TIME-QUANTITATIVE DENSITY
OF NON-INTEGRABLE SYSTEMS

J. BECK AND W.W.L. CHEN

ABSTRACT. We introduce a new method to establish time-quantitative density in
flat dynamical systems. First we give a shorter and different proof of our earlier
result in [1] that a half-infinite geodesic on an arbitrary finite polysquare surface P
is superdense on P if the slope of the geodesic is a badly approximable number. We
then adapt our method to study time-quantitative density of half-infinite geodesics
on algebraic polyrectangle surfaces.

1. INTRODUCTION

A finite polysquare region P is an arbitrary connected, but not necessarily simply-
connected, polygon on the plane which is tiled with closed unit squares, called the
atomic squares or square faces of P, and which satisfies the following conditions:

(i) Any two atomic squares in P either are disjoint, or intersect at a single point,
or have a common edge.

(ii) Any two atomic squares in P are joined by a chain of atomic squares where
any two neighbors in the chain have a common edge.

Note that P may have holes, and we also allow whole barriers which are horizontal
or vertical walls that consist of one or more boundary edges of atomic squares.

Given such a finite polysquare region P, we can convert it into a finite polysquare
surface P by identification in pairs of the horizontal edges and identification in pairs
of the vertical edges, as illustrated in Figure 1.1. We can then consider 1-direction
geodesic flow on such a polysquare surface.
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Figure 1.1: a finite polysquare surface and part of a geodesic

A half-infinite 1-direction geodesic L(t), t > 0, on a given finite polysquare surface
P and equipped with arc-length parametrization is superdense in P if there exists
an absolute constant C; = C1(P; L) > 0 such that, for every integer n > 1, the
initial segment £(t), 0 < t < Cn, of the geodesic gets 1/n-close to every point of P.
This concept of superdensity, which we first studied in [4], is a best possible form of
time-quantitative density, in the sense that the linear length Cin cannot be replaced
by any sublinear length o(n) as n — oo. For a proof of this; see [4, Section 6.1].

In an earlier paper, we can establish the following result; see [1, Theorem 1].
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Theorem 1. Let P be an arbitrary finite polysquare surface. A half-infinite geodesic
1s superdense on P if and only if the slope of the geodesic is a badly approximable
number.

Theorem 1 is an if and only if type result, where one of the two implications is
a straightforward corollary of Khinchin’s theorem. Indeed, a 1-direction geodesic
flow on a finite polysquare surface modulo one becomes a torus line flow on [0, 1),
and Khinchin’s theorem then implies that a superdense geodesic must have a badly
approximable slope. The much harder task is to prove the converse, that every badly
approximable slope leads to superdensity.

In Section 2, we give a shorter and different proof of this result. Whereas our
earlier technique in [1] works for finite polysquare surfaces, it does not seem possible
to extend it to study 1-direction geodesics on more general surfaces. Our new
method here, on the other hand, is conducive to generalization, and we shall discuss
its adaptation to algebraic polyrectangle surfaces in Sections 3 and 4.

We remark also that a consequence of Theorem 1 is the corresponding result that
a billiard orbit in a finite polysquare region is superdense in the region if and only
if the initial slope of the orbit is a badly approximable number. This follows from a
technique called unfolding. For more details, see our earlier paper [1].

2. ILLUSTRATION OF THE METHOD IN THE SIMPLEST CASE
We shall make use of an important property of badly approximable numbers.

Lemma 2.1. Suppose that o € (0, 1) is badly approzimable, with continued fraction

1
a:[al,ag,ag,...]:—a " —.
1 an+ T
ag+--

Suppose further that A is a positive number such that the continued fraction digits

a; <A, i=1,2,3,.... Then for every integer n > 1, we have
[nall > !
no —_—
(A+2)n

where ||B]| denotes the distance of the real number [ from the nearest integer.

Proof. For every integer n > 1, we can find an integer ¢ > 0 such that ¢; <n < g1,
where ¢; = ¢;(a) denotes the denominator of the i-th convergent of a. Using well
known diophantine approximation properties of continued fractions, we have

1 1 1
> = > ;
¢+aqn  Gt(an+1)g  (A+2)g~ (A+2)n
as required. 0

[nall = llgiall >

Suppose that an integer ¢ satisfies 1 < @ < s, where s is the number of atomic
squares of the polysquare surface P. We denote by w; the left vertical edge of the
i-th atomic square of P, and by w;(0) and w;(1) the bottom and top endpoint of
w; respectively, and in general by w;(¢q) the point on w; which is a distance ¢ from
w(0). Furthermore, for any set S C [0, 1], we write

w;S = {w;(q) : q € S},
so that w; = w;[0, 1].

Consider the geodesic L(t) = L,(t) with slope a and starting point £(0) = R,
where R lies on the left vertical edge of the iyp-th atomic square of the polysquare
surface P. Assume that L£(¢) has arc-length parametrization, and that it does not
hit a vertex of P over a sufficiently long neighborhood —T" < t < T of 0. Then
R = w;,(y) for some y satisfying 0 < y < 1. Let Q = w;,(2) be a point where
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0 <z <y <1 Westudy the following question. What can we say about the time ¢
with £(t) € QR such that [¢| is minimum? Here QR denotes the open interval with
endpoints () and R. In other words, how long does it take for the geodesic, starting
at the point R, to visit the open interval QR of length © = y — z, if the geodesic
can go both forward and backward?

