GENERALIZATION OF A DENSITY THEOREM OF
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ABSTRACT. The continuous version of a fundamental result of Khinchin says that
a half-infinite torus line in the unit square [0,1]? exhibits superdensity, which is
a best form of time-quantitative density, if and only if the slope of the geodesic
is a badly approximable number. We extend this result of Khinchin to the case
when the unit torus [0, 1]? is replaced by a finite polysquare translation surface, or
square tiled surface. In particular, we show that it is possible to study this very
number-theoretic problem by restricting to traditional tools in number theory,
using only continued fractions and the famous 3-distance theorem in diophantine
approximation combined with an iterative process.

We improve on an earlier result of the authors and Yang [3] where it is shown
that badly approximable numbers that satisfy a quite severe technical restriction
on the digits of their continued fractions lead to superdense geodesics. Here we
overcome this technical impediment.

This paper is self-contained, and the reader does not need any knowledge of
dynamical systems.

1. INTRODUCTION

It is well known that the distribution of the irrational rotation sequence na mod 1,
n=1,2,3,..., is intimately related to the distribution of half-infinite torus lines of
slope a in the unit square [0, 1]?, i.e., geodesics of slope « on the unit torus [0, 1]°.
An old result of Khinchin [8, Theorem 26] implies the following result concerning
superdensity of geodesics; an alternative proof can be found in [3, Lemma 6.1.1].

Theorem (Khinchin). Any half-infinite geodesic is superdense on the unit torus
[0,1]2 if and only if the slope of the geodesic is a badly approzimable number.

Recall that an irrational number «, with continued fraction

1
o = [ao;al,ag,ag,...] :CLO—'——l, (11)
T

a —
1+a2+

ag+-

is said to be badly approximable if there exists a constant A such that the continued
fraction digits a; < A for every 1 =0,1,2,3,....

Superdensity is a time-quantitative criterion. A half-infinite geodesic L(t), t > 0,
equipped with the usual arc-length parametrization, is superdense on the unit torus
[0,1]? if there exists an absolute constant C; = C;(£) > 0 such that, for every
integer n > 1, the initial segment L(t), 0 < t < Cyn, of the geodesic gets (1/n)-
close to every point of [0,1]?. Note that for convenience, we use the same letter
L to denote both the map representing the geodesic and the initial segment of the
geodesic. However, the ranges of ¢ given remove any ambiguity.

2010 Mathematics Subject Classification. 11K38, 37E35.
Key words and phrases. geodesics, billiards, density.



2 BECK AND CHEN

This concept of superdensity is a best possible form of time-quantitative density,
in the sense that the linear length Cin cannot be replaced by any sublinear length
o(n) as n — oo. For a simple proof of this; see [3, Section 6.1].

A very natural number-theoretic question concerns possible extension of the result
of Khinchin by replacing the unit torus [0, 1]> by a finite surface of a certain kind.

A finite polysquare region, or a finite square tiled region in the terminology of
dynamical systems, is an arbitrary connected, but not necessarily simply-connected,
polygon P on the plane which is tiled with unit squares, assumed to be closed, that
we call the atomic squares of P, and which satisfies the following conditions:

(i) Any two atomic squares in P either are disjoint, or intersect at a single point,
or have a common edge.

(ii) Any two atomic squares in P are joined by a chain of atomic squares where
any two neighbors in the chain have a common edge.

Note that P may have holes, and we also allow whole barriers which are horizontal
or vertical walls that consist of one or more boundary edges of atomic squares.

Furthermore, a finite polysquare region can be converted to a finite polysquare
translation surface, or square tiled surface, by pairwise identification of the boundary
horizontal edges and pairwise identification of the boundary vertical edges. Geodesic
flow on this surface is thus 1-direction linear flow. In Figure 1.1, we show examples
of polysquare translation surfaces where identified pairs of edges can be obtained
from each other by perpendicular translation. The surface in the picture on the left
has 5 atomic squares, whereas the surface in the picture on the right has 32 atomic
squares, 2 holes as well as 2 horizontal walls and 4 vertical walls. Some 1-direction
geodesic segments are shown. These depend on the detailed edge identification which
we have not shown.

_—

Figure 1.1: some finite polysquare translation surfaces

The concept of superdensity can be extended to finite polysquare surfaces in a
natural way. A half-infinite geodesic L(t), t > 0, equipped with the usual arc-length
parametrization, is superdense on a finite polysquare surface P if there exists an
absolute constant C; = C1(P; L) > 0 such that, for every integer n > 1, the initial
segment L£(t), 0 <t < Cyn, of the geodesic gets (1/n)-close to every point of P.

Using traditional tools in number theory based on diophantine approximation
and continued fractions, we give a proof of the following extension of the result of
Khinchin.

Theorem 1. Let P be an arbitrary finite polysquare translation surface. Then a
half-infinite geodesic that does not hit a vertex of P is superdense on P if and only
if the slope of the geodesic is a badly approximable number.
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Theorem 1 is an if and only if type result, where one of the two implications is a
straightforward corollary of Khinchin’s theorem. Indeed, 1-direction geodesic flow
on a finite polysquare translation surface modulo one becomes 1-direction geodesic
flow on the unit torus [0, 1]?, which implies that a superdense geodesic must have a
badly approximable slope. The hard task is to prove the converse, that every badly
approximable slope leads to superdensity.

A finite polysquare translation surface may have singularities. These then make
the system non-integrable and the analysis much harder. A pioneering result in this
direction concerns geodesics on a large class of surfaces, which we state below in the
special case of finite polysquare translation surfaces. This result is time-qualitative
in nature, in that it does not give any indication on how long it takes for the geodesic
to get within a given distance of a given point in P. Indeed, the traditional approach
from the viewpoint of dynamical systems is based on application of results such as
Birkhoff’s ergodic theorem which are essentially time-qualitative in nature. Lacking
an error term, they do not appear to lead naturally to time-quantitative statements.

Theorem (Katok—Zemlyakov [6]). Any half-infinite geodesic on a finite polysquare
translation surface P with irrational slope is dense unless it hits a vertexr of P and
becomes undefined.

In a recent series of papers [1, 2, 3, 4], the authors and their co-authors are able to
establish many results concerning the long-term time-quantitative behavior in many
flat systems concerning 1-direction geodesic flow on surfaces where the faces have
zero curvature. In particular, a weaker form of Theorem 1 is established, where it is
shown that superdensity follows if the slope a given by (1.1) satisfies the additional
technical requirement that the digits ag, a1, as,as, ... are all integer multiples of
the street-LCM of the finite polysquare translation surface under consideration.
The street-LCM of a finite polysquare translation surface is the lowest common
multiple of the lengths of the horizontal and the vertical streets of the surface.
While this excludes many badly approximable slopes, the method nevertheless gives
an uncountable set of slopes which guarantee superdensity. In Theorem 1, we remove
this technical impediment.

The proof of Theorem 1 here, however, is completely different from our earlier
technique. However, the two different approaches share a common characteristic, in
that neither is based on the traditional application of ergodic theory in the earlier
study of density and uniformity using traditional techniques in dynamical systems.
Instead, we appeal to a non-ergodic approach, and base our arguments on number
theory and combinatorics.

We thus have two methods to prove superdensity. They are not comparable, and
have different advantages. For instance, the shortline method developed in [3] works
beyond geodesics on polysquare translation surfaces, and can give superdensity for
geodesics on any regular polygon surface. We do not see how we can establish such
a result with the method of this paper.

Our proof here of Theorem 1 is elementary but not simple. We therefore start by
illustrating the ideas by studying the special case of the L-surface, which is arguably
the simplest non-integrable polysquare translation surface.

The picture on the left in Figure 1.2 shows the L-shape region composed of 3
unit squares. Furthermore, it shows the L-graph, which is an undirected planar
graph with 8 vertices, 5 horizontal edges and 5 vertical edges. Using this picture
and identifying the edges, we can reduce the number of vertices. On identifying the
edges hy, we see that A = G and B = F. On identifying the edges ho, we see that
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B = F and C' = D. On identifying the edges vy, we see that A =C and H = D. On
identifying the edges v, we see that H = E and G = F. Thus all the vertices are
identified with each other, and we have essentially only 1 vertex. This single vertex
is a split singularity point of the geodesic flow, explaining why it is a non-integrable
system; see the two geodesics in the picture on the right in Figure 1.2.

