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Abstract. We introduce a new method to establish time-quantitative density in
flat dynamical systems. First we give a shorter and different proof of our earlier
result in [1] that a half-infinite geodesic on an arbitrary finite polysquare surface P
is superdense on P if the slope of the geodesic is a badly approximable number. We
then adapt our method to study time-quantitative density of half-infinite geodesics
on algebraic polyrectangle surfaces.

1. Introduction

A finite polysquare region P is an arbitrary connected, but not necessarily simply-
connected, polygon on the plane which is tiled with closed unit squares, called the
atomic squares or square faces of P , and which satisfies the following conditions:
(i) Any two atomic squares in P either are disjoint, or intersect at a single point,

or have a common edge.
(ii) Any two atomic squares in P are joined by a chain of atomic squares where

any two neighbors in the chain have a common edge.
Note that P may have holes, and we also allow whole barriers which are horizontal

or vertical walls that consist of one or more boundary edges of atomic squares.
Given such a finite polysquare region P , we can convert it into a finite polysquare

surface P by identification in pairs of the horizontal edges and identification in pairs
of the vertical edges, as illustrated in Figure 1.1. We can then consider 1-direction
geodesic flow on such a polysquare surface.
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Figure 1.1: a finite polysquare surface and part of a geodesic

A half-infinite 1-direction geodesic L(t), t ⩾ 0, on a given finite polysquare surface
P and equipped with arc-length parametrization is superdense in P if there exists
an absolute constant C1 = C1(P ;L) > 0 such that, for every integer n ⩾ 1, the
initial segment L(t), 0 ⩽ t ⩽ C1n, of the geodesic gets 1/n-close to every point of P .
This concept of superdensity, which we first studied in [4], is a best possible form of
time-quantitative density, in the sense that the linear length C1n cannot be replaced
by any sublinear length o(n) as n → ∞. For a proof of this; see [4, Section 6.1].

In an earlier paper, we can establish the following result; see [1, Theorem 1].
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Theorem 1. Let P be an arbitrary finite polysquare surface. A half-infinite geodesic
is superdense on P if and only if the slope of the geodesic is a badly approximable
number.

Theorem 1 is an if and only if type result, where one of the two implications is
a straightforward corollary of Khinchin’s theorem. Indeed, a 1-direction geodesic
flow on a finite polysquare surface modulo one becomes a torus line flow on [0, 1)2,
and Khinchin’s theorem then implies that a superdense geodesic must have a badly
approximable slope. The much harder task is to prove the converse, that every badly
approximable slope leads to superdensity.

In Section 2, we give a shorter and different proof of this result. Whereas our
earlier technique in [1] works for finite polysquare surfaces, it does not seem possible
to extend it to study 1-direction geodesics on more general surfaces. Our new
method here, on the other hand, is conducive to generalization, and we shall discuss
its adaptation to algebraic polyrectangle surfaces in Sections 3 and 4.

We remark also that a consequence of Theorem 1 is the corresponding result that
a billiard orbit in a finite polysquare region is superdense in the region if and only
if the initial slope of the orbit is a badly approximable number. This follows from a
technique called unfolding. For more details, see our earlier paper [1].

2. Illustration of the method in the simplest case

We shall make use of an important property of badly approximable numbers.

Lemma 2.1. Suppose that α ∈ (0, 1) is badly approximable, with continued fraction

α = [a1, a2, a3, . . .] =
1

a1 +
1

a2+
1

a3+···

.

Suppose further that A is a positive number such that the continued fraction digits
ai ⩽ A, i = 1, 2, 3, . . . . Then for every integer n ⩾ 1, we have

∥nα∥ >
1

(A+ 2)n
,

where ∥β∥ denotes the distance of the real number β from the nearest integer.

Proof. For every integer n ⩾ 1, we can find an integer i ⩾ 0 such that qi ⩽ n < qi+1,
where qi = qi(α) denotes the denominator of the i-th convergent of α. Using well
known diophantine approximation properties of continued fractions, we have

∥nα∥ ⩾ ∥qiα∥ ⩾
1

qi + qi+1

>
1

qi + (ai+1 + 1)qi
⩾

1

(A+ 2)qi
⩾

1

(A+ 2)n
,

as required. □

Suppose that an integer i satisfies 1 ⩽ i ⩽ s, where s is the number of atomic
squares of the polysquare surface P . We denote by wi the left vertical edge of the
i-th atomic square of P , and by wi(0) and wi(1) the bottom and top endpoint of
wi respectively, and in general by wi(q) the point on wi which is a distance q from
w(0). Furthermore, for any set S ⊆ [0, 1], we write

wiS = {wi(q) : q ∈ S},
so that wi = wi[0, 1].
Consider the geodesic L(t) = Lα(t) with slope α and starting point L(0) = R,

where R lies on the left vertical edge of the i0-th atomic square of the polysquare
surface P . Assume that L(t) has arc-length parametrization, and that it does not
hit a vertex of P over a sufficiently long neighborhood −T ⩽ t ⩽ T of 0. Then
R = wi0(y) for some y satisfying 0 < y < 1. Let Q = wi0(z) be a point where
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0 < z < y < 1. We study the following question. What can we say about the time t
with L(t) ∈ QR such that |t| is minimum? Here QR denotes the open interval with
endpoints Q and R. In other words, how long does it take for the geodesic, starting
at the point R, to visit the open interval QR of length x = y − z, if the geodesic
can go both forward and backward?

Lemma 2.2. Let QR be an open vertical segment, with top endpoint R and length
x > 0, on the left vertical edge of an atomic square of the polysquare surface P.
Consider a geodesic L(t) with badly approximable slope α and starting point L(0) =
R. There exists an explicit constant c0(A; s), depending at most on the parameter
A = A(α) and the number s of atomic squares of the polysquare surface P, such
that there is a 2-direction visiting time t∗ satisfying

0 < |t∗| ⩽ c0(A; s)

x
and L(t∗) ∈ QR.

Proof. Let S ⊂ [0, 1] denote an open interval on the left vertical edge of an atomic
square of P . The α-flow shifts S until it hits some vertical edge or edges of P for
the first time, with image S(α), say. If S(α) contains a vertex of P , as in the picture
on the right in Figure 2.1, then we say that the shift of S by the α-flow splits. If
S(α) does not contain a vertex of P , as in the picture on the left in Figure 2.1, then
we say that the shift of S by the α-flow does not split.

S

S(α)

S

S(α)

Figure 2.1: shift of an interval by the α-flow

Suppose now that Q = wi0(z) and R = wi0(y) where 0 < z < y < 1.
If the shift of the open interval QR under the α-flow does not split, then there

exists an integer i1 satisfying 1 ⩽ i1 ⩽ s such that QR is shifted to an open interval
Q1R1 on the vertical edge wi1 , and

Q1 = wi1({z + α}) and R1 = wi1({y + α}),
where {β} denotes the fractional part of the real number β. Let us now repeat the
argument with the open interval Q1R1. If the shift of Q1R1 under the α-flow does
not split, then there exists an integer i2 satisfying 1 ⩽ i2 ⩽ s such that Q1R1 is
shifted to an open interval Q2R2 on the vertical edge wi2 , and

Q2 = wi2({z + 2α}) and R2 = wi2({y + 2α}).
We now repeat the argument with the open interval Q2R2, and so on, until we get
the first split.

Claim 1. Suppose that there is no split among the first [9s2(A+ 2)/x] consecutive
shifts of the open interval QR under the α-flow, where QR has length x > 0. Then
there is a visiting time t∗ such that 0 < t∗ ⩽ 9

√
2s2(A + 2)/x and L(t∗) ∈ QR, so

that the conclusion of Lemma 2.2 holds with a suitable constant c0(A; s).

Justification of Claim 1. The open intervals QjRj, where 1 ⩽ j ⩽ 9s2(A+ 2)/x, all
have length x. Their total length is therefore at least 9s2(A + 2) − 1. It follows
easily from the Pigeonhole Principle that there exists a point P which is covered by
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at least 8s(A+ 2) of these open intervals QjRj. In other words, there exist integers
jν , ν = 1, . . . , 8s(A+ 2), such that

1 ⩽ j1 < j2 < . . . < j8s(A+2) ⩽
9s2(A+ 2)

x
such that P is contained in

QjνRjν , ν = 1, . . . , 8s(A+ 2).

For every ν = 1, . . . , 8s(A+2), the open interval QjνRjν lies on the vertical edge wijν
.

It follows that the values ijν , ν = 1, . . . , 8s(A + 2), are all equal to each other.
Suppose that i∗ is their common value. Then for every ν = 1, . . . , 8s(A+2), we can
write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rjν = wi∗(uν),

where 0 < uν < 1, and write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

tν =
√
1 + α2jν .

Suppose first that there exist two integers ν ′ and ν ′′ such that

1 ⩽ ν ′ < ν ′′ ⩽ 8s(A+ 2) and uν′ > uν′′ . (2.1)

Since Qjν′
Rjν′

and Qjν′′
Rjν′′

intersect, we clearly have

Rjν′′
= L(tν′′) ∈ Qjν′

Rjν′
.

Applying the reverse α-flow for time tν′ then takes Qjν′
Rjν′

to QR, and also takes
Rjν′′

= L(tν′′) to L(tν′′ − tν′), so that L(tν′′ − tν′) ∈ QR. Now take t∗ = tν′′ − tν′ > 0.
Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 < t∗ =
√
1 + α2(jν′′ − jν′) ⩽

9
√
2s2(A+ 2)

x
,

justifying the claim.
Suppose next that there do not exist two integers ν ′ and ν ′′ such that (2.1) holds.