Lemma 2.2. Let QR be an open vertical segment, with top endpoint R and length
x > 0, on the left vertical edge of an atomic square of the polysquare surface P.
Consider a geodesic L(t) with badly approximable slope o and starting point L(0) =
R. There exists an explicit constant co(A;s), depending at most on the parameter
A = A(«) and the number s of atomic squares of the polysquare surface P, such
that there is a 2-direction visiting time t* satisfying

0 < ’t*| < CU(A;S)
= x

and L(t") € QR.

Proof. Let S C [0,1] denote an open interval on the left vertical edge of an atomic
square of P. The a-flow shifts S until it hits some vertical edge or edges of P for
the first time, with image S(«), say. If S(«) contains a vertex of P, as in the picture
on the right in Figure 2.1, then we say that the shift of S by the a-flow splits. If
S(a) does not contain a vertex of P, as in the picture on the left in Figure 2.1, then
we say that the shift of S by the a-flow does not split.

Figure 2.1: shift of an interval by the a-flow

Suppose now that @ = w;,(z) and R = w;,(y) where 0 < z <y < 1.

If the shift of the open interval QR under the a-flow does not split, then there
exists an integer i; satisfying 1 < 47 < s such that QR is shifted to an open interval
@1 Ry on the vertical edge w;,, and

Q1 =w,({z+a}) and Ry =w;,({y+a}),

where {3} denotes the fractional part of the real number 5. Let us now repeat the
argument with the open interval Q)1 R;. If the shift of ()1 R; under the a-flow does
not split, then there exists an integer i, satisfying 1 < 75 < s such that Q1R is
shifted to an open interval ()2 R, on the vertical edge w;,, and

QQ = w12({z + 20_/}) and RQ - wl2({y + 20(})

We now repeat the argument with the open interval Qs Ry, and so on, until we get
the first split.

Claim 1. Suppose that there is no split among the first [9s*(A + 2)/z] consecutive
shifts of the open interval (R under the a-flow, where QR has length > 0. Then
there is a visiting time ¢* such that 0 < t* < 9v/2s?(A + 2)/x and L(t*) € QR, so
that the conclusion of Lemma 2.2 holds with a suitable constant co(A;s).

Justification of Claim 1. The open intervals Q;R;, where 1 < j < 9s*(A+ 2)/z, all
have length z. Their total length is therefore at least 9s*(A + 2) — 1. Tt follows
easily from the Pigeonhole Principle that there exists a point P which is covered by
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at least 8s(A + 2) of these open intervals Q;R;. In other words, there exist integers
Ju, v =1,...,85(A+ 2), such that

. : 9s%(A + 2
1<]1<]2<~-<]83(A+2)<—<x )

such that P is contained in

quRjzn V:1,,8S(A+2)
For every v = 1,...,8s(A+2), the open interval Q;, R;, lies on the vertical edge w;, .
It follows that the values i;,, v = 1,...,8s(A + 2), are all equal to each other.
Suppose that ¢* is their common value. Then for every v = 1,...,8s(A+2), we can
write

le/ = wi* (uV)7

where 0 < u, < 1, and write

t, =V1+a?2j,.

Suppose first that there exist two integers v’ and v” such that
1<V <" <8s(A+2) and wuy > upn. (2.1)
Since Q; ,R; , and Q; ,R; , intersect, we clearly have
Rjy,, = ,C(t,//) c ij,Rjy,.
Applying the reverse a-flow for time ¢,, then takes Q; ,R;, to QR, and also takes
Rjy,, = ,C(Zf,,//) to ,C(t,,// —t,/), so that ﬁ(tyll —t,,/) € QR Now take t* =t,»—t, > 0.
Then
—s, . . 9v2s2(A 4+ 2
O<t*: 1+a2<.]1//l_']l//) < M)

T
justifying the claim.

Suppose next that there do not exist two integers v’ and v” such that (2.1) holds.
Then we must have

uy <ug < ... <ugga+z) and  uggai2) — UL < T,

and a routine average computation argument shows that for at least 5s(A + 2) of
the indices v = 1,...,8s(A + 2), we have
x

_ < — .
Hrit TS B304 2)

On the other hand, we also have

(2.2)

. . . . . 9s%(A+2
J1<J2<...<Jssat2) and Jggay2) —J1 < %,

and a routine average computation argument shows that for at least 5s(A + 2) of
the indices v = 1,...,8s(A + 2), we have

. ) 3s
Jv+1 — Jv < ? (23)

It follows that there must exist some index v = 1,...,8s(A+2) such that both (2.2)
and (2.3) hold. For this value of v, Lemma 2.1 and (2.3) then lead to

1 T

'1/ - .1/ ol > . . 2 . 2.4
WG =0l > o9y, =0 % 35a T2 >
On the other hand, in view of (2.2), we have
: . x
H(.71/+1 - ]V)CVH = Upp1 — Uy S (25)

3s(A+2)
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Clearly (2.4) and (2.5) contradict each other, so this possibility cannot take place.
It follows that there exist two integers v’ and v such that (2.1) holds, and this
completes our justification of Claim 1. O

In view of Claim 1, we may assume that there exists an integer £ such that
9s*(A +2)
x

and the k-th shift under the a-flow of the open interval QR of length z splits for
the first time.