Furthermore, the surface has 3 faces and, after identification, 6 edges, so the Euler
characteristic is y =1 — 6 + 3 = —2. The genus g is obtained from the well known
formula g = 1— (x/2) = 1+ 1 = 2, and so the surface is homeomorphic to a 2-holed
torus using the classification theorem of closed surfaces. We call this the L-surface.
It is equipped with a flat metric, and the curvature is zero on every square face.
The two geodesics in the picture on the right in Figure 1.2 illustrate why the vertex
E, and hence every other vertex, is a split singularity of the geodesic flow. The
L-surface is classified as a Riemann surface with a singular point.

G hi F
U2 V2
o hs E  h D
V1 V3 V1

A B ha C
Figure 1.2: the L-surface and two geodesics

As an analog of half-infinite geodesics on the unit torus [0, 1]?, we can consider
half-infinite geodesics on the L-surface. A particle moves on the geodesic with unit
speed, so that time equals distance. If a geodesic on the L-surface has irrational
slope and never hits the singular point, then in the L-shape it is represented as a
union of infinitely many parallel line segments. A geodesic is uniquely determined
by one of its points and its constant velocity vector, just like a geodesic on the unit
torus [0, 1)%.

We shall first prove the following special case of Theorem 1.

Theorem 2. If a half-infinite geodesic that does not hit a vertex of the L-surface has
a slope that is a badly approximable number, then it is superdense on the L-surface.

We can summarize the proof of Theorem 2, and hence also Theorem 1, in a
nutshell as a careful use of the classical tool of continued fractions.

Before we begin our proof of Theorem 2, however, we make some comments.

First of all, the situation is completely different if we consider uniform distribution
instead of density.

Corresponding to superdensity, we can define superuniformity as a best form of
time-quantitative uniformity, where the relevant discrepancy is of logarithmic size
compared to the length of the geodesic. For half-infinite geodesics on the unit torus
[0,1]2, it follows from time-quantitative extensions of the famous Kronecker—Weyl
equidistribution theorem that a geodesic on the unit torus is superuniform if the
slope is a badly approximable number. Actually, superuniformity is equivalent to
the condition that the Cesaro-mean of the continued fraction digits of the slope of
the geodesic is bounded.
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The situation is very different if we consider instead half-infinite geodesics on
the L-surface. While any half-infinite geodesic with a quadratic irrational slope is
uniformly distributed on the L-surface, the rate of convergence to uniformity can
be vastly different for two distinct quadratic irrational slopes. For example, it is
shown in [1, 2] that a half-infinite geodesic of slope @ = v/2 on the L-surface is
superuniform, whereas a half-infinite geodesic of slope v = 1 + v/2 on the L-surface
exhibits discrepancy greater than random square-root size.

Secondly, Theorem 1 has analogs for billiard orbits in finite polysquare regions
and for geodesics on surfaces of finite simply-connected polycube regions. Billiard
orbits in finite polysquare regions and geodesics on finite polysquare surfaces are
related by the concept of unfolding due to Kénig and Sziics [9], first introduced to
the unit square, leading to 4-fold covering by reflection across a horizontal axis and
across a vertical axis. For an illustration, see also [1, Section 1.3]. As to surfaces of
simply-connected polycube regions, the simplest example is the surface of the unit
cube. Geodesic flow on such a surface is 4-direction geodesic flow, and it can be
related to 1-direction geodesic flow on a surface obtained by combining 4 rotated
copies of this surface in a suitable way. For an illustration, see [4, Example 7.2.4].

Finally, it has been drawn to our attention that there is perhaps a possibility of
establishing results such as Theorem 1 by using the ideas of Teichmiiller dynamics,
a very powerful tool in dynamical systems. Such techniques are beyond the reach
of many who are not experts in that area. Our primary aim in this paper is to show
that traditional number-theoretic techniques, involving only continued fractions and
diophantine approximation combined with an iterative process, are sufficient for our
needs. Nevertheless we make some brief comments at the end of this paper on work
using this alternative approach.

2. SOME PREREQUISITES

Without loss of generality, we assume that the slope of the geodesic is greater
than 1. Suppose that the geodesic has slope 1/, where 0 < av < 1 is irrational.

Our first tool is an interval exchange transformation 7' = T, which encodes the
information concerning the particular order with which a geodesic of slope 1/a keeps
hitting the horizontal edges hq, ho, h3.

The first step involves identifying the horizontal edges hy, ho, h3 with unit intervals
by making use of the correspondences

hl = [07 1)7 h’2 - [172>7 h‘3 = [273)7

perhaps somewhat abusing notation, as shown in Figure 2.1.

hy

[0,1)
hs ha

[2,3) [1,2)
ha ha [0,1) [1,2)

Figure 2.1: representing horizontal edges of the L-surface by intervals

We now consider the piecewise linear map 7" = T, defined according to Figure 2.2.
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Figure 2.2: the interval exchange transformation 1" = T,

This is called the interval exchange transformation. More precisely, we have

T(0,1—-a)=2+o3), T(l—-a,1))=[11+a), (2.1)
T(L,2—a)=1+0a,2), T(2-0a,2)=[2,24a), (2.2)
(2,3 -a)) =[a,1), T(B-a3))=[0,a), (2.3)

3
where, for instance, T'([0,1 — «)) = [2 + «, 3) describes the 1/a flow mapping the
part [0,1 — «) in hy = [0,1) to the part [2 + a, 3) in hy = [2,3) linearly in the form
x

Tr=2+4a+zx, €0,1—a),

and similarly for the rest in (2.1)—(2.3).

The novelty is that T" acts on the longer interval [0, 3) instead of the unit interval
[0,1), but if we consider 7" modulo 1, then it acts simply as an a-shift, or irrational
rotation, in the unit interval.

We next consider our main idea, which involves continued fractions. Consider an
irrational number

1

a = [ag; a1, ag,as,...] = ag + ———, (2.4)
a1 T
a2t oo
where ag > 0 and a; > 1,1 =1,2,3,..., are integers. The rational numbers
@:p’“m):[ao;al,...,ak], k=0,1,2,3,... (2.5)
@ qk(@)

are the k-convergents of a. It is well known that they give rise to the best rational
approximations of the irrational number «, and we have

Bl B cac. <B B A (2.6)
o 42 G4 ds 4 @1
Let ||ly|| denote the distance of a real number y from the nearest integer. We shall
make use of the fact that for an irrational number « the sequence
min ||kafl, n=1,2,3,...,
1<k<n
is well described by the continued fraction expansion of a.
For every k =0,1,2,3,..., we have

lgall = llgrall, 1< g < g, (2.7)
lgr+10 < [lgrel],
as well as
1 1
< lgwall € —. (2.8)

Qk+1 + Gk Qr+1
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Indeed, the sequences p, and ¢, k =0,1,2,3,..., are given by the initial values

Po=ay, p1=aiap+1, q=1, ¢ =a,

and the recurrence relations

DPk+1 = Qk1Pk + Dh—1,  Qrt1 = Qhp1Gr + Qe—1, Kk = 1. (2.9)

We also have

Peo1qe — Qeipe = (=%, k> 1.

On the other hand, using (2.6) and (2.9), it is easy to show that

lgr+1all + arrallgal] = [lgr-1e]. (2.10)
We need the following result.

Theorem (3-distance theorem). Consider the n + 1 numbers 0, «, 2, 3a, ..., na
modulo 1 in the unit torus/circle [0, 1), leading to an (n+1)-partition. This partition
exhibits at most 3 different distances between consecutive points. Furthermore, every
positive integer n can be expressed uniquely in the form

n=ug+q_1+r, withl<p<ap and0<r < g,

in terms of the continued fraction (2.4) of a and its convergents (2.5), with the
convention that g_1 = 0. Then

(i) the distance ||qrad| shows up precisely n 4+ 1 — qx times;
(ii) the distance |qx_1c|| — p||gpey|| shows up precisely r + 1 times; and
(iii) the distance ||qp_1c|| — (u — 1)||qee|| shows up precisely g —r — 1 times.

