞-L-strip
happens to be periodic, but periodicity is not necessary for the success of our method.
Note that in some periodic cases Hooper [13], Hooper–Hubert–Weiss [14], Hubert–
Weiss [16], and Ralston–Troubetzkoy [23] can prove ergodicity for some billiards on
infinite surfaces, and ergodicity implies density. They use a completely different
approach that reduces the infinite dynamics to the well understood dynamics of the
period, which is a compact system. This reduction method is quite special, and does
not work for the infinite periodic case in general. Of course in the aperiodic case
this reduction method breaks down.

Our method, on the other hand, does work in both the infinite periodic and ape-
riodic cases. To illustrate this, we describe next an uncountable family of infinite
aperiodic surfaces for which we can prove density for some billiards. We shall gen-
eralize the ∞-L-strip region which, as seen in Figure 6.7.8, is built from congruent
L-shapes.

The uncountable family of {Li}i∈Z-strips. Given arbitrary integers vi > 2 and
hi > 2, we define the (vi, hi)-L-shape in a most natural way as follows. There is
one horizontal street of hi unit size square faces and there is one vertical street of vi
unit size square faces, with the left square face of this horizontal street identical to
the bottom square face of this vertical street, as shown in Figure 6.8.1. Every other
street has length 1. Thus the special case vi = hi = 2 gives back the usual L-shape.
For every i ∈ Z, let Li be a (vi, hi)-L-shape, and we take the disjoint union of all Li,
i ∈ Z, such that the long horizontal streets of Li, i ∈ Z, form a single infinite street,
and Li and Li+1, i ∈ Z, are consecutive. We refer to this union as the {Li}i∈Z-strip
region.

hi

vi

Figure 6.8.1: the L-shape Li

Consider first the {Li}i∈Z-strip region in the special case when there is an integer
r such that

hi 6 r, vi ∈ {2, 4}, i ∈ Z. (6.8.1)

Note that under the conditions (6.8.1), a slope-2 street construction similar to that
in Figure 6.7.7 can be made, as illustrated in one case by Figure 6.8.2. In this case,
the slope-2 billiard flow, illustrated by the dashed arrows, first maps the interval AB
to the interval CD (via reflection on a vertical edge), illustrated in lighter shade,
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then onwards to the interval EB (via multiple reflections on vertical edges), then to
the intervals AF , GH, IJ , KH, GF and then back to AB.

A B

CD

EFGH

IJ

K

Figure 6.8.2: slope-2 street in the case vi = 2, hi = 3, vi+1 = 4

Reversing the orientation, we have a reverse cycle in the same street, the slope-
(−2) version of the tilted street.

The only irrelevant change is that different horizontal streets may have different
lengths, but the lengths are uniformly bounded. Hence we can reduce the billiard
problem to a problem of geodesic flow on a rhombus-maze translation surface and
then apply Theorem 6.7.1. This ultimately leads to an analog of Theorem 6.7.2.

We shall show later that the same method works far beyond the special case
(6.8.1). Consider, for instance, the {Li}i∈Z-strip region where there is an integer r
such that

hi 6 r, vi 6 r, i ∈ Z, (6.8.2)

and

there are at most r consecutive vi, i ∈ Z, that are powers of 2. (6.8.3)

To reduce a billiard trajectory to geodesic flow on a rhombus-maze translation
surface, the basic idea is essentially the same. We use finite tilted streets, but the
slope is not necessarily equal to 2. We shall show that under the conditions (6.8.2)
and (6.8.3), there always exists an integer m so that we can construct a slope-m
street decomposition like in Figures 6.7.7 and 6.8.2. Such a street decomposition is
based on the following elementary number-theoretic lemma. For any integer k > 2,
consider a k-tower of k unit size square faces on top of each other in vertical position
with two gates that we call g1, the left gate, and g2, the right gate, as illustrated in
Figure 6.8.3, which also shows the 4 possible types of exits for a point billiard.