Suppose that the image of the original open interval QR after the first k shifts
under the a-flow now consists of a vertex of P and two intervals

1<k<

w;, (0,21) and wy (1 —27,1),

where 1 + 27 = x. We call w;, (0, 21) and wy, (1 — 27, 1) respectively the top interval
and the bottom interval. Since the starting point R of the geodesic is the top endpoint
of the interval QR = w;,(z,y), we shall make use of top intervals in our subsequent
argument. We distinguish two cases. Either

r1 = a(Ays)r or 0<xy <c(4;s)r, (2.6)

where the choice of the constant

1
Cl(A; 3) =

(3652(A + 2)2)+1

(2.7)

will be explained later.

Suppose that the first case in (2.6) holds. Then we delete the bottom interval
wy, (1 — 2%, 1), keep the top interval w;, (0,7;) and write QVRM = w; (0,2,). It
then follows from our construction that the geodesic L(t), t > 0, starting at the
point R, contains the point R, so that

RW = £(t;) for some t; > 0.

We now repeat this argument on the open interval QW R = wj, (0, 1).

Corresponding to Claim 1, we have the following analog. Suppose that there is no
split among the first [9s%(A + 2)/z1] consecutive shifts of the open interval QY R()
under the a-flow, where Q) R™ has length x; > 0. Let LM (¢) = L(t +t,) for every
t > 0. Then there is a first visiting time ¢* such that 0 < t* < 9\/532(A +2)/1y
and LI (t*) € QWRW ie., L(t* + 1) € QWRWY. Applying the reverse a-flow for
time ¢; then leads to L£(t*) € QR, so that the conclusion of Lemma 2.2 holds with a
suitable constant co(A;s). We may assume that there exists an integer k; such that

2
< b < 9s%(A + 2)
T

and the k;-th shift under the a-flow of the open interval QM R™M of length z splits
for the first time.

Suppose that the image of the open interval QY R after the first &y shifts under
the a-flow now consists of a vertex of P and two intervals

wj,(0,22) and we, (1 — 23, 1),
where x9 + 25 = ;. We distinguish two cases. Either
o = c1(A;s)ry or 0<xo < (A s)r, (2.8)

where the constant ¢;(A; s) is defined by (2.7).
Suppose that the first case in (2.8) holds. Then we delete the bottom interval
wg, (1 — x3,1), keep the top interval wy,(0, ) and write QP R® = w;,(0,z5). It



6 BECK AND CHEN

then follows from our construction that the geodesic L£(t), t > 0, starting at the
point R, contains the point R, so that

R® = L(t,) for some ty > t;.

We now repeat this argument on the open interval Q® R®?) = w;, (0, 22).
In view of another suitable analog of Claim 1, we may assume that there exists
an integer ko such that
9s*(A +2)
T2

1<k <

and the ky-th shift under the a-flow of the open interval Q) R® of length z, splits
for the first time.

Suppose that the image of the open interval Q® R after the first ky shifts under
the a-flow now consists of a vertex of P and two intervals

wj,(0,23) and  we, (1 — 23, 1),
where x5 + 25 = x9. We distinguish two cases. Either
xg3 = c1(A;s)zy or 0<x3 <ci(A;s)n,, (2.9)

where the constant ¢i(A; s) is defined by (2.7).

Suppose that the first case in (2.9) holds. Then we delete the bottom interval
we, (1 — 13, 1), keep the top interval wy,(0,z3) and write QP RG) = w;,(0,z3). It
then follows from our construction that the geodesic L(t), ¢t > 0, starting at the
point R, contains the point R®, so that

R® = L(t3) for some t3 > t.

We now repeat this argument on the open interval Q® R®) = w;, (0, x3).
And so on, assuming that at each step, the first case in the corresponding analog

of (2.6), (2.8) and (2.9) holds.
This forward shift process under the a-flow defines a sequence of top intervals

QURY = w; (0,2;), i>1, (2.10)

each of which arises when the k;_;-th shift under the a-flow of the open interval
QU=DRE=D of length x;_1 splits for the first time, and the integer k;_, satisfies

9s%(A + 2
<k, < A+ (2.11)
Ti1
The lengths z; of these intervals (2.10) satisfy
x; = c1(A;8)ziq, (2.12)

with the convention that zq = x. Furthermore, the geodesic L(t), t > 0, starting at
the point R contains the point R® so that
RO = L(t;) for some t; > t; 1,

where t5 = 0.