This surprising geometric fact, formulated as a conjecture by Steinhaus, has many
proofs, by Sés [13, 14], Swierczkowski [17], Surdnyi [16], Halton [5] and Slater [12],
with others published more recently.

3. PROOF OF THEOREM 2

Given an integer k > 1, let Ay («) denote the partition of the unit torus/circle [0, 1)
with gx11 = gry1(@) division points {ga}, —1 < ¢ < gry1 — 2, where {2} denotes
the fractional part of a real number x. Note that the choices ¢ = —1,0 in {ga}
represent the dangerous endpoints of the special intervals [0,1 — «) and [1 — o, 1)
in (2.1). These are the two singularities of the interval exchange transformation T’
restricted to the interval 0 < z < 1, in the sense that both 0 and T'(1 — «a) = 1
represent the split singularity of the L-surface.

A consequence of the special choice n = q1 — 1 is that the 3-distance theorem
simplifies to a 2-distance theorem. This in turn leads to some very useful information
concerning the distances between the consecutive points of the gy, 1-partition A ()
of the unit torus/circle [0, 1). Indeed, using the second recurrence relation in (2.9),
we have

n=qr1—1=apqe + g1 — 1= pgr + g1+,
with = agy1—1 and r = ¢ — 1. Since qx —r —1 = 0, it follows from the 3-distance
theorem that there are only two distances

laxell and - lgeal] = (ar = Dllgeall = llgeall + llgeall, (3.1)

in view of (2.10).
It follows immediately from (2.7) that one of the neighbors of 0 in the partition
Ai(a) is {grza} which clearly has distance ||gyc|| from 0 in the unit torus/circle.
Since « is irrational, the other neighbor of 0 in the partition Ax(«) must have



8 BECK AND CHEN

distance ||gg+10|| + ||grr]| from 0 in the unit torus/circle. Simple calculation then
shows that it is {((ag+1 — 1)qx + gx—1)a}. Thus the two neighbors

{gra} and {((ak11 — Vg + @)}

of 0 in the partition Ag(«) exhibit the two gaps in (3.1) in some order. Similarly,
the two neighbors

{(ge =D} and  {((arr1 = Vg + ger — Do}

of 1 — a = {—a} in the partition Ay(a) exhibit the same two gaps in (3.1) in the
same order.

The union of the left and right neighborhoods of 0 in the partition A () has the
form

B(0) = (=d",d™), (3.2)

and the union of the left and right neighborhoods of 1 — a = {—a} in the partition
Apj(a) has a similar form

B(-1)=1-a—-d,1—a+d™), (3.3)
due to the same order, where
{d",d”} = {llaall, lgerrell + llgrell}, (3.4)

but we have not specified which one is which. We refer to B(0) and B(—1) as the
buffer zones of the singularities 0 and 1 — « respectively in the partition Ay (c).
We consider the special intervals

Je(q) = J(a; k;q) = ({qa} — d™ {qa} +d"), 1< q< gy —2. (3.5)

Remark. These short special intervals (3.5) have three crucial properties:

(i) They completely cover the two long intervals (0,1 — «) and (1 — a, 1).

(ii) They avoid the singularities 0,1 and 1 — «, in view of (3.2)—(3.4).

(iii) Any two intervals in (0, 1—«) or in (1—a, 1) arising from neighboring partition
points exhibit substantial overlapping. More precisely, if 1 < ¢/, ¢” < qrpy1—2 are two
integers such that {¢'a} and {¢"a} are neighboring points in the partition Ay(«),
so that both points are in the interval (0,1 — «) or both points are in the interval
(1 —a,1), then

length(Ji(¢') N Jk(¢")) = min{d",d"} = [lqeal|. (3.6)
Since the length of Ji(q) is 2||qra|| + ||gr+1¢||, the trivial upper bound
2llgearl] + lgerall < 3llgrall
and (3.6) together justify the term substantial overlapping.

Since T" acts on the interval/circle [0, 3), for every interval J(¢), 1 < ¢ < @ry1—2,
given by (3.5), we define its 3-copy extension Jy(q;3) by

Ju(q;3) = Jr(q) U (14 Ji(q)) U (2 + Jr(q)) C [0,3), (3.7)

a union of Ji(q) with two of its translates.

After our preparation, we are now ready to study an orbit. Let £,(S;t), t > 0,
be a parametrized half-infinite geodesic with initial point S and slope 1/, under
the usual arc-length parametrization.

Let M be large, and consider the initial segment £, (5;t), 0 < t < M, of length M,
which we denote by (L,; M). Suppose that

0<ti <ty <tz<...<ty, <M, (3.8)
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where
ti+1—ti:\/1+0é2, 1<z<m—1, (39)
is the sequence of time instances ¢ when the initial segment £,(S;t), 0 < t < M,
intersects the union hy U hy U hy = [0,3) of the 3 horizontal edges of the L-surface
in Figure 2.1. For notational simplicity let
yi = Lo(S5t) €10,3), 1<i<m, (3.10)

denote these intersection points.
Using the interval exchange transformation 7' = T, : [0,3) — [0,3), we see that
any two time-consecutive intersection points are governed by the simple relation

Lemma 3.1. Suppose that Ji(¢1) is a special interval of the form (3.5), and there
exists r(¢1) € {0,1,2} such that

{yi 1 <i<m}pn(r(ly) + Je(6y)) =10, (3.12)
where {y; : 1 < i < m} is the set of intersection points defined in (3.10). Then for
every integer 1 — {1 < h < qge1 — 2 — ¢1, we have

Proof. Since 11 > 1 and m — 1 < m, it follows trivially from (3.12) that (3.13)
holds for h = 0.
Combining (3.11) and (3.12), we see that
{yi:2<i<m}NT(r(t)+ Ju(fr)) = 0.
Iterating this argument, we see that for every integer 1 < h < qx1 —2 — ¢, we have
{yi 14+ h <1< m} N Th(T(€1) + Jk<£1)) = 0.
Since qry1 = qr1 — 1 — 6 = h+ 1 and m — gx1 < m, it follows that (3.13) holds
for every integer 1 < h < g1 — 2 — (1.
For every negative integer 1 —¢; < h < —1, using the inverse transformation 771,
combining (3.11) and (3.12), and iterating, we have
{y; : 1 <i <m ARy NT"(r() + Ju(61)) = 0.

Since ggi1 = landm+h>2m+1—0;>2m+1—qu1 = m— g, it follows that
(3.13) holds for every integer 1 —¢; < h < —1.
The proof of the lemma is now complete. [l

Remark. We often refer to the deduction of (3.13) from (3.12) as a T-power extension
argument.

Let 1 < 01 < qgs1 — 2 be fixed.
For notational convenience, for every integer 1 — 1 < h < qxy1 — 2 — ¢, we write

T"(r(6) + Ji(£1)) = 7(61 + h) + Jp(61 + h). (3.14)

Note that (3.14) defines r(q) for every integer 1 < ¢ < gqr+1 — 2. Furthermore,
combining (3.13) and (3.14), we have

Wi ey <i<m— g} N (r(q) + Ji(q) =0 (3.15)

for every integer 1 < ¢ < qga1 — 2.
Suppose that Iy C [0,3) is (Lq; M)-free, so that

i 1<i<m}nl, =0,
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where {y; : 1 < i < m} is the set of intersection points defined in (3.10). Let k be
an integer, and suppose that Ji(¢;) is a special interval of the form (3.5), and there
exists r(¢1) € {0, 1,2} such that

7”(51) -+ Jk(gl) C I(). (316)
Then (3.12) holds.
Remark. We shall later choose an optimal value of k for which (3.16) holds.

We distinguish a few cases according to the special relations between various
sets of intersection points and various special intervals. We take advantage of the
substantial overlapping of the short special intervals Ji(q) defined by (3.5).

Recall that if 1 < ¢/, ¢” < qxs1 — 2 are two integers such that {¢’a} and {¢"a} are
neighboring points in the partition Ag(«), so that both points are in the interval
(0,1 — «) or both points are in the interval (1 — «a, 1), then combining (2.8) and
(3.6), we have

1 1

length(J,(¢") N Ji(¢")) = ||qeee|| = > :
V@) N Iu(q) > llawa Qk+1 T 96 2qk+1

Recall also from (2.8), (3.4) and (3.5) that
3
length(Ji(q)) = 2llgka] + llgpnal < Sllaall < =,
+

so that

length(Joss(q)) < —— (3.17)

rto
On the other hand, a trivial deduction from (2.9) gives

Qe+2 2 Qr+1 + Qr 2 2,
so that iterating this a few times, we conclude that

Te+9 Z 20617 2 Aqk15 2 8qkts = 16G)41. (3.18)

Combining (3.17) and (3.18), we conclude that the intersection Ji(q') N Ji(¢") must
contain a special interval of the type Jiis(q) for some 1 < ¢ < gra9 — 2. We split
the argument into two complementary cases.