k

entry type 1 type 2 type 3 type 4

g1 g2

Figure 6.8.3: k-tower with two gates g1 and g2

Lemma 6.8.1. Let k > 2 and m with |m| > 2 be two integers. Suppose that a billiard
enters a k-tower through the left gate g1 with slope m. Let x0 = x0(k,m) > 1 denote
the smallest positive integer such that

mx0 ≡ 0 mod 2k or mx0 ≡ −1 mod 2k.
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If m > 0, then

(i) if x0 is odd and mx0 ≡ 0 mod 2k, then the billiard has exit type 1;
(ii) if x0 is odd and mx0 ≡ −1 mod 2k, then the billiard has exit type 2;
(iii) if x0 is even, then the billiard has exit type 3.

If m < 0, then

(iv) if x0 is odd and mx0 ≡ 0 mod 2k, then the billiard has exit type 2;
(v) if x0 is odd and mx0 ≡ −1 mod 2k, then the billiard has exit type 1;

(vi) if x0 is even, then the billiard has exit type 4.

Proof. For convenience, assume that the billiard has unit vertical speed.
Suppose first of all that m > 0. It is clear that at time mt, t = 1, 2, 3, . . . ,

following entry to the k-tower, the billiard hits a vertical side of the k-tower, on the
right if t is odd, and on the left if t is even. We want to trap the smallest integer
value t = x0 when the billiard hits the side of the bottom square face.

If it hits the side of the bottom square face before a final bounce off the bottom
edge, then

mx0 + 1 ≡ 0 mod 2k, so that mx0 ≡ −1 mod 2k.

If x0 is odd, then it hits the right side, and (ii) follows. Note that x0 cannot be even
in this case.

If it hits the side of the bottom square face after a final bounce off the bottom
edge, then

mx0 ≡ 0 mod 2k.

If x0 is odd, then it hits the right side, and (i) follows. If x0 is even, then it hits the
left side, and (iii) follows.

Suppose next that m < 0. Then the billiard bounces off the bottom edge before
it goes up the k-tower. It is clear that at time −mt, t = 1, 2, 3, . . . , the billiard hits
the side of the k-tower, on the right if t is odd, and on the left if t is even. We
want to trap the smallest integer value t = x0 when the billiard hits the side of the
bottom square face.

If it hits the side of the bottom square face after a final bounce off the bottom
edge, then

−mx0 − 1 ≡ 0 mod 2k, so that mx0 ≡ −1 mod 2k.

If x0 is odd, then it hits the right side, and (v) follows. Note that x0 cannot be even
in this case.

If it hits the side of the bottom square face before a final bounce off the bottom
edge, then

−mx0 ≡ 0 mod 2k, so that mx0 ≡ 0 mod 2k.

If x0 is odd, then it hits the right side, and (iv) follows. If x0 is even, then it hits
the left side, and (vi) follows. �

Using symmetry, we can deduce an analogous result when the billiard enters a
k-tower through the right gate g2.

Note that the case m ≡ k mod 2k is particularly simple. Since k > 2, we have
x0 = x0(k,m) = 2, and the billiard bounces back, with exit type 3 or 4.

Exit types 1 and 2 represent transient states, and exit types 3 and 4 indicate that
the billiard, having come from the left, bounces back at this k-tower to the left.
To construct a finite tilted street, it is necessary, and also sufficient, that there are
bounce backs on both sides along the {Li}i∈Z-strip, as illustrated in Figure 6.8.4.
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Figure 6.8.4: bounce backs on both sides

Next we apply Lemma 6.8.1 in some special cases of the {Li}i∈Z-strip billiard,
where, for each i ∈ Z, Li is a (vi, hi)-L-shape. Note that every 1-tower leads to a
transient state, so the value of hi is irrelevant, and we only need to study k-towers
for k > 2.

Case 1. Suppose that hi > 2 and vi = 2, i ∈ Z. We have studied this case when
hi = 2, i ∈ Z, in Section 6.7 with slopes m = ±2, and the result extends to other
values of hi. Now we consider other integer values of m. To study the effect of the
2-towers, we can use Lemma 6.8.1 with k = 2, so that 2k = 4. Suppose that a
billiard enters a 2-tower through the left gate with slope m.