Then we must have

u1 < u2 < . . . < u8s(A+2) and u8s(A+2) − u1 ⩽ x,

and a routine average computation argument shows that for at least 5s(A + 2) of
the indices ν = 1, . . . , 8s(A+ 2), we have

uν+1 − uν ⩽
x

3s(A+ 2)
. (2.2)

On the other hand, we also have

j1 < j2 < . . . < j8s(A+2) and j8s(A+2) − j1 ⩽
9s2(A+ 2)

x
,

and a routine average computation argument shows that for at least 5s(A + 2) of
the indices ν = 1, . . . , 8s(A+ 2), we have

jν+1 − jν ⩽
3s

x
. (2.3)

It follows that there must exist some index ν = 1, . . . , 8s(A+2) such that both (2.2)
and (2.3) hold. For this value of ν, Lemma 2.1 and (2.3) then lead to

∥(jν+1 − jν)α∥ >
1

(A+ 2)(jν+1 − jν)
⩾

x

3s(A+ 2)
. (2.4)

On the other hand, in view of (2.2), we have

∥(jν+1 − jν)α∥ = uν+1 − uν ⩽
x

3s(A+ 2)
. (2.5)
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Clearly (2.4) and (2.5) contradict each other, so this possibility cannot take place.
It follows that there exist two integers ν ′ and ν ′′ such that (2.1) holds, and this

completes our justification of Claim 1. □

In view of Claim 1, we may assume that there exists an integer k such that

1 ⩽ k ⩽
9s2(A+ 2)

x

and the k-th shift under the α-flow of the open interval QR of length x splits for
the first time.

Suppose that the image of the original open interval QR after the first k shifts
under the α-flow now consists of a vertex of P and two intervals

wj1(0, x1) and wℓ1(1− x∗
1, 1),

where x1+x∗
1 = x. We call wj1(0, x1) and wℓ1(1−x∗

1, 1) respectively the top interval
and the bottom interval. Since the starting point R of the geodesic is the top endpoint
of the interval QR = wi0(z, y), we shall make use of top intervals in our subsequent
argument. We distinguish two cases. Either

x1 ⩾ c1(A; s)x or 0 < x1 < c1(A; s)x, (2.6)

where the choice of the constant

c1(A; s) =
1

(36s2(A+ 2)2)s+1
(2.7)

will be explained later.
Suppose that the first case in (2.6) holds. Then we delete the bottom interval

wℓ1(1 − x∗
1, 1), keep the top interval wj1(0, x1) and write Q(1)R(1) = wj1(0, x1). It

then follows from our construction that the geodesic L(t), t ⩾ 0, starting at the
point R, contains the point R(1), so that

R(1) = L(t1) for some t1 > 0.

We now repeat this argument on the open interval Q(1)R(1) = wj1(0, x1).
Corresponding to Claim 1, we have the following analog. Suppose that there is no

split among the first [9s2(A+ 2)/x1] consecutive shifts of the open interval Q(1)R(1)

under the α-flow, where Q(1)R(1) has length x1 > 0. Let L(1)(t) = L(t+ t1) for every
t ⩾ 0. Then there is a first visiting time t∗ such that 0 < t∗ ⩽ 9

√
2s2(A + 2)/x1

and L(1)(t∗) ∈ Q(1)R(1), i.e., L(t∗ + t1) ∈ Q(1)R(1). Applying the reverse α-flow for
time t1 then leads to L(t∗) ∈ QR, so that the conclusion of Lemma 2.2 holds with a
suitable constant c0(A; s). We may assume that there exists an integer k1 such that

1 ⩽ k1 ⩽
9s2(A+ 2)

x1

and the k1-th shift under the α-flow of the open interval Q(1)R(1) of length x1 splits
for the first time.

Suppose that the image of the open interval Q(1)R(1) after the first k1 shifts under
the α-flow now consists of a vertex of P and two intervals

wj2(0, x2) and wℓ2(1− x∗
2, 1),

where x2 + x∗
2 = x1. We distinguish two cases. Either

x2 ⩾ c1(A; s)x1 or 0 < x2 < c1(A; s)x1, (2.8)

where the constant c1(A; s) is defined by (2.7).
Suppose that the first case in (2.8) holds. Then we delete the bottom interval

wℓ2(1 − x∗
2, 1), keep the top interval wj2(0, x2) and write Q(2)R(2) = wj2(0, x2). It
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then follows from our construction that the geodesic L(t), t ⩾ 0, starting at the
point R, contains the point R(2), so that

R(2) = L(t2) for some t2 > t1.

We now repeat this argument on the open interval Q(2)R(2) = wj2(0, x2).
In view of another suitable analog of Claim 1, we may assume that there exists

an integer k2 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ k2 ⩽
9s2(A+ 2)

x2

and the k2-th shift under the α-flow of the open interval Q(2)R(2) of length x2 splits
for the first time.

Suppose that the image of the open interval Q(2)R(2) after the first k2 shifts under
the α-flow now consists of a vertex of P and two intervals

wj3(0, x3) and wℓ3(1− x∗
3, 1),

where x3 + x∗
3 = x2. We distinguish two cases. Either

x3 ⩾ c1(A; s)x2 or 0 < x3 < c1(A; s)x2, (2.9)

where the constant c1(A; s) is defined by (2.7).
Suppose that the first case in (2.9) holds. Then we delete the bottom interval

wℓ3(1 − x∗
3, 1), keep the top interval wj3(0, x3) and write Q(3)R(3) = wj3(0, x3). It

then follows from our construction that the geodesic L(t), t ⩾ 0, starting at the
point R, contains the point R(3), so that

R(3) = L(t3) for some t3 > t2.

We now repeat this argument on the open interval Q(3)R(3) = wj3(0, x3).
And so on, assuming that at each step, the first case in the corresponding analog

of (2.6), (2.8) and (2.9) holds.
This forward shift process under the α-flow defines a sequence of top intervals

Q(i)R(i) = wji(0, xi), i ⩾ 1, (2.10)

each of which arises when the ki−1-th shift under the α-flow of the open interval
Q(i−1)R(i−1) of length xi−1 splits for the first time, and the integer ki−1 satisfies

1 ⩽ ki−1 ⩽
9s2(A+ 2)

xi−1

. (2.11)

The lengths xi of these intervals (2.10) satisfy

xi ⩾ c1(A; s)xi−1, (2.12)

with the convention that x0 = x. Furthermore, the geodesic L(t), t ⩾ 0, starting at
the point R contains the point R(i), so that

R(i) = L(ti) for some ti > ti−1,

where t0 = 0.
As there are only finitely many vertical edges in the polysquare surface P , there

will at some point be edge repetition, when there exist two integers i1 and i2 satisfying
1 ⩽ i1 < i2 such that the corresponding top intervals

Q(i1)R(i1) = wji1
(0, xi1) and Q(i2)R(i2) = wji2

(0, xi2)

lying respectively on the vertical edges wji1
and wji2

, overlap. Thus ji1 = ji2 . Now
suppose that j∗ is their common value. Then

Q(i1)R(i1) = wj∗(0, xi1) and Q(i2)R(i2) = wj∗(0, xi2). (2.13)
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Furthermore, since there are precisely s vertical edges on P , it follows that

1 ⩽ i1 < i2 ⩽ s+ 1. (2.14)

Claim 2. Suppose that there exist integers i1 and i2 satisfying (2.14) such that the
following conditions hold:

(1) For every integer i satisfying 1 ⩽ i ⩽ i2, there exists an integer ki−1 satisfying
(2.11) such that the top interval Q(i)R(i) given by (2.10) arises when the ki−1-th
shift under the α-flow of the open interval Q(i−1)R(i−1) splits for the first time,
where Q(0)R(0) = QR.
(2) For every integer i satisfying 1 ⩽ i ⩽ i2, the condition (2.12) holds, where

x0 = x.
(3) There exists an integer j∗ such that the condition (2.13) holds.
Then there is a visiting time t∗ such that 0 < t∗ ⩽ ti2 and L(t∗) ∈ QR, where

R(i2) = L(ti2), and the conclusion of Lemma 2.2 holds with a suitable constant
c0(A; s).

Justification of Claim 2. Since i1 < i2, we have xi1 > xi2 . It follows from (2.13) that

R(i2) = L(ti2) ∈ Q(i1)R(i1).

Applying the reverse α-flow for time ti1 then takes Q(i1)R(i1) to QR, and also takes
R(i2) = L(ti2) to L(ti2−ti1), so that L(ti2−ti1) ∈ QR. This justifies the first assertion
in Claim 2. Next, note that the open interval Q(i2)R(i2) arises as a consequence of

k + k1 + . . .+ ki2−1 ⩽
s∑

i=0

9s2(A+ 2)

xi

⩽
1

x

s∑
i=0

9s2(A+ 2)

(c1(A; s))i

consecutive shifts under the α-flow of the open interval QR, using (2.11) and (2.12).
Since each shift under the α-flow corresponds to a geodesic segment of length√
1 + α2 ⩽

√
2, it follows that

ti2 ⩽
1

x

s∑
i=0

9
√
2s2(A+ 2)

(c1(A; s))i
.

If the constant c0(A; s) in Lemma 2.2 is chosen to satisfy

c0(A; s) ⩾
s∑

i=0

9
√
2s2(A+ 2)

(c1(A; s))i
, (2.15)

then the conclusion of Lemma 2.2 holds. □

Suppose next that before edge repetition takes place, the condition (2.12) fails.
More precisely, suppose that r satisfying 0 ⩽ r ⩽ s is the smallest integer i such
that xi+1 < c1(A; s)xi. Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xr+1 < c1(A; s)xr, (2.16)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xi ⩾ c1(A; s)xi−1, i = 1, . . . , r, (2.17)

with x0 = x. Furthermore, there exists an integer kr such that

1 ⩽ kr ⩽
9s2(A+ 2)

xr

(2.18)

and the kr-th shift under the α-flow of the open interval Q(r)R(r) of length xr splits
for the first time, with the image consisting of a vertex of P and two intervals

wjr+1(0, xr+1) and wℓr+1(1− x∗
r+1, 1),

where xr+1 + x∗
r+1 = xr and (2.16) holds.
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We now start with the interval Q(r)R(r) = wjr(0, xr) and apply the reverse α-flow
until it splits for the first time on a vertical edge. We have the following analog of
Claim 1.