Case 1A. The following intersection property holds. For every
Jeis(l) C Jk(q) and r € {0,1,2},
with r # r(q) given by (3.14), we have
Wit e <T<m— qeia} N (r 4 Jrys(€)) # 0. (3.19)
Lemma 3.2. Case 1A is impossible.
Case 1B. There exist
Jrs(la) C Ji(¢t) and 1 € {0,1,2},
with 71 # r(q") given by (3.14), such that

Wit ey <i<m — e} OV (1 + Jigs(la)) = 0. (3.20)
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We now continue with this particular value of /5.
Since Jiys(la) C Ji(g¢"), it clearly follows from (3.15) that

{vi g <i<m— g N (r(g") + Jeys(l2)) = 0. (3.21)

Since (3.20) and (3.21) are analogs of (3.12), the T-power expansion argument in
the proof of Lemma 3.1 shows that for every integer 1 — o < h < qgag — 2 — {5, we
have

(Y @yt + Qoo < T M — Qo1 — Qero} NIy + Jiys(62)) = 0, (3.22)
<M — @ry1 — Qero ) DT (r(gh) + Jiys(l2)) = 0. (3.23)

<
Wit hsr + Qrro <1
For notational convenience, for every integer 1 — o < h < qgi9 — 2 — {9, We write

T"(r(q") + Jrgs(la)) = 7*(la + h) + Jris(la + h), (3.24)
T"(ry + Jrys(02)) = r*(ly + h) + Jeys(ly + D). (3.25)
Then combining (3.22)—(3.25), we have
Wi s Qi1 + Qo << M — Qi1 — Qyo} N (17°(q) + Jiys(q)) = 0, (3.26)
Wit e + Qoo < T M — Qe — Qo) N (7)) + Jirs(q) = 0, (3.27)
for every integer 1 < ¢ < grr9 — 2. Clearly

(@) #77(q), 1< q< qrao—2.
We now split Case 1B into two complementary cases.
Case 2A. The following intersection property holds. For every
Jer16(0) C Jeis(q) and 7 e {0,1,2},
with r # 17*(q), 7 (¢) given by (3.24) and (3.25), we have
{Yi © Qo1 + Qoo < <M — Qi1 — Qo N (r + Jir16(0)) # 0.

Lemma 3.3. Case 2A is impossible.
Case 2B. There exist

Jip16(€3) C Jeus(qg™) and 7y € {0,1,2},
with o # r*(¢*t),7*(¢*") given by (3.24) and (3.25), such that

{Wi * @1 + Grro <0 <M — Qg1 — Qo N (r2 + Jig16(ls)) = 0. (3.28)
Lemma 3.4. If Case 2B holds, then
m < 2(]k+1 + 2qk+9 + 2(]k+17 + 6. (329)

Proof of Theorem 2. Suppose that Iy C [0,3) is (L,; M)-free, so that
{yi:1<i<m}inly=0.
Let Ji(¢1) = J(a; k; £1) be the longest special interval of the form (3.5) such that
r(l1) + Jp(41) C Iy for some ¢; and r(¢1) € {0,1,2}.

Then
length(lo) < 4(||gr—1c|| + [lqral]), (3.30)

since otherwise there exists a longer special interval

r(€) + Jx_1(¢) C Iy for some ¢ and r(¢) € {0, 1,2},
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a contradiction. Combining (3.30) with (2.8), we have

4 4 8
length(lp) < — + — < —. (3.31)
qk qk+1 qr

On the other hand, it follows from (3.8) and (3.9) that
M < (m+1)V1+ a2 (3.32)
Also, in view of Lemmas 3.2-3.4, it is clear that the bound (3.29) holds. Finally,
recall that 0 < a < 1 and
1

a = [ay,as,as,...| = o
1

1
a2+a3_1~__,,

is badly approximable, so there exists a constant A such that the continued fraction
digits a; < A for every i = 1,2,3,.... It follows from (2.9) that

Qri1 < Qryo < Qryrr < (A+ 1) gy (3.33)
Combining (3.29), (3.32) and (3.33), we see that
M < (2qrs1 + 2qrso + 2qrs17 + VI + a2 < T(A+ 1) V2. (3.34)

It now follows from (3.31) and (3.34) that a geodesic segment £,(5;t),0 <t < M,
of length M = 7(A+1)"g,+/2 must intersect every subinterval I of hy UhyUhs with
length(I) = 8/q. Since the product M length(I) = 56(A + 1)'7y/2 is a constant
independent of k, this establishes superdensity of the half-infinite geodesic. O

4. PROOF OF LEMMAS 3.2-3.4

Before we present the proof of our main lemmas, we begin by investigating a
simple situation which serves to illustrate our method.
Recall that r(¢1) is given by Lemma 3.2.

Simple Case. There exist integers r*(¢;) and r**(¢;) such that
(1) r(6y),r (61) r**(¢;) form a permutation of 0,1, 2;
(2) {y;i - 1 <i<m}N(r*(6y) + Jp(¢1)) = 0; and
(3) {yi: 1 < i <m} N () + Jp(6y)) = 0.

Lemma 4.1. If the Simple Case holds, then m < 2qx41 + 6.

Proof. For notational simplicity, we write

Q(k;m) = {yi : a1 << M — Gy} (4.1)
Since the properties (2) and (3) in the Simple Case are analogs of (3.12), we can

repeat the T-power extension argument in Lemma 3.1 and conclude that for every
integer 1 — (1 < h < qxy1 — 2 — {1, we have

Q(k;m) NT™(r*(61) + Jn(£1)) = 0, (4.2)
Qk;m) NTM(r** (41) + Ju(6r)) = 0. (4.3)
As in (3.14), we write
T (r(0) + Ju(0) = 77 (6 + h) + Ji(b + h), (4.4)
Th(r* (1) + Je(6) = 7 (01 + h) + Ji (6 + h), (4.5)

for every integer 1 — ¢; < h < qgr1 — 2 — ¢1. Note that (4.4) and (4.5) define 7*(q)
and 7**(q) respectively for every integer 1 < ¢ < qry1 — 2. Recall next that r(q)
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is defined by (3.14). Indeed, using the notation (3.14), it is easy to check that the
assertion (3.13) for every integer 1 — ¢; < h < qgr1 — 2 — ¢1 implies that

Q(k;m)N (r(ly +h)+ Je(by +h)) =10 (4.6)

for every integer 1 — ¢4 < h < qgy1 — 2 — 1.
Combining (4.2)—(4.6) for every integer 1 — ¢; < h < qr+1 — 2 — £, we deduce
that for every integer 1 < g < qry1 — 2, we have

Q(k;m) N (r*(q) + Ji(q)) = 0, (4.7)
Q(k;m) N (r(q) + Jr(q)) =0, (4.8)
Q(k;m) N (r(q) + Ji(q)) = 0. (4.9)
Also, in view of the property (1) in the Simple Case, it is clear that r(q), 7*(q), 7**(q)

form a permutation of 0, 1,2 for every integer 1 < g < qr11 — 2.

By definition, the 3-copy extensions Ji(¢;3), 1 < ¢ < qxr1 — 2, give rise to 6
continuous chains of overlapping intervals in the torus/circle [0,3) such that the 6
chains completely cover the 6 intervals

0,1-a), (1-a,1), (1,2—«), 2-o,2), (2,3—0a), (3—a,3),
and there are only 6 points in [0, 3) that are not covered by the 6 chains, namely
0, 1—a, 1, 2—a, 2, 3—qa.