As there are only finitely many vertical edges in the polysquare surface P, there
will at some point be edge repetition, when there exist two integers ¢; and 75 satisfying
1 <41 < 179 such that the corresponding top intervals

QU R — w;, (0,2;,) and QU2 R(2) — wj,, (0,3,)

lying respectively on the vertical edges wj, and wj, , overlap. Thus j;, = j;,. Now
suppose that j* is their common value. Then

QURM = . (0,2;,) and QU R = 1w (0, ;). (2.13)
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Furthermore, since there are precisely s vertical edges on P, it follows that
1< <ig<s+ 1. (2.14)

Claim 2. Suppose that there exist integers i; and iy satisfying (2.14) such that the
following conditions hold:

(1) For every integer i satisfying 1 < i < iy, there exists an integer k;_; satisfying
(2.11) such that the top interval QW R®) given by (2.10) arises when the k;_;-th
shift under the a-flow of the open interval QY RO~Y gplits for the first time,
where QO R = QR.

(2) For every integer i satisfying 1 < i < iy, the condition (2.12) holds, where
o= T.

(3) There exists an integer j* such that the condition (2.13) holds.

Then there is a visiting time ¢* such that 0 < ¢t* < t;, and L(t*) € QR, where
R(2) = L(t;,), and the conclusion of Lemma 2.2 holds with a suitable constant
CD(A; S).

Justification of Claim 2. Since iy < 19, we have x;; > x;,. It follows from (2.13) that
R2) — L(ti2) c Q(il)R(il)'
Applying the reverse a-flow for time ¢;, then takes QR to QR, and also takes
R = L(t;,) to L(t;,—t;, ), so that L(t;,—t;,) € QR. This justifies the first assertion
in Claim 2. Next, note that the open interval Q) R(2) arises as a consequence of
"L 952 (A+2) 1953 (A+2)
kE+ki+...+ ki, 1< — K —
kit ki <Y Z(Cl(A;S))z

i=0
consecutive shifts under the a-flow of the open interval QR, using (2.11) and (2.12).
Since each shift under the a-flow corresponds to a geodesic segment of length
V14 a? < V2, it follows that

1 9v2s2(A+2
< Ly WAL

x (c1(4;s))f
If the constant ¢o(A;s) in Lemma 2.2 is chosen to satisfy

i) > 3 AL 215

1=0

< -
ZT; €Xr “
1=0

=0

then the conclusion of Lemma 2.2 holds. O

Suppose next that before edge repetition takes place, the condition (2.12) fails.
More precisely, suppose that r satisfying 0 < r < s is the smallest integer ¢ such
that x;11 < ¢1(A;s)z;. Then

Tpp1 < c1(A;8)z,, (2.16)
and
;=2 (A;8)riq, i=1,...,m (2.17)
with o = x. Furthermore, there exists an integer k, such that
952(A + 2
<k < 2 AT2) (2.18)
T,

and the k,-th shift under the a-flow of the open interval Q) R of length x, splits

for the first time, with the image consisting of a vertex of P and two intervals
1—a740,1),

wjr+1(0?xr+1) and wzr-!—l(

where z,41 + 27, = x, and (2.16) holds.
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We now start with the interval Q™ R = w; (0, z,) and apply the reverse a-flow
until it splits for the first time on a vertical edge. We have the following analog of
Claim 1.

Claim 3. Suppose that there is no split among the first [9s?(A +2)/x,] consecutive
shifts of the open interval QR under the reverse a-flow, where QU R(") has
length x, > 0. Let £,(t) = L(t + t,) for every ¢t < 0. Then there is a visiting time
t* such that 0 > t* > —9v/2s*(A + 2)/xz, and L.(t*) € QMR ie. L(t* +1t,) €
QM R™. Applying the reverse a-flow for time ¢, then leads to £(t*) € QR, so that
the conclusion of Lemma 2.2 holds with a suitable constant co(A4; s).

Justification of Claim 3. Let
QVRY, j=1,...,[95(A+2)/x,],

be successive open intervals under the reverse a-flow, starting at QM R(). These
intervals all have length z,. Their total length is therefore at least 9s2(A + 2) — 1.

It follows easily from the Pigeonhole Principle that there exists a point P which is
covered by at least 8s(A + 2) of these open intervals QY)RY). In other words, there
exist integers j,, v =1,...,8s(A 4 2), such that

S , 9s52(A +2

1< <j2<...<UJss(as2) & %

such that P is contained in
QVRY. v=1,...,85(A+2),

and there exists ¢* such that all these intervals lie on the same vertical edge w«.
Then for every v = 1,...,8s(A + 2), we can write

(r _
R, = w; (uy),
where 0 < u, < 1, and write
t, = —V1+a?j,.

Suppose first that there exist two integers v’ and v such that
1<V <V <8s(A+2) and wuy > upn. (2.19)

Since Q; ,R; , and Q; ,R; , intersect, we clearly have

R") = L.(t,) € Q\IRY.

G
Applying the forward a-flow for time —t,, then takes Q??Rﬁ to QMR and also
takes RV = L, (t,) to Lo(tyr —t,), so that L,.(t,n —t,) € QUR. Now take

Tyt

t*=t,» —t, <0. Then

2
0>t =—VI+a?(jor — jur) > VA +2) ;A *2)
Thus L(t* +t,) = L.(t*) € QU R™ | justifying the claim.