For m ≡ 2 mod 4, we have x0 = 2, so conclusion (iii) or (vi) of Lemma 6.8.1
applies. This means that the billiard exits through the left gate, then later enters
the next 2-tower from the right gate with slope ±m ≡ 2 mod 4, and so exits through
the right gate. So the billiard path is bounded between these two 2-towers. Since
the slope is an integer, the billiard can only hit the bottom edge of the {Li}i∈Z-strip
between these two 2-towers at finitely many points, and so must repeat.

For m ≡ 0, 1, 3 mod 4, we have x0 = 1, 3, 1 respectively, so conclusion (i), (ii),
(iv) or (v) of Lemma 6.8.1 applies. This means that the billiard exits through
the right gate, then later enters the next 2-tower from the left gate with slope
±m ≡ 0, 1, 3 mod 4, and so exits through the right gate, and so on, leading to an
infinite street.

Case 2. Suppose that hi > 2 and vi = 3, i ∈ Z. To study the effect of the 3-towers,
we can use Lemma 6.8.1 with k = 3, so that 2k = 6. Suppose that a billiard enters
a 3-tower through the left gate with slope m.

For m ≡ 3 mod 6, we have x0 = 2, so conclusion (iii) or (vi) of Lemma 6.8.1
applies. This means that the billiard exits through the left gate, then later enters
the next 3-tower from the right gate with slope ±m ≡ 3 mod 6, and so exits through
the right gate. So the billiard path is bounded between these two 3-towers. Since
the slope is an integer, the billiard can only hit the bottom edge of the {Li}i∈Z-strip
between these two 3-towers at finitely many points, and so must repeat.

For m ≡ 0, 1, 2, 4, 5 mod 6, we have x0 = 1, 5, 3, 3, 1 respectively, so conclusion (i),
(ii), (iv) or (v) of Lemma 6.8.1 applies. This means that the billiard exits through
the right gate, then later enters the next 3-tower from the left gate with slope
±m ≡ 0, 1, 2, 4, 5 mod 6, and so exits through the right gate, and so on, leading to
an infinite street.

Case 3. Suppose that hi > 2, i ∈ Z, and vi = 2 for every integer i < 0 and vi = 3
for every integer i > 0. To achieve a bounce back at a 2-tower, we note from Case 1
that the integer slope m of the billiard must satisfy m ≡ 2 mod 4, so that m must
be even. On the other hand, to achieve a bounce back at a 3-tower, we note from
Case 2 that the integer slope m of the billiard must satisfy m ≡ 3 mod 6, so that m
must be odd. So there must be infinite slope-m streets.
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Case 4. There exist integers r, s,m > 2 such that vi 6 r, hi 6 r, i ∈ Z, and for
every i ∈ Z, there exists i 6 j < i + s such that m ≡ vj mod 2vj. In this case, we
have x0 = x0(vj,m) = 2. This means that for any 2s successive Li, there are two
bounce backs, guaranteeing finite slope-m streets in between.

Finally, we establish the following far reaching generalization of Theorem 6.7.2.

Theorem 6.8.1. Consider an arbitrary {Li}i∈Z-strip region such that there exists
an integer r > 2 such that the conditions (6.8.2) and (6.8.3) hold. Then there are
infinitely many explicit quadratic irrational slopes such that every billiard trajectory
in the {Li}i∈Z-strip region starting from a corner and having such a slope exhibits
time-quantitative density.

Proof. The conditions (6.8.2) and (6.8.3) imply that among r + 1 consecutive vi,
there exists vj which is not a power of 2, so that vj has an odd prime factor p. We
shall study the vj-tower in Lj, and show that this gives rise to a bounce back. To
ensure a bounce back, we must make sure that exit types 1 and 2 do not take place.
It follows from Lemma 6.8.1 that both conditions

x0 is odd and mx0 ≡ 0 mod 2vj (6.8.4)

and

x0 is odd and mx0 ≡ −1 mod 2vj (6.8.5)

must fail.
To ensure that (6.8.4) fails, it is sufficient that (i) the multiplicity of 2 in the

prime factorization of m is less than the multiplicity of 2 in the prime factorization
of 2vj. On the other hand, to ensure that (6.8.5) fails, it is sufficient that (ii) the
numbers m and 2vj are not relatively prime.