Claim 3. Suppose that there is no split among the first [9s2(A+2)/xr] consecutive
shifts of the open interval Q(r)R(r) under the reverse α-flow, where Q(r)R(r) has
length xr > 0. Let Lr(t) = L(t + tr) for every t ⩽ 0. Then there is a visiting time
t∗ such that 0 > t∗ ⩾ −9

√
2s2(A + 2)/xr and Lr(t

∗) ∈ Q(r)R(r), i.e. L(t∗ + tr) ∈
Q(r)R(r). Applying the reverse α-flow for time tr then leads to L(t∗) ∈ QR, so that
the conclusion of Lemma 2.2 holds with a suitable constant c0(A; s).

Justification of Claim 3. Let

Q
(r)
j R

(r)
j , j = 1, . . . , [9s2(A+ 2)/xr],

be successive open intervals under the reverse α-flow, starting at Q(r)R(r). These
intervals all have length xr. Their total length is therefore at least 9s2(A + 2) − 1.
It follows easily from the Pigeonhole Principle that there exists a point P which is

covered by at least 8s(A+2) of these open intervals Q
(r)
j R

(r)
j . In other words, there

exist integers jν , ν = 1, . . . , 8s(A+ 2), such that

1 ⩽ j1 < j2 < . . . < j8s(A+2) ⩽
9s2(A+ 2)

xr

such that P is contained in

Q
(r)
jν
R

(r)
jν
, ν = 1, . . . , 8s(A+ 2),

and there exists i∗ such that all these intervals lie on the same vertical edge wi∗ .
Then for every ν = 1, . . . , 8s(A+ 2), we can write

R
(r)
jν

= wi∗(uν),

where 0 < uν < 1, and write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

tν = −
√
1 + α2jν .

Suppose first that there exist two integers ν ′ and ν ′′ such that

1 ⩽ ν ′ < ν ′′ ⩽ 8s(A+ 2) and uν′ > uν′′ . (2.19)

Since Qjν′
Rjν′

and Qjν′′
Rjν′′

intersect, we clearly have

R
(r)
jν′′

= Lr(tν′′) ∈ Q
(r)
jν′
R

(r)
jν′
.

Applying the forward α-flow for time −tν′ then takes Q
(r)
jν′
R

(r)
jν′

to Q(r)R(r), and also

takes R
(r)
jν′′

= Lr(tν′′) to Lr(tν′′ − tν′), so that Lr(tν′′ − tν′) ∈ Q(r)R(r). Now take
t∗ = tν′′ − tν′ < 0. Then

0 > t∗ = −
√
1 + α2(jν′′ − jν′) ⩾ −9

√
2s2(A+ 2)

xr

.

Thus L(t∗ + tr) = Lr(t
∗) ∈ Q(r)R(r), justifying the claim.

Suppose next that there do not exist two integers ν ′ and ν ′′ such that (2.19) holds.
Then we can show as in the justification of Claim 1 that this possibility cannot take
place. It follows that there exist two integers ν ′ and ν ′′ such that (2.19) holds, and
this completes our justification of Claim 3. □

Remark. Note that there is no split among the first [9s2(A + 2)/xr] consecutive
shifts of the open interval Q(r)R(r) under the reverse α-flow in Claim 3, even if
this takes us back to the original vertical interval QR and beyond, as this is our
assumption. On the other hand, the conclusion of Claim 3 that there exists some
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t∗ < 0 such that L(t∗) ∈ QR makes one wonder what happens to QR and some
of its subintervals under the influence of the reverse α-flow. This is, however, an
unwelcome distraction. The reality is that we have found this special t∗ by proper
means, and the effect of this reverse α-flow on QR and some of its subintervals is
totally irrelevant.

In view of Claim 3, we may assume that there exists an integer kr+1 such that

1 ⩽ kr+1 ⩽
9s2(A+ 2)

xr

(2.20)

and the kr+1-th shift under the reverse α-flow of the open interval Q(r)R(r) of length
xr splits for the first time.

Suppose that the image of the open interval Q(r)R(r) after the first kr+1 shifts
under the reverse α-flow now consists of a vertex of P and two intervals

wj′r+1
(0, yr+1) and wℓ′r+1

(1− y∗r+1, 1),

where yr+1 + y∗r+1 = xr. Then we delete the bottom interval wℓ′r+1
(1− y∗r+1, 1), keep

the top interval wj′r+1
(0, yr+1) and write Qr+1Rr+1 = wj′r+1

(0, yr+1). It then follows

from our construction that the geodesic L(t) starting at the point R contains the
point Rr+1, so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rr+1 = L(tr+1) for some tr+1,

where tr+1 can be positive or negative.
To estimate yr+1 from below, note that the point Rr+1 = wj′r+1

(yr+1) is obtained

from the point R(r+1) = wjr+1(xr+1) by kr shifts under the reverse α-flow to the point

R(r) followed by another kr+1 shifts under the reverse α-flow from the point R(r).
Each shift under the reverse α-flow corresponds to a vertical descent of α, and so
the total descent is (kr + kr+1)α. It follows that

{xr+1 − (kr + kr+1)α} = yr+1,

so there exists an integer n0 such that

xr+1 − (kr + kr+1)α− n0 = yr+1.

Since 0 < xr+1, yr+1 < 1, we then have

∥(kr + kr+1)α∥ = ∥xr+1 − yr+1∥ ⩽ xr+1 + yr+1, (2.21)

so that in view of Lemma 2.1, (2.16), (2.18) and (2.20), we have

yr+1 ⩾ ∥(kr + kr+1)α∥ − xr+1 ⩾
1

(A+ 2)(kr + kr+1)
− xr+1

⩾

(
1

18s2(A+ 2)2
− c1(A; s)

)
xr.

It is clear from (2.7) that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c1(A; s) ⩽
1

36s2(A+ 2)2
.

It follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yr+1 ⩾ δ1(A; s)xr, (2.22)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

δ1(A; s) =
1

36s2(A+ 2)2
. (2.23)

We now repeat this argument on the open interval Qr+1Rr+1 = wj′r+1
(0, yr+1).
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In view of a suitable analog of Claim 3, we may assume that there exists an integer
kr+2 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ kr+2 ⩽
9s2(A+ 2)

yr+1

(2.24)

and the kr+2-th shift under the reverse α-flow of the open interval Qr+1Rr+1 of length
yr+1 splits for the first time.

Suppose that the image of the open interval Qr+1Rr+1 after the first kr+2 shifts
under the reverse α-flow now consists of a vertex of P and two intervals

wj′r+2
(0, yr+2) and wℓ′r+2

(1− y∗r+2, 1),

where yr+2+y∗r+2 = yr+1. Then we delete the bottom interval wℓ′r+2
(1−y∗r+2, 1), keep

the top interval wj′r+2
(0, yr+2) and write Qr+2Rr+2 = wj′r+2

(0, yr+2). It then follows

from our construction that the geodesic L(t) starting at the point R contains the
point Rr+2, so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rr+2 = L(tr+2) for some tr+2,

where tr+2 can be positive or negative.
To estimate yr+2 from below, note that the point Rr+2 = wj′r+2

(yr+2) is obtained

from the point R(r+1) = wjr+1(xr+1) by kr shifts under the reverse α-flow to the

point R(r) followed by another kr+1 + kr+2 shifts under the reverse α-flow from the
point R(r). Each shift under the α-flow corresponds to a vertical descent of α, and
so the total descent is (kr + kr+1 + kr+2)α. It follows that

{xr+1 − (kr + kr+1 + kr+2)α} = yr+2,

so the analog of (2.21) is

∥(kr + kr+1 + kr+2)α∥ = ∥xr+1 − yr+2∥ ⩽ xr+1 + yr+2. (2.25)

By (2.18), (2.20), (2.22), (2.23) and (2.24), we have

kr + kr+1 + kr+2 ⩽
18s2(A+ 2)

xr

+
9s2(A+ 2)

yr+1

⩽
18s2(A+ 2)

xr

+
324s4(A+ 2)3

xr

⩽
648s4(A+ 2)3

xr

. (2.26)

Combining (2.25) with Lemma 2.1, (2.16) and (2.26) , we have

yr+2 ⩾ ∥(kr + kr+1 + kr+2)α∥ − xr+1 ⩾
1

(A+ 2)(kr + kr+1 + kr+2)
− xr+1

⩾

(
1

648s4(A+ 2)4
− c1(A; s)

)
xr.

It is clear from (2.7) that

c1(A; s) ⩽
1

1296s4(A+ 2)4
=

1

(36s2(A+ 2)2)2
.

It follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yr+2 ⩾ δ2(A; s)xr, (2.27)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

δ2(A; s) =
1

1296s4(A+ 2)4
=

1

(36s2(A+ 2)2)2
. (2.28)

We now repeat this argument on the open interval Qr+2Rr+2 = wj′r+2
(0, yr+2).



TIME-QUANTITATIVE DENSITY OF NON-INTEGRABLE SYSTEMS 11

In view of a suitable analog of Claim 3, we may assume that there exists an integer
kr+3 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ kr+3 ⩽
9s2(A+ 2)

yr+2

(2.29)

and the kr+3-th shift under the reverse α-flow of the open interval Qr+2Rr+2 of length
yr+2 splits for the first time.