Suppose next that there do not exist two integers v’ and v such that (2.19) holds.
Then we can show as in the justification of Claim 1 that this possibility cannot take
place. It follows that there exist two integers v’ and v such that (2.19) holds, and
this completes our justification of Claim 3. U

Remark. Note that there is no split among the first [9s*(A + 2)/z,] consecutive
shifts of the open interval QR under the reverse a-flow in Claim 3, even if
this takes us back to the original vertical interval QR and beyond, as this is our
assumption. On the other hand, the conclusion of Claim 3 that there exists some
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t* < 0 such that L(t*) € QR makes one wonder what happens to QR and some
of its subintervals under the influence of the reverse a-flow. This is, however, an
unwelcome distraction. The reality is that we have found this special ¢* by proper
means, and the effect of this reverse a-flow on QR and some of its subintervals is
totally irrelevant.

In view of Claim 3, we may assume that there exists an integer k.., such that
9s*(A + 2)

Zy

1< ko < (2.20)

and the k,;-th shift under the reverse a-flow of the open interval Q) R of length
x, splits for the first time.

Suppose that the image of the open interval QU R after the first k., shifts
under the reverse a-flow now consists of a vertex of P and two intervals

Wy ., (07 yr-i—l) and Wer (1 - y:—&-h 1)7
where y, 11+ = 2r. Then we delete the bottom interval wy | (1=y’q,1), keep
the top interval wj;H(O, Yrr1) and write Q1 Ry = wj;H(O, Yri1). It then follows

from our construction that the geodesic L£(t) starting at the point R contains the
point R,., so that

R,y1 = L(t,41) for some t,,1,

where t,..1 can be positive or negative.

To estimate y,; from below, note that the point R, = wj;H(yrH) is obtained
from the point RU*Y = w; ., (z,41) by k. shifts under the reverse a-flow to the point
R™) followed by another k., shifts under the reverse a-flow from the point R().
Each shift under the reverse a-flow corresponds to a vertical descent of «, and so
the total descent is (k, + k,41)a. It follows that

{wr1 — (b + kr1)a} = yrya,

so there exists an integer ngy such that

Tr41 — (kr + k?r+1)04 — 1o = Yr+1-

Since 0 < 2,11, Y11 < 1, we then have

1(Br + Ergn)all = lzrer = grall < 21 + 91, (2.21)
so that in view of Lemma 2.1, (2.16), (2.18) and (2.20), we have
1

T 2 kr+kr — r 2 - dr

1
> — : X
- (1832(/1 +2)2 il S)) o

It is clear from (2.7) that

|
T L —
aldis) S sgaa s oy

It follows that

Yri1 = 01(A; s)a, (2.22)
where
1
As) = s 2.2
A8 = se AT oy (2.23)

We now repeat this argument on the open interval Q1R = wj;H(O, Yri1)-
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In view of a suitable analog of Claim 3, we may assume that there exists an integer
k..o such that

2
Yr+1

and the k,;o-th shift under the reverse a-flow of the open interval (), 1 R, 41 of length
Y11 splits for the first time.

Suppose that the image of the open interval Q.1 R, after the first k, o shifts
under the reverse a-flow now consists of a vertex of P and two intervals

wj»;+2 (07 yr+2) and wg,,,.+2 (1 - y:+27 1)7

where y, 1o +¥r, 5 = yr41. Then we delete the bottom interval wg;%(l —ykis, 1), keep
the top interval wj;H(O, Yri2) and write QioR, 10 = wjr,, (0,9r12). It then follows
from our construction that the geodesic L£(t) starting at the point R contains the
point R, 5, so that
R, 19 = L(t,42) for some t, o,

where ¢, can be positive or negative.

To estimate 1,2 from below, note that the point R, o = w]‘;+2(y7«+2) is obtained
from the point RUTY = w; ., (,41) by k, shifts under the reverse a-flow to the
point R followed by another kyi1 + k.o shifts under the reverse a-flow from the

point R(™. Each shift under the a-flow corresponds to a vertical descent of a, and
so the total descent is (k. + k41 + kry2)a. It follows that

{$r+1 - (kr + kry1 + kr+2)a} = Yr+2,
so the analog of (2.21) is
[(kr + Krsr + Krs2)all = [|2r41 = Yrtoll < Tpgr + Yo (2.25)
By (2.18), (2.20), (2.22), (2.23) and (2.24), we have

18s%(A +2 9s%(A + 2
Er + kg1 + kpyo < Gl )+ il )

Ly Yr+1
18s%(A +2 2454 A+ 2)3 485%(A + 2)3
<85(—1—)+3 s(+)<683(+)‘ (2.26)
Ty Ly Ty
Combining (2.25) with Lemma 2.1, (2.16) and (2.26) , we have
1
T 2 kr + kr + kr - dr 2 - 4
Yr2 2 |I( +1 w2)o| = @i (A1 2) (ks + kro1 + Forra) Lr+1
1
2\ —sara o~ a4 r-
(64834(A oy Al S)) *
It is clear from (2.7) that
1 1
Ass) < = :
i) S o565 A T 21~ (3652(A £ 202
It follows that
Yrr2 = 02(A; s)z, (2.27)
where
1 1
92 (A;s) = . (2.28)