Let m = p. Then both m and 2vj are multiples of p, so they are not relatively
prime. On the other hand, the multiplicity of 2 in the prime factorization of m is 0,
while the multiplicity of 2 in the prime factorization of 2k is at least 1. So both (i)
and (ii) hold, ensuring that both (6.8.4) and (6.8.5) fail. �

6.9. Density on aperiodic surfaces with infinite streets (III). We now return
to the wind-tree billiard models discussed at the beginning of Section 6.7; in partic-
ular, to the billiard models illustrated by Figures 6.7.1–6.7.5, where the side length
of the square obstacles is equal to 1/2. We shall use our study of the ∞-L-strip
billiard to guide us to a better understanding of these more complicated wind-tree
models.

Figures 6.7.4 and 6.7.5 illustrate that tilted streets of slopes ±1 lead to finite
streets for billiards in f -configurations. Thus the corresponding problem of 1-
direction geodesic flow in the 4-copy versions of these f -configurations can be viewed
as a problem of geodesic flow in a rhombus-maze translation surface, where the
rhombi are squares tilted at 45 degrees.

Let us rescale appropriately so that all square obstacles have side length equal
to 1. Any f -configuration is made up of building blocks as illustrated in Figure 6.9.1.
Each building block contains 8 L-shapes together with a square Si,j in the middle, or
where the middle square Si,j is replaced by yet another L-shape Li,j. The building
block is surrounded by 16 L-shapes from neighboring building blocks.
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Li−1,j−1 Li,j−1 Li+1,j−1

Li−1,j Si,j Li+1,j

Li−1,j+1 Li,j+1 Li+1,j+1

Figure 6.9.1: L-shapes with replacement square
corresponding to missing obstacle

To construct the 4-copy versions of these f -configurations, we construct the 4-
copy version of each of the L-shapes and squares. As there is symmetry between
the problem of horizontal edge pairing and the problem of vertical edge pairing, we
shall only discuss the latter.

For neighboring L-shapes Li,j and Li+1,j, the vertical edge identification in their
4-copy versions, with reference of j omitted, is exactly the same as in Figure 6.7.10.
For neighboring square Si,j and L-shape Li+1,j, Figure 6.9.2 illustrates the situation,
with reference to j omitted.
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Figure 6.9.2: pairing of vertical edges in 4-copy versions of Si,j and Li+1,j

Viewed this way, these f -configurations share some of the features of the∞-L-strip
region. For instance, we observe that the edge pairings on the double vertical edges
in the middle of the 4-copy versions of the square and the L-shape are precisely the
same as in Figure 6.7.10. The presence of the square Si,j instead of an L-shape Li,j
leads to new vertical edge pairings in the 4-copy versions of Si,j and Li+1,j. However,
these new edge pairings do not involve any edges of the the 4-copy versions of any
other squares or L-shapes.

We thus establish the following generalization of Theorem 6.7.2.

Theorem 6.9.1. There are infinitely many explicit quadratic irrational slopes such
that every billiard trajectory in any f -configuration starting from a corner and having
such an initial slope exhibits time-quantitative density on the f -configuration.

Figure 6.9.3 below is an alternative to Figure 6.7.4, and shows a finite street of
slope 1/3 in the same billiard model. Together, they show that the slopes 1 and 1/3
are completely periodic rational directions in the same periodic wind-tree model.
Here completely periodic refers to the property that every billiard having this slope
is periodic and so finite.
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Figure 6.9.3: finite street of slope 1/3

For the Ehrenfest periodic wind-tree billiard model with a = b = 3/4, Figure 6.9.4
shows a finite periodic street of slope 3.