Suppose that the image of the open interval Qr+2Rr+2 after the first kr+3 shifts
under the reverse α-flow now consists of a vertex of P and two intervals

wj′r+3
(0, yr+3) and wℓ′r+3

(1− y∗r+3, 1),

where yr+3+y∗r+3 = yr+2. Then we delete the bottom interval wℓ′r+3
(1−y∗r+3, 1), keep

the top interval wj′r+3
(0, yr+3) and write Qr+3Rr+3 = wj′r+3

(0, yr+3). It then follows

from our construction that the geodesic L(t) starting at the point R contains the
point Rr+3, so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rr+3 = L(tr+3) for some tr+3,

where tr+3 can be positive or negative.
To estimate yr+3 from below, note that the point Rr+3 = wj′r+3

(yr+3) is obtained

from the point R(r+1) = wjr+1(xr+1) by kr shifts under the reverse α-flow to the

point R(r) followed by another kr+1 + kr+2 + kr+3 shifts under the reverse α-flow
from the point R(r). Each shift under the α-flow corresponds to a vertical descent
of α, and so the total descent is (kr + kr+1 + kr+2 + kr+3)α. It follows that

{xr+1 − (kr + kr+1 + kr+2 + kr+3)α} = yr+3,

so the analog of (2.21) and (2.25) is

∥(kr + kr+1 + kr+2 + kr+3)α∥ = ∥xr+1 − yr+3∥ ⩽ xr+1 + yr+3. (2.30)

By (2.26)–(2.29), we have

kr + kr+1 + kr+2 + kr+3 ⩽
648s4(A+ 2)3

xr

+
9s2(A+ 2)

yr+2

⩽
648s4(A+ 2)3

xr

+
11664s6(A+ 2)5

xr

⩽
23328s6(A+ 2)5

xr

. (2.31)

Combining (2.30) with Lemma 2.1, (2.16) and (2.31) , we have

yr+3 ⩾ ∥(kr + kr+1 + kr+2 + kr+3)α∥ − xr+1

⩾
1

(A+ 2)(kr + kr+1 + kr+2 + kr+3)
− xr+1

⩾

(
1

23328s6(A+ 2)6
− c1(A; s)

)
xr.

It is clear from (2.7) that

c1(A; s) ⩽
1

46656s6(A+ 2)6
=

1

(36s2(A+ 2)2)3
.

It follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yr+3 ⩾ δ3(A; s)xr, (2.32)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

δ3(A; s) =
1

46656s6(A+ 2)6
=

1

(36s2(A+ 2)2)3
. (2.33)
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We now repeat this argument on the open interval Qr+3Rr+3 = wj′r+3
(0, yr+3).

And so on.
This shift process under the reverse α-flow defines a sequence of top intervals

Qr+iRr+i = wj′r+i
(0, yr+i), i ⩾ 1, (2.34)

with length xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yr+i ⩾ δi(A; s)xr, (2.35)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

δi(A; s) =
1

(36s2(A+ 2)2)i
, (2.36)

as long as we ensure that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c1(A; s) ⩽
1

(36s2(A+ 2)2)i
. (2.37)

Each interval in (2.34) arises when the kr+i-th shift under the reverse α-flow of the
open interval Qr+i−1Rr+i−1 of length yr+i−1 splits for the first time, and the integer
kr+i satisfies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ kr+i ⩽
9s2(A+ 2)

yr+i−1

, (2.38)

with the convention that yr = xr. Furthermore, the geodesic L(t) starting at the
point R contains the point Rr+i, so that

Rr+i = L(tr+i) for some tr+i,

where tr+i may be positive or negative.

Remark. The assertions (2.35) and (2.36) can be proved easily by induction on the
parameter i. For the initial cases i = 1, 2, 3, see (2.22), (2.23), (2.27), (2.28), (2.32)
and (2.33).

As there are only finitely many vertical edges in the polysquare surface P , there
will at some point be edge repetition, when there exist two integers i1 and i2 satisfying
1 ⩽ ii < i2 such that the corresponding top intervals

Qr+i1Rr+i1 = wj′r+i1
(0, yr+i1) and Qr+i2Rr+i2 = wj′r+i2

(0, yr+i2)

lying respectively on the vertical edges wj′r+i1
and wj′r+i2

, overlap. Thus j′r+i1
= j′r+i2

.

Now suppose that j∗ is their common value. Then

Qr+i1Rr+i1 = wj∗(0, yr+i1) and Qr+i2Rr+i2 = wj∗(0, yr+i2) (2.39)

Furthermore, since there are precisely s vertical edges on P , it follows that

1 ⩽ i1 < i2 ⩽ s+ 1. (2.40)

This means that we can take i ⩽ s + 1 in (2.37), and explains our choice of the
constant c1(A; s) given by (2.7).

Claim 4. Suppose that there exist integers i1 and i2 satisfying (2.40) such that the
following conditions hold:

(1) For every integer i satisfying 1 ⩽ i ⩽ i2, there exists an integer kr+i satisfying
(2.38) such that the top interval Qr+iRr+i given by (2.34) arises when the kr+i-th
shift under the reverse α-flow of the open interval Qr+i−1Rr+i−1 splits for the first
time, where QrRr = Q(r)R(r).

(2) For every integer i satisfying 1 ⩽ i ⩽ i2, the conditions (2.35) and (2.36) hold.
(3) There exists an integer j∗ such that the condition (2.39) holds.
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Then there is a visiting time t∗ such that 0 < |t∗| ⩽ |tr+i2 − tr+i1| and L(t∗) ∈ QR,
where Rr+i1 = L(tr+i1) and Rr+i2 = L(tr+i2), so the conclusion of Lemma 2.2 holds
with a suitable constant c0(A; s).

Justification of Claim 4. Since i1 < i2, we have yr+i1 > yr+i2 . It follows from (2.39)
that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rr+i2 = L(tr+i2) ∈ Qr+i1Rr+i1 .

Applying the forward α-flow for time tr−tr+i1 then takes Qr+i1Rr+i1 to Q
(r)R(r), and

also Rr+i2 = L(tr+i2) to L(tr + tr+i2 − tr+i1), so that L(tr + tr+i2 − tr+i1) ∈ Q(r)R(r).
Applying next the reverse α-flow for time tr then takes Q(r)R(r) to QR, and also
L(tr + tr+i2 − tr+i1) to L(tr+i2 − tr+i1), so that L(tr+i2 − tr+i1) ∈ QR. This justifies
the first assertion in Claim 4. Next, note that the open interval Qr+i2Rr+i2 arises as
a consequence of

kr+i1+1 + . . .+ kr+i2 ⩽
s∑

i=0

9s2(A+ 2)

yr+i

⩽
s∑

i=0

9s2(A+ 2)

δi(A; s)xr

⩽
1

x

s∑
i=0

9s2(A+ 2)(36s2(A+ 2)2)i

(c1(A; s))s

consecutive shifts under the reverse α-flow of the open interval Qr+i1Rr+i1 , using
(2.17), (2.35) and (2.36). Since each shift under the reverse α-flow corresponds to a
geodesic segment of length

√
1 + α2 ⩽

√
2, it follows that

|tr+i2 − tr+i1| ⩽
1

x

s∑
i=0

9
√
2s2(A+ 2)(36s2(A+ 2)2)i

(c1(A; s))s
.

If the constant c0(A; s) in Lemma 2.2 is chosen to satisfy

c0(A; s) ⩾
s∑

i=0

9
√
2s2(A+ 2)(36s2(A+ 2)2)i

(c1(A; s))s
, (2.41)

then the conclusion of Lemma 2.2 holds. □

Lemma 2.2 now follows if we choose c0(A; s) sufficiently large to satisfy (2.15) and
(2.41). □

We have the following simple corollary of Lemma 2.2.

Lemma 2.3. Under the hypotheses of Lemma 2.2, the distance between the point
L(t0) and either endpoint Q or R is at least

x

(A+ 2)c0(A; s)
.

Proof. Note that the vertical distance between R and L(t0) is of the form

{nα} ⩾ ∥nα∥ ⩾
1

(A+ 2)n
,

where n is the number of shifts under the α-flow from R to L(t0), using Lemma 2.1.
On the other hand, it is clear that n ⩽ c0(A; s)/x. A corresponding lower bound for
the vertical distance between Q and L(t0) comes via a symmetry argument. □

For convenience, we write

c2(A; s) =
1

(A+ 2)c0(A; s)
.

Note that this is a very small constant depending at most on A and s.
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Let w be the left vertical edge of a fixed atomic square of the polysquare surface P .
Consider a finite segment

Γ(σ;T ) = {L(t) : 0 ⩽ |σ − t| ⩽ T}, (2.42)

centered at σ, of the geodesic L(t) of slope α. Suppose that this segment intersects
w at N = N(T ) points. Denote these points by

w(yi) = L(ti) ∈ w, 1 ⩽ i ⩽ N = N(T ),

and arrange them in increasing order

0 < yi1 < yi2 < . . . < yiN < 1. (2.43)

We then define the maximum gap of (2.43) by

MaxGap(Γ(σ;T ;w)) = max
0⩽n⩽N

(yin+1 − yin), (2.44)

with the convention that yi0 = 0 and yiN+1
= 1. Using this concept, we can establish

an extension to Lemma 2.3 as follows.

Lemma 2.4. For any finite segment Γ(σ;T ), given by (2.42), of a geodesic L(t)
of badly approximable slope α, let MaxGap(Γ(σ;T ;w)) = x. Then the longer finite
segment xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Γ

(
σ;T +

c0(A; s)

x

)
=

{
L(t) : 0 ⩽ |σ − t| ⩽ T +

c0(A; s)

x

}
has the property that

MaxGap

(
Γ

(
σ;T +

c0(A; s)

x
;w

))
⩽ (1− c2(A; s))x.

Iterating Lemma 2.4 sufficiently many times, we obtain the following.

Lemma 2.5. Under the hypotheses of Lemma 2.4, there exists a positive constant
c3(A; s) such that the longer finite segment

Γ

(
σ;T +

c3(A; s)

x

)
=

{
L(t) : 0 ⩽ |σ − t| ⩽ T +

c3(A; s)

x

}
has the property that

MaxGap

(
Γ

(
σ;T +

c3(A; s)

x
;w

))
⩽

x

2
.