T 129654 (A +2)%  (3652(A+2)2)2

We now repeat this argument on the open interval Q, 2R, o = wy, (0, Yri2)-
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In view of a suitable analog of Claim 3, we may assume that there exists an integer
k.3 such that
9s%(A + 2)

Yr42
and the k., 3-th shift under the reverse a-flow of the open interval @), R, of length
Yr1o splits for the first time.
Suppose that the image of the open interval @, 2R, o after the first k, 3 shifts
under the reverse a-flow now consists of a vertex of P and two intervals

Wyl o (07 yr+3) and wa.+3(1 - y:+37 1)7

where y, 3+, 3 = yr42. Then we delete the bottom interval w(g;+3(1 — Yk, 3, 1), keep

1< kyys < (2.29)

the top interval wj (0, y,13) and write Qry3R43 = wjr, (0, y,43). It then follows
from our construction that the geodesic L£(t) starting at the point R contains the
point R, .3, so that

R.i3= L(t,43) for some t,,3,

where t,.,3 can be positive or negative.

To estimate y,+3 from below, note that the point .45 = wy, (yr43) is obtained
from the point RU*Y = w; ., (¢,11) by k, shifts under the reverse a-flow to the
point R™ followed by another ki1 + ky4 2 + ky13 shifts under the reverse a-flow
from the point R"). Each shift under the a-flow corresponds to a vertical descent
of , and so the total descent is (k. + k41 + kry2 + kry3)a. It follows that

(w1 — (B + by + kg2 + kryz)a} = yrys,
so the analog of (2.21) and (2.25) is
(K + kg1 + Ko + krgs)al| = (|21 — Yrgsl] < g1 + Yrgs. (2.30)
By (2.26)—(2.29), we have
648s1(A + 2)3 N 9s%(A + 2)

kr + kr-i—l + kr+2 + kr+3 <

Ly Yr42
_ G485 (A+2)° | 116645°(A + 2)°
h Ty Ty
23328s5(A + 2)°
 BIBTANY (2.31)
Ty
Combining (2.30) with Lemma 2.1, (2.16) and (2.31) , we have
Yrys 2 ”(kr + i1+ o + kr+3)aH — Tr41
S 1
= — Xy
(A+2)(kr + ks + Firgz + rgs)
1
2 - Aa T
(2332856(A oy Al ‘9)) ’
It is clear from (2.7) that
1 1
A;s) < = :
lAi9) S 565650 (AT 20~ (3652(4 1 2)7)°
It follows that
Yrrs = 03(A; ), (2.32)
where
1 1
55(A; s) = - . (2.33)

4665655(A+2)6  (3652(A +2)2)3
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We now repeat this argument on the open interval @, 3R,13 = wﬂ+3(0’ Yri3)-
And so on.
This shift process under the reverse a-flow defines a sequence of top intervals

Qr+iRr+i = wj;+i <0, errZ'), ) 2 1, (234)
with length
Yrri = 0;(A;8)zy, (2.35)
where
1
0;(A;s) = -, 2.36
(45%) = (62 1 2) (2:36)
as long as we ensure that
1
A;s) < -, 2.37
aldis) < Goaat 2y (2.37)

Each interval in (2.34) arises when the k,,;-th shift under the reverse a-flow of the
open interval Q,.; 1R,;_1 of length y,,; 1 splits for the first time, and the integer
k.., satisfies

2

L kg AT (2.38)

Yr+i-
with the convention that y, = x,. Furthermore, the geodesic L(t) starting at the
point R contains the point R, ;, so that

R,y = L(t,y;) for some t,;,
where ¢,; may be positive or negative.

Remark. The assertions (2.35) and (2.36) can be proved easily by induction on the
parameter i. For the initial cases i = 1,2, 3, see (2.22), (2.23), (2.27), (2.28), (2.32)
and (2.33).

As there are only finitely many vertical edges in the polysquare surface P, there
will at some point be edge repetition, when there exist two integers ¢; and iy satisfying
1 < 7; < i such that the corresponding top intervals

Qr+i1 RT-H'l = wj,'a_,_il (Oa y?“-i-il) and QT-H'Q Rr+i2 = wj,ﬁ+i2 (Oa yr+i2)

lying respectively on the vertical edges wr, and Wit overlap. Thus j;,; = j; .4,
Now suppose that j* is their common value. Then

Qr+i1RT+i1 = Wy~ (07 y?"-i-il) and QT+i2RT+i2 = Wij* (07 yr+i2) (239>
Furthermore, since there are precisely s vertical edges on P, it follows that
1<ip<ipa<s+ 1. (2.40)

This means that we can take ¢ < s+ 1 in (2.37), and explains our choice of the
constant c;(A;s) given by (2.7).

Claim 4. Suppose that there exist integers i; and iy satisfying (2.40) such that the
following conditions hold:

(1) For every integer i satisfying 1 < i < i, there exists an integer k,; satisfying
(2.38) such that the top interval @, ;R,.; given by (2.34) arises when the k,,;-th
shift under the reverse a-flow of the open interval Q),.; 1R, ;1 splits for the first
time, where Q, R, = QU R,

(2) For every integer 7 satisfying 1 < i < i, the conditions (2.35) and (2.36) hold.