Combining (4.7)-(4.9) for every integer 1 < ¢ < gx4+1 — 2, we deduce that the set
Q(k;m) is not covered by the 6 chains. Indeed, if m > 2¢y1 + 7, then the set (4.1)
has at least 7 distinct elements, which is more than 6, giving rise to a contradiction.
We conclude therefore that, under the conditions of the Simple Case, we must have
m < 2q+1 + 6, and this completes the proof. O

Proof of Lemma 3.2. Again, for notational simplicity, we use (4.1).

Our first step is to prove that, under the condition of Case 1A, any two neighboring
3-copy extensions Ji(¢;3) and Ji(q";3) are synchronized in the following precise
sense: For each r € {0, 1,2}, we have

Qk;m)N(r+ Je(¢)) =0 if and only if Q(k;m) N (r+ Je(¢")) =0. (4.10)

To establish this, we consider two cases.
Suppose first that » = r(¢’). Using the notation (3.14), it follows from (3.13) that

Q(k;m) N (r(d) + Ji(d)) = (4.11)
Assume on the contrary that
Q(k;m) N (r(d") + Jk(d")) # 0. (4.12)

Then it follows from (3.15) that r(¢”) # r(¢’). On the other hand, we know that
the intersection Ji(q') N Ji(¢”) must contain a special interval of the type Jyys(jo)
for some jg, so

r(q) + Jr+s(jo) € (r(¢) + Ji(q)) 0 (r(d) + Ji(q")). (4.13)

Since r(q') # r(q¢") and Jx48(jo) C Jr(q”), the condition of Case 1A is satisfied with
¢ =¢", and (3.19) becomes

Q(k;m) N (r(q") + Jr+s(jo)) # 0. (4.14)

But (4.11) and (4.13) contradict (4.14), and so (4.12) fails. Thus our claim (4.10)
holds in this case.
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Suppose next that r # r(q¢’). As before, we use the fact that the intersection
Je(q') N Jk(¢") must contain a special interval of the type Ji.s(jo) for some jg, so

r+ Jeis(do) C (r+ Je(q) 0 (r + Ji(¢")). (4.15)
Since r # r(q'), the condition of Case 1A is satisfied with ¢ = ¢/, and (3.19) becomes
Q(k;m) N (r + Jiis(jo)) # 0. (4.16)

It now follows from (4.15) and (4.16) that
Q(k;m) N (r+ Ji(q) #0 and  Q(kym) N (r+ Ju(q")) # 0,

so that our claim (4.10) holds also in this case.

By definition, the 3-copy extensions Ji(¢;3), 1 < ¢ < qry1 — 2, give rise to 6
continuous chains of overlapping intervals in the torus/circle [0,3) such that the 6
chains completely cover the 6 intervals

0,1-—a), (I1-a,1), (1,2—-0a), 2-¢,2), (2,3—0a), (B—a,3). (4.17)

The synchronization property we have just established now implies that each of the
6 long special intervals in (4.17) satisfies one of the following two properties. Either
such a long special interval is disjoint from the set Q(k;m), or the set Q(k;m) is
dense in such a long special interval, in the precise sense that every subinterval of
length 1/¢x.s contains a point from the set Q(k;m).

Moreover, it is not difficult to show that precisely 2 of the 6 long special intervals
in (4.17) are disjoint from the set Q(k;m). To see this, choose two integers ¢’ and
q" satisfying 1 < ¢/, ¢"” < qry1 — 2 such that

Ju(¢d) C (0,1 —a) and Ji(¢") C (1 —a,1). (4.18)
Then it follows from (3.13) and (3.14) that
QUk;m) N (r(d) + Ji(¢)) =0 and  Q(k;m) N (r(¢") + Je(¢") = 0. (4.19)
Now write
i=r(d)+(0,1—a) and Zy=r(¢")+ (1 —a,1). (4.20)
The synchronization property and (4.18)—(4.20) now imply that
Q(k;m)NZy =0 and Q(k;m)NZy = 0.

Note that the union Z; UZ; modulo 1 is precisely the unit interval [0, 1).

Now Z; and Z, are 2 of the 6 long special intervals in (4.17). Let Z;, 3 < j < 6,
denote the remaining long special intervals in (4.17). The condition of Case 1A
now implies that these 4 intervals are not disjoint from Q(k;m), so that Q(k;m)
is dense in each of them. Each T-image T(Z;), j = 1,2, has at most 1 common
point with the set Q(k;m). This is a contradiction, since the union 7'(Z;) U T'(Z5)
has a substantial intersection with the union Z3 UZ,; UZs; U Zg, which implies that it
must have a substantial intersection with the set Q(k;m), much more than at most
2 elements. Thus Case 1A is impossible, and this completes the proof. 0

Proof of Lemma 3.5. For notational simplicity, we write

Q" (ksm) = {Yi : Qo1 + Qoo <1 <M — Qg1 — Qrgo - (4.21)

We can proceed along similar lines as in the first part of the proof of Lemma 3.2
for Case 1A, and show that any two neighboring 3-copy extensions Ji15(¢’; 3) and
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Jras(q"; 3) are synchronized in the following precise sense: For each r € {0, 1,2}, we
have

Q*(k;m) 1 (r + Juys(¢)) = 0 if and only if - Q*(ksm) N (r + Jeys(q")) = 0.

By definition, the 3-copy extensions Jyys(¢;3), 1 < ¢ < grro — 2, give rise to 6
continuous chains of overlapping intervals in the torus/circle [0,3) such that the 6
chains completely cover the 6 intervals (4.17). The synchronization property now
implies that each of the 6 long special intervals in (4.17) satisfies one of the following
two properties. Either such a long special interval is disjoint from the set Q*(k;m),
or the set Q*(k;m) is dense in such a long special interval, in the precise sense that
every subinterval of length 1/gx.16 contains a point from the set Q*(k;m).

Moreover, it is not difficult to show that precisely 4 of the 6 long special intervals
in (4.17) are disjoint from the set Q*(k;m). To see this, choose two integers ¢’ and
q" satisfying 1 < ¢/, ¢ < qrr9 — 2 such that

Jeis(d) C (0,1 —a) and Jis(d") € (1 —a,1). (4.22)
Then it follows from (3.26) and (3.27) that
Q" (k;m) N (r*(d') + Juss(d) = 0, Q"(ksm) N (r*(¢") + Jurs(q”) = 0, (4.23)
Q" (k;m) N (1 (¢') + Jras(d) =0, Q" (ksm) N (r™(q") + Jrys(q”)) = 0. (4.24)
Now write
i =r(¢)+ (0,1 —a), Zh=r(")+(1—-a,l), (4.25)
s =r"()+ (0,1 — ), Zy=r"(¢")+ (1 —a,1). (4.26)
The synchronization property and (4.22)—(4.26) now imply that
Q*(k;m)NZy =0, Q*(k;m)NZy=0,
Q*(k;m)NIy =0, Q*(k;m)NZy=0.
Note that the union Z; U Zy U Z3 U Z, modulo 1 is precisely the unit interval [0, 1)
twll\(fjg% 7,,75,Z3,Z, are 4 of the 6 long special intervals in (4.17). Let Z;, j = 5,6,
denote the remaining long special intervals in (4.17). The condition of Case 2A now
implies that these 2 intervals are not disjoint from Q*(k;m), so that Q*(k;m) is

dense in each of them. Each T-image T'(Z;), j = 1,...,4, has at most 1 common
point with the set Q*(k;m). This is a contradiction, since the union

T(Z)) UT(Zy) UT(Z3) UT(Zy)

has a substantial intersection with the union Zs U Zg, which implies that it must
have a substantial intersection with the set Q*(k;m), much more than at most 4
elements. Thus Case 2A is impossible, and this completes the proof. 0J

Proof of Lemma 3.4. For notational simplicity, we define Q*(k;m) by (4.21), and
write

Q™ (kim) = {¥i : Qo1 + Qoro + Qo7 <8 <M — Qg1 — Qv — Qo17)-

Since (3.28) is an analog of (3.12), we can repeat the T-power extension argument
in Lemma 3.1 and conclude that for every integer 1 — {3 < h < qry17 — 2 — {3, we
have

Q™ (k;m) NT"(ry + Jyt16(£3)) = 0. (4.27)
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Since Ji116(03) C Jres(q™), it follows from (3.26) and (3.27) that
Q" (k;m) N (r*(¢™") + Jrs16(ls)) = 0, (4.28)
Q* (k;m) N (r™ (™) + Jrr16(l3)) = 0. (4.29)