Proof of Theorem 1. Superdensity of a geodesic with badly approximable slope on a
polysquare surface P is a straightforward deduction from the discrete superdensity
of intersection points on any fixed vertical edge w of P , so it remains to establish
the latter.

Suppose that a half-infinite geodesic L(t) with badly approximable slope α visits
a point R of w, where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R = w(y) = L
(
M

2

)
,

where M > 0 is sufficiently large. Note that this allows us to move forward and
backward in time from R by up to M/2 and still stay within the interval (0,M).
Consider the finite segment Γ(σ;T ), given by (2.42), with σ = M/2 and T = 0,

so that Γ(σ;T ) contains precisely one point R. Then MaxGap(Γ(σ;T ;w)) ⩽ 1. On
applying Lemma 2.5 with x = 1, we deduce that

MaxGap

(
Γ

(
M

2
;
c3(A; s)

1
;w

))
⩽

1

2
.
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Using this and applying Lemma 2.5 again with x = 1/2, we deduce that

MaxGap

(
Γ

(
M

2
; c3(A; s) +

c3(A; s)

1/2
;w

))
⩽

1

4
.

Using this and applying Lemma 2.5 again with x = 1/4, we deduce that

MaxGap

(
Γ

(
M

2
; 3c3(A; s) +

c3(A; s)

1/4
;w

))
⩽

1

8
.

And so on. In general, we have

MaxGap

(
Γ

(
M

2
; (2n − 1)c3(A; s);w

))
⩽

1

2n

for every integer n ⩾ 1 such that (2n − 1)c3(A; s) ⩽ M/2. This clearly proves
superdensity of the intersection points on any vertical edge w of P , and completes
the proof of Theorem 1. □

3. Adaptation to the regular octagon surface

As mentioned in Section 1, 1-direction geodesic flow on a finite polysquare surface
modulo one becomes a torus line flow on [0, 1)2. We can view this observation as
a lucky reduction, since torus line flow on [0, 1)2 gives rise to an integrable system
with a basically complete theory.

We now study flat systems that do not enjoy such lucky reduction, and begin with
arguably the simplest non-integrable billiard in the π/8 right triangle. Applying the
well known technique of unfolding, this can be shown to be equivalent to the problem
of linear flow on the regular octagon surface; see Figure 3.1.

A1

A2

A3A4

A5

A6

A7 A8

BC

Figure 3.1: billiard in the π/8 right triangle and the equivalent problem
of linear flow on the regular octagon surface

To turn the regular octagon region into the regular octagon surface, we identity
opposite parallel edges, so that there are 4 pairs

(A1A2, A6A5), (A2A3, A7A6), (A3A4, A8A7), (A4A5, A1A8)

of identified edges.
We obtain a 1-direction geodesic flow on this compact orientable surface, which is

a 16-fold covering of a billiard orbit in the π/8 right triangle region. The unfolding
process goes as follows. Let C denote the centre of the octagon. The right triangle
A1BC has angle π/8 at the vertex C. Reflecting the triangle A1BC across the side
BC is the first step of the unfolding process, and gives rise to the image A2BC
which together with the original triangle A1BC forms the triangle A1A2C. We now
reflect the triangle A1A2C across the side A2C to obtain the image A3A2C, then
reflect the triangle A2A3C across the side A3C to obtain the image A4A3C, and so
on, until we end up with the regular octagon. Non-integrability is clear from the
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unfolding, since the vertices of the octagon are split-singularities of the 1-direction
geodesic flow on the surface.

The same argument can be applied to billiard in the π/n right triangle for every
even integer n ⩾ 4, and we can show that this is equivalent to the problem of
linear flow on the regular n-gon surface, obtained from the regular n-gon region by
identifying opposite parallel edges, so that there are n/2 pairs of identified edges.
These are non-integrable systems for every even integer n ⩾ 8. The cases n = 4 and
n = 6 give rise to integrable systems.

Remark. Consider the regular n-gon surface with even integer n ⩾ 4. If n is divisible
by 4, then boundary identification gives rise to 1 vertex, n/2 edges and 1 region, so
it follows from Euler’s formula

2− 2g = V − E +R = 1− n

2
+ 1

that the genus g = n/4. If n is not divisible by 4, then boundary identification gives
rise to 2 vertices, n/2 edges and 1 region, so it follows from Euler’s formula

2− 2g = V − E +R = 2− n

2
+ 1

that the genus g = (n− 2)/4. Thus the genus g = 1 when n = 4 or n = 6, for each
of which the geodesic flow is integrable, consistent with the well known fact that we
can tile the plane with squares or regular hexagons. On the other hand, the genus
g > 1 when n ⩾ 8, consistent with the well known fact that we cannot tile the plane
with regular n-gons when the even integer n ⩾ 8.

Let us return to the regular octagon surface. While it looks completely different
from a polysquare surface, there is a hidden similarity. The regular octagon surface
is in fact equivalent to a polyrectangle surface; see Figure 3.2.

A1

A2

A3A4

A5

A6

A7 A8

a

ab

bc

c

d

de

e

f f

7− 9−

7+9+

1 3
2

4 65

8

Figure 3.2: the regular octagon surface viewed as a polyrectangle surface

The edge A2A3 is identified with the edge A7A6. This allows us to replace the
triangle labelled 7− by the triangle labelled 7+, with the two horizontal edges b
identified and the two vertical edges e identified. Likewise, the edge A4A5 is identi-
fied with the edge A1A8. This allows us to replace the triangle labelled 9− by the
triangle labelled 9+, with the two horizontal edges a identified and the two vertical
edges d identified. Thus the regular octagon surface becomes a polyrectangle sur-
face consisting of 7 rectangles, labelled (1, 9+), 2, (3, 7+), 4, 5, 6, 8. With the edge
identification, this polyrectangle surface has 2 horizontal streets

(1, 9+), 2, (3, 7+), 8 and 4, 5, 6. (3.1)

Furthermore, if we assume that the first horizontal street in (3.1) has rectangles with
vertical edges of length 1, then the second horizontal street in (3.1) has rectangles
with vertical edges of length

√
2.
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Let us relabel the vertical edges of the polyrectangle surface by wi, i = 1, . . . , 7,
as shown in Figure 3.3.

As in Section 2, we let wi = wi[0, 1], i = 1, 2, 3, 4, denote the parametrizations
of the 4 vertical edges of the first horizontal street, with 0 denoting the bottom
endpoint and 1 denoting the top endpoint, and wi = wi[0,

√
2], i = 5, 6, 7, denote

the parametrizations of the 3 vertical edges of the second horizontal street, with 0
denoting the bottom endpoint and

√
2 denoting the top endpoint.

a

ab

bc

c

w1 w2 w3 w4

w4 w1

w5 w6 w7 w5

Figure 3.3: the vertical edges of the regular octagon surface
represented as a polyrectangle surface

Like before, we consider a subinterval S on a vertical edge of the polyrectangle
surface. The α-flow shifts S until it hits some other vertical edge or edges of the
surface for the first time, with image S(α), say. Likewise, we can look at the effect
of such a shift under the α-flow on a point wi(y) ∈ wi, where i = 1, . . . , 7.

In view of symmetry, we may assume, without loss of generality, that 0 < α < 1.
It is clear that the upward vertical travel under such a shift is either α or

√
2α,

depending on the edge where the shift begins. Thus the total upward vertical travel
after n∗ successive such shifts is given by

n1α + n2

√
2α,

where n1 denotes the number of shifts from the edges w1, w3, w5, w7 and n2 denotes
the number of shifts from the edges w2, w4, w6, so that

n1, n2 ⩾ 0 and n1 + n2 = n∗.

Let n3 denote the total number of times when a shift moves a point on a long vertical
edge w5, w6, w7 to a point on a short vertical edge w1, w2, w3, w4, so that

0 ⩽ n3 ⩽ n∗.

Suppose now that these n∗ successive shifts take us from some point wi′(y) ∈ wi′ to
some point wi′′(y

∗) ∈ wi′′ . Then there exists some integer n4 such that

y + n1α + n2

√
2α ∈

{
[n3

√
2 + n4, n3

√
2 + n4 + 1), if i′′ = 1, 2, 3, 4,

[n3

√
2 + n4, n3

√
2 + n4 +

√
2), if i′′ = 5, 6, 7,

It is then absolutely clear that

y + n1α + n2

√
2α = y∗ + n3

√
2 + n4.

This leads to the crucial expression

y∗ − y = n1α + n2

√
2α− n3

√
2− n4, (3.2)

and this allows us to make use of the quantity

∥n1α + n2

√
2α− n3

√
2∥,

where 0 ⩽ n1, n2, n3 ⩽ n∗ and n1 + n2 ⩾ 1.
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For the remainder of this section, we assume that the slope α satisfies

0 < α =
3
√
3

2
< 1,

and consider the algebraic number field

K = Q(
√
2,

3
√
3),

of degree 6, which is the extension of Q by
√
2 and 3

√
3 = 2α. Note that K contains

the elements α,
√
2 and

√
2α.

Suppose that for some integer n0,

∥n1α + n2

√
2α− n3

√
2∥ = |n1α + n2

√
2α− n3

√
2− n0| = ω,

so that 0 < ω ⩽ 1/2. Then there exists a constant c4 = c4(α) > 0 such that γ = c4ω
is an algebraic integer in K. Let γ1, . . . , γ6, denote the conjugates of γ in K, with
γ1 = γ. Then the norm of γ, given by N(γ) = γ1 . . . γ6, is a non-zero integer in Z.
Thus |N(γ)| ⩾ 1, and this implies that

ω =
γ

c4
⩾

1

c4|γ2 . . . γ6|
.

This leads to the following analog of Lemma 2.1.