(3) There exists an integer j* such that the condition (2.39) holds.
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Then there is a visiting time ¢* such that 0 < [t*| < |t,4i, —tr14, | and L(t*) € QR,
where R,.;, = L(t,4;,) and R, ;, = L(t;+i,), so the conclusion of Lemma 2.2 holds
with a suitable constant co(A; s).

Justification of Claim 4. Since iy < ig, we have Y, > Yr4i,. It follows from (2.39)
that

Rr+i2 = E(tTJriz) € QT‘+i1 Rr+i1'

Applying the forward a-flow for time ¢, —¢,,;, then takes Q, 4, R,4;, to QWRM  and
also Ryyiy = L(tryiy) t0 L(t, +triiy — tryiy), S0 that L(t, +triy — tri,) € QU R,
Applying next the reverse a-flow for time t, then takes QM R™ to QR, and also
L(ty 4 trgiy, — triiy) t0 L(trpiy — trgiy ), s0 that L(44, — tr4s,) € QR. This justifies
the first assertion in Claim 4. Next, note that the open interval @, ., R,;;, arises as
a consequence of

L 952(A+2) = 9s52(A+2)
R
i=0 Yr+i i—0 51(A7 S)l’r
< 1 Z 95%(A +2)(365%(A + 2)?)

x (c1(4;8))*

consecutive shifts under the reverse a-flow of the open interval Q,1;, R, i, using

(2.17), (2.35) and (2.36). Since each shift under the reverse a-flow corresponds to a
geodesic segment of length v/1 + a® < v/2, it follows that

1 ¢~ 9V25°(A + 2)(365%(A + 2)%)’
<= '
|tr+7,2 tr+l1| S Z (Cl(A; S))S

If the constant ¢o(A;s) in Lemma 2.2 is chosen to satisfy

o S 0t

then the conclusion of Lemma 2.2 holds. O

Friivy1+ ..o+ kg, <

1=0

=0

(2.41)

Lemma 2.2 now follows if we choose ¢y(A4; s) sufficiently large to satisfy (2.15) and
(2.41). O

We have the following simple corollary of Lemma 2.2.

Lemma 2.3. Under the hypotheses of Lemma 2.2, the distance between the point
L(ty) and either endpoint QQ or R is at least
x

(A+2)co(A;5)
Proof. Note that the vertical distance between R and L(ty) is of the form
1
(A+2)n’
where n is the number of shifts under the a-flow from R to L(ty), using Lemma 2.1.

On the other hand, it is clear that n < ¢y(A4;s)/x. A corresponding lower bound for
the vertical distance between @ and L(t) comes via a symmetry argument. O

{na} = [lnall >

For convenience, we write
1
(A+2)co(A;s)

Note that this is a very small constant depending at most on A and s.

ca(A;s) =
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Let w be the left vertical edge of a fixed atomic square of the polysquare surface P.
Consider a finite segment
L(o;T)={L(t): 0< |o —t| < T}, (2.42)

centered at o, of the geodesic L(t) of slope a. Suppose that this segment intersects
w at N = N(T) points. Denote these points by

w(y;) =L(t;) ew, 1<i<N=N(T),

and arrange them in increasing order

0<yi, <Yin <...<yiy <L (2.43)
We then define the maximum gap of (2.43) by
MaxGap(I'(o; T; w)) = max (yi. — i), (2.44)

with the convention that y;, = 0 and y;,,, = 1. Using this concept, we can establish
an extension to Lemma 2.3 as follows.

Lemma 2.4. For any finite segment I'(o;T), given by (2.42), of a geodesic L(t)
of badly approzimable slope «, let MaxGap(I'(o;T;w)) = x. Then the longer finite
segment

F<0;T+ CO(A;S)) :{ﬁ(t):0<|g_t|<T+M}

x x
has the property that

MaxGap (1 (o7 + 205w} ) < (1= el

T

Iterating Lemma 2.4 sufficiently many times, we obtain the following.

Lemma 2.5. Under the hypotheses of Lemma 2.4, there exists a positive constant
c3(A; s) such that the longer finite segment

F(a;T+M) :{ﬁ(t):0<|0_t|<T+M}

X T

has the property that

MaxGap (F (0;T+ @;w)) < g

Proof of Theorem 1. Superdensity of a geodesic with badly approximable slope on a
polysquare surface P is a straightforward deduction from the discrete superdensity
of intersection points on any fixed vertical edge w of P, so it remains to establish
the latter.

Suppose that a half-infinite geodesic £(t) with badly approximable slope « visits

a point R of w, where
M
R:w(y):£(7>’

where M > 0 is sufficiently large. Note that this allows us to move forward and
backward in time from R by up to M/2 and still stay within the interval (0, M).