Next, note that (4.28) and (4.29) are also analogs of (3.12), so again we can repeat
the T-power extension argument in Lemma 3.1 and conclude that for every integer
1—43 < h< g7 — 2 — {3, we have

Q™ (kym) NT"(r*(q™) + Jes16(65)) = 0, (4.30)
Q* (k;m) NT"(r*™* (™) 4 Jrgr6(£3)) = 0. (4.31)
Now, for every integer 1 — V3 < h < qgi17 — 2 — {3, we write
T (q) + Jea6(£z) = 1O s + h) + Jpp16(ls + 1), (4.32)
T (") + Jiri6(£s)) = Y (ls + B) + Jeyas(bs + h), (4.33)
T"(ry + Jip16(ls)) = 1 (ly + h) + Jipr6(ls + D). (4.34)
Clearly it follows from the assumption of Case 2B that r©(q),rM(q),7®(q) form

a permutation of 0, 1,2 for every integer 1 < ¢ < gry17 — 2. Combining (4.27) and
(4.30)—(4.34), we have

Q™ (k;m) N (r'9(q) + Jiy16(q)) = 0, (4.35)

Q7 (k;m) N (X (q) + Jrs16(9) = 0, (4.36)

Q™ (k;m) N (r®(q) + Jirs(q) = 0, (4.37)
for every integer 1 < q < qra17 — 2

Note now that (4.35)—(4.37) are similar to (4.7)—(4.9) in the proof of Lemma 4.1,
so we now mimic the last part of that proof.

By definition, the 3-copy extensions Jx116(¢;3), 1 < ¢ < gry17 — 2, give rise to 6
continuous chains of overlapping intervals in the torus/circle [0,3) such that the 6
chains completely cover the 6 intervals

0,1-a), (I1-a,1), (1,2—«), 2-o2), (2,3—0a), (3—a,3),
and there are only 6 points in [0, 3) that are not covered by the 6 chains, namely
0, 1—a, 1, 2—a, 2, 3—a.

Combining (4.35)—(4.37) for every integer 1 < ¢ < gr+17 — 2, we deduce that the
set Q**(k; m) is not covered by the 6 chains. Indeed, if m > 2qx11+2qk10+2qk117+7,
then the set Q@**(k;m) has at least 7 distinct elements, which is more than 6, giving
rise to a contradiction. We conclude therefore that, under the conditions of Case 2B,
we must have m < 2qx11 + 2qr19 + 2qx+17 + 6, and this completes the proof. O

5. PROOF OF THEOREM 1

Consider now an arbitrary finite polysquare translation surface P. We are now
in a position to complete the proof of Theorem 1, and show that if the slope of a
half-infinite geodesic on P is a badly approximable number, then the geodesic is
superdense on P.

The proof is a fairly straightforward adaptation of the proof of Theorem 2, apart
from the observation that the number of cases we need to consider is a function of
the number of square faces of P, and so can be arbitrarily large.
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Without loss of generality, we assume as before that the slope of the half-infinite
geodesic is greater than 1. Suppose that it has slope 1/a, where 0 < a < 1 is
irrational.

Our first step is to generalize the interval exchange transformation 7' = T, defined
in Section 2. Suppose that the polysquare translation surface P has s square faces.
Each square face has a top horizontal edge and a bottom horizontal edge. Each top
horizontal edge is identified with a unique bottom horizontal edge, and these give

rise to s horizontal edges hq, ho, ..., hs. We now identify these horizontal edges with
unit intervals by making use of the correspondences
hy =[0,1), hy=11,2), ..., hs=[s—1,s).

We now consider the piecewise linear map T = T,, defined according to the analog
of Figure 2.2 that corresponds to P. More precisely, for each integer 1 < j < s,
there exist unique integers 0 < j', 7" < s — 1 such that

T(j-1,j—a)=['+aj+1) and T([j-a,j)=["7"+a).

Indeed, it is not difficult to see that the map T : [0,s) — [0, s) is one-to-one and
onto. While T" acts on the longer interval [0, s) instead of the unit interval [0,1), if
we consider T modulo 1, then it acts simply as an a-shift, or irrational rotation, in
the unit interval.

As before, our main idea involves continued fractions, in particular, the special
case of the 3-distance theorem which becomes a 2-distance theorem. Indeed, we can
repeat our discussion at the beginning of Section 3 wverbatim up to the end of the
paragraph preceeding (3.7). In particular, for any integer 1 < ¢ < gry1 — 2, we can
define the special interval Ji(q) as in (3.5). Then analogous to (3.7), for any integer
1 < ¢ < gry1 — 2, we define its s-copy extension Ji(g; s) by

Je(@38) = Je(@) U (1 + Ji(g)) U U ((s = 1) + Ji(q)) € [0, 9),

a union of Ji(q) with s — 1 of its translates.

Let L,(t) = Lo(P;S;t), t > 0, be a parametrized half-infinite geodesic on P with
initial point S and slope 1/a, under the usual arc-length parametrization.

Let M be large, and consider the initial segment £, (t), 0 < ¢ < M, of length M,
which we denote by (L,; M). Suppose that

0<th <ta<tzg<...<t, <M, (5.1)
where
ti+1—ti:\/1+042, 1<Z<m—1, (52)

is the sequence of time instances ¢t when the initial segment £,(t), 0 < t < M,
intersects the union hy; U...Uhgs = [0, s) of the s horizontal edges of the polysquare
translation surface P. For notational simplicity let

yi = La(t:) €[0,5), 1<i<m, (5.3)

denote these intersection points.
Using the interval exchange transformation 7" = T, : [0,s) — [0, s), we see that
any two time-consecutive intersection points are governed by the simple relation

T(yi) = Yiy1, 1<i<m—1

We have the following analog of Lemma 3.1 which is easily established by the
T-power extension argument.
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Lemma 5.1. Suppose that Ji(¢1) is a special interval of the form (3.5), and there
exists r(¢y) € {0,1,...,5 — 1} such that

{y 1 <i<m}0(r(l) + Je(ly)) =0, (5.4)

where {y; : 1 < i < m} is the set of intersection points defined in (5.3). Then for
every integer 1 — {1 < h < qge1 — 2 — ¢1, we have

{yi - qrra <@<m = g} N T (r(6) + Ji(6)) = 0. (5.5)
For notational convenience, for every integer 1 — ¢y < h < qry1 — 2 — {1, we write
T () + Ju(01)) = rO 01 + h) + Ju(by + h). (5.6)

Note that (5.6) defines r(q) for every integer 1 < ¢ < gqx41 — 2. Furthermore,
combining (5.5) and (5.6), we have

(0t oyt <P <m— e} 0 (1) + Julg) = 0 (5.7)

for every integer 1 < ¢ < qga1 — 2.
Suppose that Iy C [0, s) is (Lq; M)-free, so that

where {y; : 1 < i < m} is the set of intersection points defined in (5.3). Let k be
an integer, and suppose that Ji(¢1) is a special interval of the form (3.5), and there
exists r(¢1) € {0,1,...,s — 1} such that

7“(61) -+ Jk(gl) C 1. (58)

Then (5.4) holds. As before, we shall later choose an optimal value of k for which
(5.8) holds.

Again, we distinguish a few cases according to the special relations between various
sets of intersection points and various special intervals. We take advantage of the
substantial overlapping of the short special intervals Jx(g) defined by (3.5).

Recall that if 1 < ¢/,¢"” < qxs1 — 2 are two integers such that {¢'a} and {¢"a}
are neighboring points in the partition Ay («), then the intersection Ji(q") N Jx(q”)
must contain a special interval of the type Ji1s(q) for some 1 < ¢ < gri9 — 2. We
split the argument into two complementary cases.