Lemma 3.1. Let α = 3
√
3/2. Then there exists a constant c5 = c5(α) > 0 such that

for any integers n1, n2, n3 with n2
1 + n2

2 ⩾ 1, we have

∥n1α + n2

√
2α− n3

√
2∥ >

c5
N5

,

where N = max{|n1|, |n2|, |n3|}.
We develop here a rather straightforward adaptation of the method in Section 2.

Since Lemma 3.1 gives a much weaker bound than Lemma 2.1, we cannot expect to
be able to establish superdensity here. Nevertheless, we can still establish polynomial
time-quantitative density.

Theorem 2. Let α = 3
√
3/2. Consider a half-infinite geodesic L(t), t ⩾ 0, of slope

α and with the usual arc-length parametrization, on the regular octagon surface as
represented by the polyrectangle surface P as shown in Figure 3.3. Then there are
explicitly computable constants c6 = c6(α) > 1 and c7 = c7(α) > 1 such that, for
any integer n ⩾ 2 and any aligned square A of side length 1/n on P, there exists a
real number t0 such that

0 ⩽ t0 ⩽ c6n
c7 and L(t0) ∈ A.

Consider the geodesic L(t) = Lα(t) with slope α and starting point L(0) = R,
where R lies on a vertical edge wi0 of the polyrectangle surface P . Assume that
L(t) has arc-length parametrization, and that it does not hit a vertex of P over
a sufficiently long neighborhood −T ⩽ t ⩽ T of 0. Then R = wi0(y) for some y
satisfying 0 < y < 1 if i0 = 1, 2, 3, 4 and satisfying 0 < y <

√
2 if i0 = 5, 6, 7. Let

Q = wi0(z) be a point where 0 < z < y. We study the following question. What
can we say about the time t with L(t) ∈ QR such that |t| is minimum? Here QR
denotes the open interval with endpoints Q and R. In other words, how long does
it take for the geodesic, starting at the point R, to visit the open interval QR of
length x = y − z, if the geodesic can go both forward and backward?

Corresponding to Lemma 2.2, we have the following intermediate result.



TIME-QUANTITATIVE DENSITY OF NON-INTEGRABLE SYSTEMS 19

Lemma 3.2. Let α = 3
√
3/2. Let QR be an open vertical segment, with top endpoint

R and length 0 < x < 1/2, on a vertical edge wi0 of the polyrectangle surface P
as shown in Figure 3.3. Consider a geodesic L(t) with slope α and starting point
L(0) = R. There exists explicit constants c8 = c8(α) > 1 and c9 = c9(α) > 1 such
that there is a 2-direction visiting time t∗ satisfying

0 < |t∗| ⩽ c8
xc9

and L(t∗) ∈ QR.

Proof. Let Q = wi0(z) and R = wi0(y), where 0 < z < y < 1 if i0 = 1, 2, 3, 4, and
where 0 < z < y <

√
2 if i0 = 5, 6, 7.

If the shift of the open interval QR under the α-flow does not split, then there
exists an integer i1 satisfying 1 ⩽ i1 ⩽ 7 such that QR is shifted to an open interval
Q1R1 on the vertical edge wi1 . Let us now repeat the argument with the open
interval Q1R1. If the shift of Q1R1 under the α-flow does not split, then there exists
an integer i2 satisfying 1 ⩽ i2 ⩽ 7 such that Q1R1 is shifted to an open interval Q2R2

on the vertical edge wi2 . We now repeat the argument with the open interval Q2R2,
and so on, until we get the first split.

Claim 1. Suppose that there is no split among the first [(30)6/c5x
5] consecutive

shifts of the open interval QR under the α-flow, where QR has length 0 < x < 1/2,
and c5 = c5(α) is the constant in Lemma 3.1. Then there is a visiting time t∗ such
that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 < t∗ ⩽
2(30)6

c5x5
and L(t∗) ∈ QR,

so that the conclusion of Lemma 3.2 holds with suitable constants c8 = c8(α) and
c9 = c9(α).

Justification of Claim 1. The open intervals QjRj, where 1 ⩽ j ⩽ (30)6/c5x
5, all

have length x. Their total length is therefore at least

(30)6

c5x4
− 1 ⩾ (4 + 3

√
2)L, where L =

[
(30)6

9c5x4

]
. (3.3)

Note that the total length of the vertical edges of P is 4+3
√
2 < 9. It follows easily

from the Pigeonhole Principle that there exists a point P on a vertical edge which
is covered by at least L of these open intervals QjRj. In other words, there exist
integers jν , ν = 1, . . . , L, such that

1 ⩽ j1 < j2 < . . . < jL ⩽
(30)6

c5x5

such that P is contained in xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

QjνRjν , ν = 1, . . . , L.

For every ν = 1, . . . , L, the open interval QjνRjν lies on the vertical edge wijν
. It

follows that the values ijν , ν = 1, . . . , L, are all equal to each other. Suppose that
i∗ is their common value. Then for every ν = 1, . . . , L, we can write

Rjν = wi∗(uν),

where 0 < uν < 1 or 0 < uν <
√
2, and define tν by writing L(tν) = Rjν .

Suppose first that there exist two integers ν ′ and ν ′′ such that

1 ⩽ ν ′ < ν ′′ ⩽ L and uν′ > uν′′ . (3.4)

Since Qjν′
Rjν′

and Qjν′′
Rjν′′

intersect, we clearly have

Rjν′′
= L(tν′′) ∈ Qjν′

Rjν′
.
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Applying the reverse α-flow for time tν′ then takes Qjν′
Rjν′

to QR, and also takes
Rjν′′

= L(tν′′) to L(tν′′ − tν′), so that L(tν′′ − tν′) ∈ QR. Now take t∗ = tν′′ − tν′ > 0.
Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 < t∗ ⩽
√
2
√
1 + α2(jν′′ − jν′) ⩽

2(30)6

c5x5
,

justifying the claim.
Suppose next that there do not exist two integers ν ′ and ν ′′ such that (3.4) holds.

Then we must have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

u1 < u2 < . . . < uL and uL − u1 ⩽ x,

and a routine average computation argument shows that for at least 2L/3 of the
indices ν = 1, . . . , L, we have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

uν+1 − uν ⩽
3x

L
. (3.5)

On the other hand, we also have

j1 < j2 < . . . < jL and jL − j1 ⩽
(30)6

c5x5
,

and a routine average computation argument shows that for at least 2L/3 of the
indices ν = 1, . . . , L, we have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

jν+1 − jν ⩽
30

x
. (3.6)

It follows that there must exist some index ν = 1, . . . , L such that both (3.5)
and (3.6) hold. For this value of ν, it follows from (3.2) that there exist integers
n1, n2, n3, n4 such that

uν+1 − uν = n1α + n2

√
2α− n3

√
2− n4 (3.7)

and 0 ⩽ n1, n2, n3 ⩽ jν+1 − jν and n1 + n2 ⩾ 1. Using Lemma 3.1 and (3.5)–(3.7),
we deduce that

3x

L
⩾ ∥uν+1 − uν∥ = ∥n1α + n2

√
2α− n3

√
2∥ >

c5
(jν+1 − jν)5

⩾
c5x

5

(30)5
.

However, this leads to the inequality

L <
(30)6

10c5x4

which clearly contradicts the definition of L given by (3.3).
It follows that there exist two integers ν ′ and ν ′′ such that (3.4) holds, and this

completes our justification of Claim 1. □

In view of Claim 1, we may assume that there exists an integer k such that

1 ⩽ k ⩽
(30)6

c5x5

and the k-th shift under the α-flow of the open interval QR of length x splits for
the first time.

Suppose that the image of the original open interval QR after the first k shifts
under the α-flow now consists of a vertex of P , a top interval wj1(0, x1) of length x1

and a bottom interval of length x∗
1, where x1 + x∗

1 = x. Since the starting point R
of the geodesic is the top endpoint of the interval QR = wi0(z, y), we shall make use
of top intervals in our subsequent argument. We distinguish two cases. Either

x1 ⩾ c10x
516 or 0 < x1 < c10x

516 , (3.8)
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where the choice of the constant

c10 = c10(α) =

(
c5(α)

60

)616

(3.9)

and the choice of the exponent 516 for x will be explained later.
Suppose that the first case in (3.8) holds. Then we delete the bottom interval,

keep the top interval wj1(0, x1) and write Q(1)R(1) = wj1(0, x1). It then follows from
our construction that the geodesic L(t), t ⩾ 0, starting at the point R, contains the
point R(1), so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R(1) = L(t1) for some t1 > 0.

We now repeat this argument on the open interval Q(1)R(1) = wj1(0, x1).
In view of a suitable analog of Claim 1, we may assume that there exists an integer

k1 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ k1 ⩽
(30)6

c5x5
1

and the k1-th shift under the α-flow of the open interval Q(1)R(1) of length x1 splits
for the first time.

Suppose that the image of the original open interval Q(1)R(1) after the first k1
shifts under the α-flow now consists of a vertex of P , a top interval wj2(0, x2) of
length x2 and a bottom interval of length x∗

2, where x2 + x∗
2 = x1. We distinguish

two cases. Either xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x2 ⩾ c10x
516

1 or 0 < x2 < c10x
516

1 . (3.10)

Suppose that the first case in (3.10) holds. Then we delete the bottom interval,
keep the top interval wj2(0, x2) and write Q(2)R(2) = wj2(0, x2). It then follows from
our construction that the geodesic L(t), t ⩾ 0, starting at the point R, contains the
point R(2), so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R(2) = L(t2) for some t2 > t1.

We now repeat this argument on the open interval Q(2)R(2) = wj2(0, x2).
In view of a suitable analog of Claim 1, we may assume that there exists an integer

k2 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ k2 ⩽
(30)6

c5x5
2

and the k2-th shift under the α-flow of the open interval Q(2)R(2) of length x2 splits
for the first time.