Figure 6.9.4: finite street of slope 3 in wind-tree billiard model
with a = b = 3/4

Thus this billiard model can be reduced to a problem of geodesic flow in a
rhombus-maze translation surface. Figure 6.9.4 is an analog of Figure 6.7.4, and
we leave it to the reader to draw an analog of Figure 6.7.5. With that, it is fairly
straightforward to prove a perfect analog of Theorem 6.9.1 in this new case.

We have the following results of Hubert, Lelièvre and Trubetzkoy [15] concerning
complete periodicity. The first result sheds more light on the collection of initial
slopes in Theorem 6.9.1.

Lemma 6.9.1. In the 2-dimensional Ehrenfest periodic wind-tree billiard model with
a = b = 1/2, a rational slope k/`, given in lowest terms, is completely periodic if
and only if both k and ` are odd.

Since the set of rational slopes k/`, given in lowest terms, with both k and ` odd is
dense on the unit circle, one can show that the collection of slopes in Theorem 6.9.1
gives rise to a dense set on the unit circle.

The second result leads to infinitely many instances of the Ehrenfest periodic
wind-tree billiard model and their aperiodic f -configuration analogs for which one
can establish analogs of Theorem 6.9.1.

Lemma 6.9.2. Consider the 2-dimensional periodic wind-tree billiard model with
rectangle size a × b, and assume that both 0 < a < 1 and 0 < b < 1 are rational.
Suppose that a = p/q and b = r/s in lowest terms.

(i) If both p, r are odd and both q, s are even, then there exists a completely periodic
rational direction.

(ii) If both p, r are even and both q, s are odd, then there is no completely periodic
rational direction.

In the case (i), the three authors give an explicit algorithm for finding these
perfectly periodic rational directions, based on the work of McMullen [21] concerning
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the so-called Weierstrass points on L-surfaces, a subject beyond the scope of our
present paper. Using these perfectly periodic rational directions, one can establish
analogs of Theorem 6.9.1 for those Ehrenfest periodic wind-tree billiard models and
their aperiodic f -configuration-like billiard models.

If a = p/q and b = r/s, in lowest terms, are such that both p, r are even and both
q, s are odd, then our method breaks down, in view of Lemma 6.9.2(ii), and we are
not able to prove density. This leads to the following interesting question.

Open Problem 4. Is there an analog of Theorem 6.9.1 for the Ehrenfest periodic
wind-tree billiard model or its aperiodic f -configuration analog for those values of
a = p/q and b = r/s, in lowest terms, such that p, r are even and both q, s are odd?

Our primary interest in this paper is to study infinite aperiodic systems. Never-
theless, for the sake of completeness, we conclude with a brief summary of what is
known about the general double-periodic wind-tree model. These models are recur-
rent i.e., for almost every direction, the billiard returns arbitrarily close to every
point of the infinite trajectory; see [1, 15].

Note that recurrence does not imply density, but of course density implies recur-
rence.

On the other hand, Delecroix [5] has given an explicit set of initial slopes with
positive Hausdorff dimension for which the orbit fails recurrence. In fact, the orbit
goes to infinity, i.e., the distance of the billiard from the starting point tends to
infinity as the time t→∞. What is more, these orbits are self-avoiding!

The double-periodic wind-tree models have an absence of ergodicity in almost ev-
ery direction; see [8]. Moreover, these models exhibit surprisingly large super-random
escape rate to infinity for almost every direction. Actually, the super-random escape
rate to infinity means order of magnitude T 2/3; see [6]. More precisely, for a typical
direction, a billiard orbit of length T can go as far as T 2/3 from the starting point.
This is in sharp contrast to our results! Indeed, whenever our shortline method
proves density on an infinite surface, then the orbit exhibits much smaller escape
rate log T to infinity. See the Remark after the proof of Theorem 6.5.1 in Section 6.5.

The escape rate T 2/3 is called super-random, because the symmetric random walk
has escape rate T 1/2 (square-root size fluctuation), so the escape rate is greater than
random.

Perhaps a more standard terminology is super-diffusive behavior.
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[6] V. Delecroix, P. Hubert, S. Lelièvre. Diffusion for the periodic wind-tree model. Ann. Sci.
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