Write

Q(ksm) ={yi : qur1 ST <M — e }-
Case 1A. The following intersection property holds. For every
Jeis(0) C Jk(q) and r e {0,1,...,s— 1},

with r # r{”(¢) given by (5.6), we have

Q(k;m) N (r+ Jyys(l)) # 0.
Case 1B. There exist

Jers(l2) C J(q®) and 1 € {0,1,...,5— 1},

with r # rgo)(q(l)) given by (5.6), such that

Q(k;m) N (r1 4 Jyis(la)) = 0. (5.9)
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Since Jiys(f2) C Jp(qM), it clearly follows from (5.7) that
Q(k;m) N (K (¢ + Jips(b)) = 0. (5.10)

Since (5.9) and (5.10) are analogs of (5.4), the T-power expansion argument shows
that for every integer 1 — 5 < h < qga9 — 2 — {2, we have

Q(l)(l{?, m) N Th(’/’l + Jk+8(£2)) = @, (511)
QU (kym) N T (1" (4™) + Jrss(£2) = 0, (5.12)
where, corresponding to Q*(k;m) in Section 4, we write

Q(I)(k?; m) = {Yi : Qrt1 + Qo <& <M — Qg1 — Qero})-

For notational convenience, for every integer 1 — {5 < h < qgi9 — 2 — {9, We write

T (¢M) + Jips(l2) = r¥ (o + B) + Jigs(la + h), (5.13)
T'"(ry + Jiss(l2)) = 1SV (s + B) + Jiys(ls + ). (5.14)

Then combining (5.11)—(5.14), we have

QW (ks m) 0 (13 (0) + Jiys(0)) = 0, (5.15)

QU (kim) 1 (157(a) + Jrys(@)) = 0, (5.16)
for every integer 1 < ¢ < qra9 — 2. Clearly

r (@) # 50 (@), 1< q< grao — 2.
We now split Case 1B into two complementary cases.
Case 2A. The following intersection property holds. For every

Jer16(0) C Jras(q) and re{0,1,...,s—1},
with r # réo)(q), 'r’él)(q) given by (5.13) and (5.14), we have
QW (k;m) N (r + Jyr16(0)) # 0.
Case 2B. There exist
Jer16(0s) C Jris(¢P) and 1y € {0,1,...,s — 1},

with ro # i (¢®),r{) (¢®) given by (5.13) and (5.14), such that

QW (k;m) N (rg + Jir16(L3)) = 0. (5.17)

Since Ji116(f3) C Jrys(q?), it clearly follows from (5.15) and (5.16) that
QW (kim) N (13" (%) + Jisas(£)) = 0. (5.18)
QW (k;m) N (15 (q®) + Jir1s(l) = 0. (5.19)

Since (5.17)—(5.19) are analogs of (5.4), the T-power expansion argument shows that
for every integer 1 — V3 < h < 17 — 2 — {3, we have

Q(Q)(lﬁ m) N T"(ry + Jry16(ls)) = 0, (5.20)
QP (kym) NT" (s (q®) + Jiss(ls)) =0, (5.21)
Q(Q)(k’% m) N Th(Tél)(q(Q)) + Jrt16(ls)) = 0, (5.22)

where, corresponding to Q**(k; m) in Section 4, we write

QP (kym) = {yi : Qer1 + Qoo + Qo1 <& <M — Qg1 — Qoo — Q17 )
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For notational convenience, for every integer 1 — 03 < h < qgi17 — 2 — {3, we write

T"(ri (¢?) + Jis16(ls)) = rg Ml + h) + Jipas(ls + ),
T (13 (0) + Juss(ls) = r3 (s + ) + Jiaro(ls + ),
Th(ry + Jsr6(ls) = 757 (b + h) + Jpir6(ls + ).
Then combining (5.20)—(5.25), we have
QP (ks m) 0 (15" () + Jiaoa) = 0
QP (k:m) (157 (9) + Jisao(a) = 0,
QP (km) N1 (15 (0) + Jraro(a) = 0
for every integer 1 < ¢ < qr417 — 2. Clearly
réo)(q), rél)(q), 7"§2) (q) are distinct, 1< ¢ < gry17 — 2.
We now split Case 2B into two complementary cases.
Case 3A. The following intersection property holds. For every
Jpi24(0) C Jiy16(q) and r € {0,1,...,s — 1},
with r # réo)(q), T:()) )(q) (@ )(q) given by (5.23)—(5.25), we have
QP (k;m) N (1 + Jypaa(0)) # 0.
Case 3B. There exist
Jeroa(€s) C Jip16(¢®) and r5€{0,1,...,5—1},
with rg # T(O)< ) ré )(q),réz) (q) given by (5.23)—(5.25), such that
QP (kym) 0 (s + Jrs2a(la)) = 0.

Suppose that 1 < 7 < s — 2. Assume that for every integer 1 < ¢ <

there are distinct mtegers
r9(q),...,r" V(g €{0,1,...,5s -1}
such that for every integer 1 < 7 < 7,
QU (k;m) N (rY™D(q) + Jrssr—s(q) = 0

for every integer 1 < ¢ < qrysr—7 — 2, where

QD (k;m) = {yz : qu+8u_7 <i<m— ZQk+8u—7} :
u=1 u=1

Assume further that we have two complementary cases.
Case TA. The following intersection property holds. For every
Jprsr(0) C Jprsr—s(q) and re{0,1,...,s—1},
with r # r%(q), ..., r" V() given by (5.26), we have
QU D (kym) N (r + s, (£)) # 0.

(5.23)
(5.24)
(5.25)

Qht8r—7 — 2,

(5.26)

(5.27)
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Case 7B. There exist
Jievsr(brs1) C Jrysr—s(¢™) and r.€{0,1,...,5 -1},
with r, # r&o)(q), . ,TST_l)(q) given by (5.26), such that
QU (k;m) N (rr + Jisse (bri)) = 0. (5.28)

Since Jyisr(lrs1) C Jrisr—s(q™), it clearly follows from (5.27) that for every
integer 1 < j < 7,

QU Y (kim) N (r¥ = (q) + T, (brir)) = 0. (5.29)

Since (5.28) and (5.29) are analogs of (5.4), the T-power expansion argument shows
that for every integer 1 — 0,1 < h < qrigr+1 — 2 — €11, we have

QU (k;m) NT"(ry + Juysr(lrsr)) = 0, (5.30)
as well as
QU (k;m) N T"(rY=(¢") + Jrgr (br1)) = 0 (5.31)

for every integer 1 < j < 7, where

T7+1 T+1
Q(T)(k:;m) = {yi : qu+8u_7 <i<m— qu+8u_7} .
u=1 u=1

For notational convenience, for every integer 1 — 0,1 < h < qrigr+1 — 2 — ryq, We
write

TV (q") + Jirsr (brin)) = 1900 (s + h) + T (Gras + ) (5.32)
for every integer 1 < j < 7, and also write
T(re + Jeyse(ri1)) = 0 (G + h) + Jiyse (Grgy + 1), (5.33)
Then combining (5.30)—(5.33), we have, for every integer 1 < j < 74 1,
QU (kim) N (7Y (@) + Jiise () = 0
for every integer 1 < ¢ < qragri1 — 2. Clearly
rgl(q), . ,ri?l(q) are distinct, 1< ¢ < Qrigre1 — 2.
We now split Case 7B into two complementary cases.
Case (7 + 1)A. The following intersection property holds. For every
Jirsris(l) C Jeisr(q) and re€{0,1,...,s— 1},
with r # rﬁ)l(q), e Ql( ) given by (5.32) and (5.33), we have
QU (k;m) N (r + Jpsres(0) # 0.
Case (7 + 1)B. There exist
Jersris(lri2) C J;HgT(q(TH)) and 7,y € {0,1,...,5s— 1},
with 7,41 # rT+1(q) e £+)1(q) given by (5.32) and (5.33), such that
QW (k;m) N (rr1 + Jhysris(brya)) = 0.

In particular, if 7 = s — 2, we have the following final case.
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Case (s — 1)B. There exist
J]H_gs_g(gs) C Jk+88_16(q(3_1)) and Ts—1 € {0, 1, ey S — 1},

with 7,1 # r@ (¢¢ D), ..., r2(¢=Y) given by (5.32) and (5.33) in the special
case T = § — 2, such that

Q(S_2)(/{Z; m) N (7’3_1 + Jk+8s—8(£s)) == @ (534)
Lemma 5.2. For everyt=1,...,5s — 1, Case TA is impossible.