Suppose that the image of the original open interval Q(2)R(2) after the first k2
shifts under the α-flow now consists of a vertex of P , a top interval wj3(0, x3) of
length x3 and a bottom interval of length x∗

3, where x3 + x∗
3 = x2. We distinguish

two cases. Either xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x3 ⩾ c10x
516

2 or 0 < x3 < c10x
516

2 . (3.11)

Suppose that the first case in (3.11) holds. Then we delete the bottom interval,
keep the top interval wj3(0, x3) and write Q(3)R(3) = wj3(0, x3). It then follows from
our construction that the geodesic L(t), t ⩾ 0, starting at the point R, contains the
point R(3), so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R(3) = L(t3) for some t3 > t2.

We now repeat this argument on the open interval Q(3)R(3) = wj3(0, x3).
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And so on, assuming that at each step, the first case in the corresponding analog
of (3.8), (3.10) and (3.11) holds.

This forward shift process under the α-flow defines a sequence of top intervals

Q(i)R(i) = wji(0, xi), i ⩾ 1, (3.12)

each of which arises when the ki−1-th shift under the α-flow of the open interval
Q(i−1)R(i−1) of length xi−1 splits for the first time, and the integer ki−1 satisfies

1 ⩽ ki−1 ⩽
(30)6

c5x5
i−1

. (3.13)

The lengths xi of these intervals (3.12) satisfy

xi ⩾ c10x
516

i−1, (3.14)

with the convention that x0 = x. Furthermore, the geodesic L(t), t ⩾ 0, starting at
the point R, contains the point R(i), so that

R(i) = L(ti) for some ti > ti−1,

where t0 = 0.
As there are only finitely many vertical edges in the polyrectangle surface P ,

there will at some point be edge repetition, when there exist two integers i1 and i2
satisfying 1 ⩽ i1 < i2 such that the corresponding top intervals

Q(i1)R(i1) = wji1
(0, xi1) and Q(i2)R(i2) = wji2

(0, xi2)

lying respectively on the vertical edges wji1
and wji2

, overlap. Thus ji1 = ji2 . Now
suppose that j∗ is their common value. Then

Q(i1)R(i1) = wj∗(0, xi1) and Q(i2)R(i2) = wj∗(0, xi2). (3.15)

Furthermore, since there are precisely 7 vertical edges on P , it follows that

1 ⩽ i1 < i2 ⩽ 8. (3.16)

Claim 2. Suppose that there exist integers i1 and i2 satisfying (3.16) such that the
following conditions hold:

(1) For every integer i satisfying 1 ⩽ i ⩽ i2, there exists an integer ki−1 satisfying
(3.13) such that the top interval Q(i)R(i) given by (3.12) arises when the ki−1-th
shift under the α-flow of the open interval Q(i−1)R(i−1) splits for the first time,
where Q(0)R(0) = QR.
(2) For every integer i satisfying 1 ⩽ i ⩽ i2, the condition (3.14) holds, where

x0 = x.
(3) There exists an integer j∗ such that the condition (3.15) holds.
Then there is a visiting time t∗ such that 0 < t∗ ⩽ ti2 and L(t∗) ∈ QR, where

R(i2) = L(ti2), and the conclusion of Lemma 3.2 holds with suitable constants c8 =
c8(α) and c9 = c9(α).

Justification of Claim 2. Since i1 < i2, we have xi1 > xi2 . It follows from (3.15) that

R(i2) = L(ti2) ∈ Q(i1)R(i1).

Applying the reverse α-flow for time ti1 then takes Q(i1)R(i1) to QR, and also takes
R(i2) = L(ti2) to L(ti2−ti1), so that L(ti2−ti1) ∈ QR. This justifies the first assertion
in Claim 2. Next, note that the open interval Q(i2)R(i2) arises as a consequence of

k + k1 + . . .+ ki2−1 ⩽
(30)6

c5

7∑
i=0

x−5
i
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consecutive shifts under the α-flow of the open interval QR, using (3.13). Since
each shift under the α-flow corresponds to a geodesic segment of length

√
1 + α2 or√

2
√
1 + α2, both less than 2, it follows that

ti2 ⩽
2(30)6

c5

7∑
i=0

x−5
i . (3.17)

Finally, note that the finite sum in (3.17) can be bounded by a polynomial in x−1

with non-negative coefficients depending at most on c10 = c10(α), in view of (3.14).
It is then clear that the conclusion of Lemma 3.2 holds with suitably chosen constants
c8 = c8(α) and c9 = c9(α). □

Suppose next that before edge repetition takes place, the condition (3.14) fails.
More precisely, suppose that r satisfying 0 ⩽ r ⩽ 7 is the smallest integer i such
that xi+1 < c10x

516

i . Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xr+1 < c10x
516

r , (3.18)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xi ⩾ c10x
516

i−1, i = 1, . . . , r,

with x0 = x. Furthermore, there exists an integer kr such that

1 ⩽ kr ⩽
(30)6

c5x5
r

(3.19)

and the kr-th shift under the α-flow of the open intervalQ(r)R(r) of length xr splits for
the first time, with the image consisting of a vertex of P , a top interval wjr+1(0, xr+1)
of length xr+1 and a bottom interval of length x∗

r+1, where xr+1 + x∗
r+1 = xr and

(3.18) holds.
We now start with the interval Q(r)R(r) = wjr(0, xr) and apply the reverse α-flow

until it splits for the first time on a vertical edge. We have the following analog of
Claim 1. The justification is similar to that of Claim 1 in this section or Claim 3 in
Section 2.

Claim 3. Suppose that there is no split among the first [(30)6/c5x
5
r] consecutive

shifts of the open interval Q(r)R(r) under the reverse α-flow, where Q(r)R(r) has
length xr > 0, and c5 = c5(α) is the constant in Lemma 3.1. Let Lr(t) = L(t + tr)
for every t ⩽ 0. Then there is a visiting time t∗ such that

0 > t∗ ⩾ −2(30)6

c5x5
r

and Lr(t
∗) ∈ Q(r)R(r),

i.e. L(t∗ + tr) ∈ Q(r)R(r). Applying the reverse α-flow for time tr then leads to
L(t∗) ∈ QR, so that the conclusion of Lemma 3.2 holds with suitable constants
c8 = c8(α) and c9 = c9(α).

It is clear that we can assume that the constant c5 = c5(α) in Lemma 3.1 satisfies

0 < c5 < 1.

We thus make this assumption for the rest of our discussion here.
In view of Claim 3, we may assume that there exists an integer kr+1 such that

1 ⩽ kr+1 ⩽
(30)6

c5x5
r

(3.20)

and the kr+1-th shift under the reverse α-flow of the open interval Q(r)R(r) of length
xr splits for the first time.
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Suppose that the image of the open intervalQ(r)R(r) after the first kr+1 shifts under
the reverse α-flow now consists of a vertex of P , a top interval wj′r+1

(0, yr+1) of length
yr+1 and a bottom interval of length y∗r+1, where yr+1 + y∗r+1 = xr. Then we delete
the bottom interval, keep the top interval and write Qr+1Rr+1 = wj′r+1

(0, yr+1). It

then follows from our construction that the geodesic L(t) starting at the point R
contains the point Rr+1, so that

Rr+1 = L(tr+1) for some tr+1,

where tr+1 can be positive or negative.
To estimate yr+1 from below, note that the point Rr+1 = wj′r+1

(yr+1) is obtained

from the point R(r+1) = wjr+1(xr+1) by kr shifts under the reverse α-flow to the point

R(r) followed by another kr+1 shifts under the reverse α-flow from the point R(r).
Using (3.19) and (3.20), we see that

kr + kr+1 ⩽
2(30)6

c5x5
r

⩽
26(30)6

c65x
5
r

=

(
60

c5

)6

x−5
r . (3.21)

Meanwhile, it follows from (3.2) that there exist integers n1, n2, n3, n4 such that

yr+1 − xr+1 = n1α + n2

√
2α− n3

√
2− n4,

with |n1|, |n2|, |n3| ⩽ kr + kr+1 and n2
1 + n2

2 ⩾ 1, so that

yr+1 ⩾ ∥n1α + n2

√
2α− n3

√
2∥ − xr+1.

It then follows from Lemma 3.1 and (3.21) that

yr+1 ⩾
c5

(kr + kr+1)5
− xr+1 ⩾

c315
230(30)30

x25
r − xr+1

⩾
c365

236(30)36
x25
r =

( c5
60

)36

x25
r , (3.22)

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xr+1 <
c365

236(30)36
x25
r =

( c5
60

)36

x25
r ,

a condition that is clearly satisfied, in view of (3.9) and (3.18).
We now repeat this argument on the open interval Qr+1Rr+1 = wj′r+1

(0, yr+1).
In view of a suitable analog of Claim 3, we may assume that there exists an integer

kr+2 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ kr+2 ⩽
(30)6

c5y5r+1

(3.23)

and the kr+2-th shift under the reverse α-flow of the open interval Qr+1Rr+1 of length
yr+1 splits for the first time.

Suppose that the image of the open interval Qr+1Rr+1 after the first kr+2 shifts
under the reverse α-flow now consists of a vertex of P , a top interval wj′r+2

(0, yr+2)
of length yr+2 and a bottom interval of length y∗r+2, where yr+2 + y∗r+2 = yr+1.
Then we delete the bottom interval, keep the top interval and write Qr+2Rr+2 =
wj′r+2

(0, yr+2). It then follows from our construction that the geodesic L(t) starting
at the point R contains the point Rr+2, so that

Rr+2 = L(tr+2) for some tr+2,

where tr+2 can be positive or negative.
To estimate yr+2 from below, note that the point Rr+2 = wj′r+2

(yr+2) is obtained

from the point R(r+1) = wjr+1(xr+1) by kr shifts under the reverse α-flow to the
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point R(r) followed by another kr+1 + kr+2 shifts under the reverse α-flow from the
point R(r). Using (3.21)–(3.23), we see that

kr + kr+1 + kr+2 ⩽
26(30)6

c65x
5
r

+
(30)6

c5y5r+1

⩽
26(30)6

c65x
5
r

+
2180(30)186

c1815 x125
r

⩽
2216(30)216

c2165 x125
r

=

(
60

c5

)216

x−125
r . (3.24)

Meanwhile, it follows from (3.2) that there exist integers n1, n2, n3, n4 such that

yr+2 − xr+1 = n1α + n2

√
2α− n3

√
2− n4,

with |n1|, |n2|, |n3| ⩽ kr + kr+1 + kr+2 and n2
1 + n2

2 ⩾ 1, so that

yr+2 ⩾ ∥n1α + n2

√
2α− n3

√
2∥ − xr+1.

It then follows from Lemma 3.1 and (3.24) that

yr+2 ⩾
c5

(kr + kr+1 + kr+2)5
− xr+1 ⩾

c10815

21080(30)1080
x625
r − xr+1

⩾
c12965

21296(30)1296
x625
r =

( c5
60

)1296

x625
r , (3.25)

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xr+1 <
c12965

21296(30)1296
x625
r =

( c5
60

)1296

x625
r ,

a condition that is clearly satisfied, in view of (3.9) and (3.18).
We now repeat this argument on the open interval Qr+2Rr+2 = wj′r+2

(0, yr+2).
And so on.
This shift process under the reverse α-flow defines a sequence of top intervals

Qr+iRr+i = wj′r+i
(0, yr+i), i ⩾ 1. (3.26)

Each interval in (3.26) arises when the kr+i-th shift under the reverse α-flow of the
open interval Qr+i−1Rr+i−1 of length yr+i−1 splits for the first time, and the integer
kr+i satisfies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ kr+i ⩽
(30)6

c5y5r+i−1

, (3.27)

with the convention that yr = xr. It is not difficult to prove by induction on i that

kr + kr+1 + . . .+ kr+i ⩽

(
60

c5

)62i−1

x−52i−1

r , (3.28)

and that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yr+i ⩾
( c5
60

)62i

x52i

r , (3.29)

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xr+1 <
( c5
60

)62i

x52i

r , (3.30)

a condition that is clearly satisfied, in view of (3.9) and (3.18), if i ⩽ 8. Note that
(3.21) and (3.24) represent the inequality (3.28) when i = 1, 2 respectively, while
(3.22) and (3.25) represent the inequality (3.29) when i = 1, 2 respectively.
Furthermore, the geodesic L(t) starting at the point R contains the point Rr+i,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rr+i = L(tr+i) for some tr+i,
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where tr+i may be positive or negative.
As there are only finitely many vertical edges in the polyrectangle surface P ,

there will at some point be edge repetition, when there exist two integers i1 and i2
satisfying 1 ⩽ ii < i2 such that the corresponding top intervals

Qr+i1Rr+i1 = wj′r+i1
(0, yr+i1) and Qr+i2Rr+i2 = wj′r+i2

(0, yr+i2)

lying respectively on the vertical edges wj′r+i1
and wj′r+i2

, overlap. Thus j′r+i1
= j′r+i2

.

Now suppose that j∗ is their common value. Then

Qr+i1Rr+i1 = wj∗(0, yr+i1) and Qr+i2Rr+i2 = wj∗(0, yr+i2) (3.31)

Furthermore, since there are precisely 7 vertical edges on P , it follows that

1 ⩽ i1 < i2 ⩽ 8. (3.32)

This and (3.30) explain our choice of the constant c10 = c10(α) given by (3.9), as
well as our choice of the exponent 516 in (3.8) and its analogs.

Claim 4. Suppose that there exist integers i1 and i2 satisfying (3.32) such that the
following conditions hold:

(1) For every integer i satisfying 1 ⩽ i ⩽ i2, there exists an integer kr+i satisfying
(3.27) such that the top interval Qr+iRr+i given by (3.26) arises when the kr+i-th
shift under the reverse α-flow of the open interval Qr+i−1Rr+i−1 splits for the first
time, where QrRr = Q(r)R(r).

(2) For every integer i satisfying 1 ⩽ i ⩽ i2, the condition (3.29) holds.
(3) There exists an integer j∗ such that the condition (3.31) holds.
Then there is a visiting time t∗ such that 0 < |t∗| ⩽ |tr+i2 − tr+i1 | and L(t∗) ∈ QR,

where Rr+i1 = L(tr+i1) and Rr+i2 = L(tr+i2), so the conclusion of Lemma 3.2 holds
with suitable constants c8 = c8(α) and c9 = c9(α).

The justification is similar to that of Claim 2 in this section or Claim 4 in Section 2.
Lemma 3.2 now follows if we choose the constants c8 = c8(α) and c9 = c9(α)

appropriately. □

We have the following simple corollary of Lemma 3.2. The proof uses Lemma 3.1.

Lemma 3.3. Under the hypotheses of Lemma 3.2, the distance between the point
L(t0) and either endpoint Q or R is at least

c11x
c12 ,

where the positive constants c11 = c11(α) and c12 = c12(α) depend at most on the
constant c5 = c5(α).

Let w be a vertical edge of the polyrectangle surface P as shown in Figure 3.3.
As in Section 2, we can consider a finite segment Γ(σ;T ), given by (2.42), of the
geodesic L(t), and the maximum gap MaxGap(Γ(σ;T ;w)) defined by (2.44). Using
this concept, we can establish an extension to Lemma 3.3 as follows.

Lemma 3.4. Let α = 3
√
3/2. For any finite segment Γ(σ;T ), given by (2.42), of a

geodesic L(t) of slope α, let MaxGap(Γ(σ;T ;w)) = x with 0 < x < 1/2. Then the
longer finite segment

Γ
(
σ;T +

c8
xc9

)
=

{
L(t) : 0 ⩽ |σ − t| ⩽ T +

c8
xc9

}
has the property that

MaxGap
(
Γ
(
σ;T +

c8
xc9

;w
))

⩽ x− c11x
c12 .

Iterating Lemma 3.4 sufficiently many times, we obtain the following.
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Lemma 3.5. Under the hypotheses of Lemma 3.4, there exists positive constants
c13 = c13(α) and c14 = c14(α) such that the longer finite segment

Γ
(
σ;T +

c13
xc14

)
=

{
L(t) : 0 ⩽ |σ − t| ⩽ T +

c13
xc14

}
has the property that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

MaxGap
(
Γ
(
σ;T +

c13
xc14

;w
))

⩽
x

2
.

We can now deduce Theorem 2 from Lemma 3.5 in the same way as we deduce
Theorem 1 from Lemma 2.5 at the end of Section 2.

4. Extension to algebraic polyrectangles

Since the slope α = 3
√
3/2 in Theorem 2 is irrational, it follows from a celebrated

result of Veech that a half-infinite geodesic of slope α on the regular octagon surface
is uniformly distributed on the surface. However, the result of Veech unfortunately
does not say anything about the time-quantitative behavior of such a geodesic. This
is due to the fact that the proof uses ergodic theory. More precisely, ergodicity of
some relevant transformation is established, and then Birkhoff’s ergodic theorem is
applied. But Birkhoff’s ergodic theorem does not have any explicit error term.

The interesting point of Theorem 2 is that this is a time-quantitative result. It
also has far-reaching generalization to algebraic polyrectangle surfaces. For such a
surface, there is a net of the surface on the plane with the following two properties:

(i) The net is a rectangular polygon, possibly with holes inside.
(ii) The coordinates of all the vertices are algebraic numbers.
We call such a net an algebraic net of the surface.
We can study geodesic flow on an arbitrary algebraic polyrectangle surface. Using

the standard 4-copy construction trick, we can reduce the problem if necessary to
one concerning 1-direction geodesic flow on an arbitrary algebraic polyrectangle
translation surface. With a straightforward generalization of the proof of Theorem 2,
one can establish the following result.

Theorem 3. Let P be an algebraic polyrectangle translation surface, and let L(t)
be a 1-direction geodesic on P such that the slope α is an algebraic number. Let K
denote the smallest extension of Q that contains the coordinates of all the vertices of
an algebraic net of P, and suppose that α ̸∈ K. Then there are explicitly computable
positive constants c15 = c15(P ;α) and c16 = c16(P ;α) such that, for any integer
n ⩾ 2 and any aligned square A of side length 1/n on the surface P, there exists a
real number t0 such that

0 ⩽ t0 ⩽ c15n
c16 and L(t0) ∈ A.

In view of unfolding, the same holds for any billiard on an algebraic polyrectangle
table P , where the initial slope is an algebraic number independent of the number
field generated by P .
Theorem 2 is clearly a special case of Theorem 3. Suppose that in Figure 3.2, the

vertex A6 has coordinates (0, 0), and the vertex A5 has coordinates (0,
√
2). Then

the coordinates of all the vertices of this algebraic net in Figure 3.2 are all in the
quadratic field Q(

√
2), and it is clear that the cubic slope α = 3

√
3/2 is not in this

number field.
The class of algebraic polyrectangle translation surfaces is large. For instance,

every regular polygon billiard is equivalent to a 1-direction geodesic flow on one of
these surfaces. Note that the same holds for any Veech surface.

It is interesting to mention that for the family of street-rational polyrectangle
surfaces, we can prove stronger results, at least for an explicit countable set of slopes.
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Here we can establish superdensity and also determine the irregularity exponent
which represents a precise form of time-quantitative uniformity; see [2, 3, 4, 5].
Note that this family also contains every regular polygon billiard surface and every
Veech surface.

These are the two general classes of flat surfaces for which we can prove time-
quantitative results concerning the long-term behavior of geodesic flow. These will
be discussed in our first monograph in progress.
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