Lemma 5.3. If Case (s — 1) B holds, then

m < 2s+ 2 Z Qhot8u—17- (5.35)

u=1
Before we prove Lemmas 5.2 and 5.3, we first complete the proof of Theorem 1.
Proof of Theorem 1. Suppose that Iy C [0, s) is (L4; M )-free, so that
{yi:1<i<m}inIy=0.
Let Ji(¢1) = J(a; k; £1) be the longest special interval of the form (3.5) such that
r(1) + Ji(¢1) C Iy for some ¢y and r(¢;) € {0,1,...,s —1}.

Then we can show as before that
8
length(lp) < —. (5.36)
qk
On the other hand, it follows from (5.1) and (5.2) that

M < (m+1)V1+ a2 (5.37)
Also, in view of Lemmas 5.2 and 5.3, it is clear that the bound (5.35) holds. Finally,
the inequalities (3.33) are replaced by the inequalities
Qi1 < Qrro < - < Qrpss—t < (A+1)* g (5.38)
Combining (5.35), (5.37) and (5.38), we see that

M < <2s +1+2) qk+8u_7> 1+a2 < (4s + 1)(A+1)* g2 (5.39)
u=1

It now follows from (5.36) and (5.39) that a geodesic segment L, (t), 0 <t < M, of

length M = (4s+1)(A+1)%"7¢,/2 must intersect every subinterval I of hyU...Uh,

with length(/) = 8/qx. Since the product M length(/) is a constant independent

of k, this establishes superdensity of the half-infinite geodesic. O

It remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. We can proceed along similar lines as in the first part of
the proof of Lemma 3.2, and show that any two neighboring s-copy extensions
Jersr—s(q';s) and Jyyis,-s(q"; s) are synchronized in the following precise sense: For
each r € {0,1,...,s — 1}, we have

Q(T—l)(k; m) N (’I“ + Jk+87‘—8(q/)> =0
if and only if
0.

QU V(k;m) N (r + Jrssr—s(q"))
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By definition, the s-copy extensions Jxis,-8(¢;$), 1 < ¢ < Qresr—7 — 2, give rise
to 2s continuous chains of overlapping intervals in the torus/circle [0, s) such that
the 2s chains completely cover the 2s intervals

0,1 —a), [1—a1), ..., [s=1,s—a), [s—a,s). (5.40)

The synchronization property now implies that each of the 2s long special intervals
in (5.40) satisfies one of the following two properties. Either such a long special
interval is disjoint from the set QY (k;m), or the set Q=Y (k;m) is dense in such
a long special interval, in the precise sense that every subinterval of length 1/qx.ss
contains a point from the set QU =V (k;m).

Moreover, it is not difficult to show that precisely 27 of the 2s long special intervals
in (5.40) are disjoint from the set Q"~Y(k;m). To see this, choose two integers ¢’
and ¢” satisfying 1 < ¢/, ¢” < qpisr—7 — 2 such that

Jersr—s(¢) C (0,1 —a) and Jrisrs(¢") C (1 —a,l). (5.41)

Then it follows from (5.27) that for every integer 1 < j < 7,

QUM (kim) N (rY™0(d) + Jase—s(d) =0, (5.42)
QU (kym) N (rY™Y(q") + Jrvsr—s(d") = 0. (5.43)

For every integer 1 < j < 7, now write
Toj 1 =r99(¢)+ (0,1 —a) and Zy; =YD (¢") + (1 —a,1). (5.44)

The synchronization property and (5.41)—(5.44) now imply that for every integer
1 <5 <7, we have

QU V(k;m)NTy =0 and QU V(k;m) NIy = 0.

Note that the union Z; U. .. UZ,, modulo 1 is precisely the unit interval [0, 1) taken
T times.

Now Zy, ..., Zy, are 27 of the 2s long special intervals in (5.40). Let the remaining
long special intervals in (5.40) be denoted by Zy;_1 and Zy;, 7 < j < s. The condition
of Case 7A now implies that these 2s—27 intervals are not disjoint from Q=Y (k; m),
so that QY (k;m) is dense in each of them.

Each T-image T'(Zy;_1) and T'(Z3;), 1 < j < 7, has at most 1 common point with
the set QY (k;m). This is a contradiction, since the union

T(Z)U..)UT(Zy)

has a substantial intersection with the union Zy, 1 U. ..U Zy,, which implies that it
must have a substantial intersection with the set @™~V (k;m), much more than at
most 27 elements. Thus Case TA is impossible, and this completes the proof. O

Proof of Lemma 5.5. Since (5.34) is an analog of (5.4), we can repeat the T-power
extension argument and conclude that for every integer 1 — ¢, < h < qrigs_7—2— Ly,
we have

Q(S_l)(l{?; m) N Th(Ts_l + (]]H_gs_g(fs)) == @ (545)
Since Jyyss—s(ls) C Jrrss—16(q¢® ), it follows from (5.27) with 7 = s — 1 that for
every integer 1 <7 < s—1,

QU (kim) N (rI57 (¢ 70) + Jiass—s(£)) = 0. (5.46)
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Next, note that (5.46) are also analogs of (5.4), so again we can repeat the T-power
extension argument and conclude that for every integer 1 < j < s—1, and for every
integer 1 — 0, < h < qrags—7 — 2 — {5, we have

QU (kim) NT" ({57 (¢ 7) + Jissss(£)) = 0. (5.47)
Now, for every integer 1 — {5, < h < qrags—7 — 2 — U5, We write
ThrI (g5 V) + Jprsss(ls)) = 197Dl + ) + Jiysss(ls + B) (5.48)
for every integer 1 < j < s — 1, and also write

T"(re—y + Jregss—s(ls)) = V(s + h) + Jpigs—s(ls + D). (5.49)
Clearly it follows from the assumption of Case (s — 1)B that 7(O(q),..., 7Y (q)
form a permutation of 0,1, ..., s—1 for every integer 1 < ¢ < qx18s—7—2. Combining

(5.45) and (5.47)—(5.49), we have, for every integer 1 < j < s,
QU (kym) N (r™Y(g) + Jirss—s(a)) =0 (5.50)

for every integer 1 < ¢ < qrasgs—7 — 2.

Note now that (5.50) are similar to (4.7)—(4.9) in the proof of Lemma 4.1, so we
now mimic the last part of that proof.

By definition, the s-copy extensions Jyiss s(¢;$), 1 < ¢ < Qrags—7 — 2, give rise
to 2s continuous chains of overlapping intervals in the torus/circle [0, s) such that
the 2s chains completely cover the 2s intervals

0,1 —a), [1—a1), ..., [s—1s—a), [s—a,s),
and there are only 2s points in [0, s) that are not covered by the 2s chains, namely
j_17 j_Oé, 1<]<5

Combining (5.50) for every integer 1 < ¢ < @riss—7 — 2, we deduce that the set
Q=Y (k;m) is not covered by the 2s chains. Indeed, if

m> 25+ 14+2)  Ghsur,

u=1

then the set Q= (k;m) has at least 25+ 1 distinct elements, which is more than 2s,
giving rise to a contradiction. We conclude therefore that, under the conditions of
Case (s — 1)B, we must have

m < 2s+ 2 Z Qot-8u—T

u=1

and this completes the proof. 0

6. A DYNAMICAL SYSTEMS APPROACH

Consider general translation surfaces, i.e., polygons or finite sets of polygons
on the plane such that each side of a polygon is identified with a parallel side
by translation. There is a long history of links between the dynamical systems
on individual translation surfaces and a dynamical system on the moduli space
of translation surfaces, and between the linear flow on a translation surface and
geodesic flow on the moduli space. Central to this is Masur’s criterion on unique
ergodicity which is built on his earlier work with Kerckhoff and Smillie; see [7, 10, 11].

Since the appearance of an earlier version of this paper on arXiv, Southerland [15]
has studied the problem involving general translation surfaces and established a
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beautiful geometric result that a linear flow on a translation surface is superdense if
and only if the associated Teichmiiller geodesic trajectory is bounded in the moduli
space. This raises the question of the relationship between the boundedness of the
associated Teichmiiller geodesic trajectory in the moduli space and the arithmetic
properties of the slope of the linear flow on the translation surface.

This relationship is unclear other than what is evidenced on finite polysquare
translation surfaces and what happens in the moduli space of tori. Does the set
of slopes that lead to superdense linear flow on a translation surface change if the
surface looks less like a finite polysquare translation surface? Is the torus, and by
extension, finite polysquare translation surfaces maximal in some sense?
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