Consider the finite segment I'(o;T"), given by (2.42), with 0 = M/2 and T' = 0,
so that ['(o;T') contains precisely one point R. Then MaxGap(I'(o;T;w)) < 1. On
applying Lemma 2.5 with z = 1, we deduce that

M c3(A;s) 1
. . < 2
MaxGap <F ( 5 1 ,w>> S5
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Using this and applying Lemma 2.5 again with = = 1/2, we deduce that
M 3(A; 1

MaxGap (F (7, c3(A;s) + Cd(l/és>;w>) < T

Using this and applying Lemma 2.5 again with x = 1/4, we deduce that

M c3(A;s) 1
. . . < —.
MaxGap (F < 5 :3c3(A;s) + 1 w) ) < g

And so on. In general, we have

MaxGap (F (%7 (2" — 1)es(A; s);w)) < 2%

for every integer n > 1 such that (2" — 1)c3(A;s) < M/2. This clearly proves
superdensity of the intersection points on any vertical edge w of P, and completes
the proof of Theorem 1. O

3. ADAPTATION TO THE REGULAR OCTAGON SURFACE

As mentioned in Section 1, 1-direction geodesic flow on a finite polysquare surface
modulo one becomes a torus line flow on [0,1)%. We can view this observation as
a lucky reduction, since torus line flow on [0,1)? gives rise to an integrable system
with a basically complete theory.

We now study flat systems that do not enjoy such lucky reduction, and begin with
arguably the simplest non-integrable billiard in the /8 right triangle. Applying the
well known technique of unfolding, this can be shown to be equivalent to the problem
of linear flow on the regular octagon surface; see Figure 3.1.

Ay Az
A5 A2
| B
A6 Al
Aq Ag

Figure 3.1: billiard in the 7/8 right triangle and the equivalent problem
of linear flow on the regular octagon surface

To turn the regular octagon region into the regular octagon surface, we identity
opposite parallel edges, so that there are 4 pairs

(A1A27 A6A5)7 (A2A37 A7A6)a (A3A47 A8A7)7 (A4A57 AlAS)

of identified edges.

We obtain a 1-direction geodesic flow on this compact orientable surface, which is
a 16-fold covering of a billiard orbit in the 7/8 right triangle region. The unfolding
process goes as follows. Let C denote the centre of the octagon. The right triangle
A1 BC has angle /8 at the vertex C'. Reflecting the triangle A; BC' across the side
BC' is the first step of the unfolding process, and gives rise to the image A BC'
which together with the original triangle A; BC forms the triangle A; AsC. We now
reflect the triangle A;A5C across the side A;C' to obtain the image A3A>C', then
reflect the triangle A5 A3C across the side A3C' to obtain the image A4A3C, and so
on, until we end up with the regular octagon. Non-integrability is clear from the
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unfolding, since the vertices of the octagon are split-singularities of the 1-direction
geodesic flow on the surface.

The same argument can be applied to billiard in the 7/n right triangle for every
even integer n > 4, and we can show that this is equivalent to the problem of
linear flow on the regular n-gon surface, obtained from the regular n-gon region by
identifying opposite parallel edges, so that there are n/2 pairs of identified edges.
These are non-integrable systems for every even integer n > 8. The cases n = 4 and
n = 6 give rise to integrable systems.

Remark. Consider the regular n-gon surface with even integer n > 4. If n is divisible
by 4, then boundary identification gives rise to 1 vertex, n/2 edges and 1 region, so
it follows from Euler’s formula

2—%:V—E+R:1—g+1

that the genus g = n/4. If n is not divisible by 4, then boundary identification gives
rise to 2 vertices, n/2 edges and 1 region, so it follows from Euler’s formula

2—%:V—E+R:2—g+1

that the genus g = (n — 2)/4. Thus the genus ¢ = 1 when n = 4 or n = 6, for each
of which the geodesic flow is integrable, consistent with the well known fact that we
can tile the plane with squares or regular hexagons. On the other hand, the genus
g > 1 when n > 8, consistent with the well known fact that we cannot tile the plane
with regular n-gons when the even integer n > 8.

Let us return to the regular octagon surface. While it looks completely different
from a polysquare surface, there is a hidden similarity. The regular octagon surface
is in fact equivalent to a polyrectangle surface; see Figure 3.2.

a A4 C A3 b
9+ 7+

A5 A2

Aﬁ Al
e 8 d

A7 € Ag
Figure 3.2: the regular octagon surface viewed as a polyrectangle surface

The edge AsAjs is identified with the edge A;Ag. This allows us to replace the
triangle labelled 7— by the triangle labelled 74, with the two horizontal edges b
identified and the two vertical edges e identified. Likewise, the edge A4As is identi-
fied with the edge A;Ag. This allows us to replace the triangle labelled 9— by the
triangle labelled 94-, with the two horizontal edges a identified and the two vertical
edges d identified. Thus the regular octagon surface becomes a polyrectangle sur-
face consisting of 7 rectangles, labelled (1,9+),2,(3,7+),4,5,6,8. With the edge
identification, this polyrectangle surface has 2 horizontal streets

(1,94),2,(3,7+),8 and 4,5,6. (3.1)

Furthermore, if we assume that the first horizontal street in (3.1) has rectangles with
vertical edges of length 1, then the second horizontal street in (3.1) has rectangles
with vertical edges of length v/2.
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Let us relabel the vertical edges of the polyrectangle surface by w;, ¢ =1,...,7,
as shown in Figure 3.3.

As in Section 2, we let w; = w;[0,1], i = 1,2,3,4, denote the parametrizations
of the 4 vertical edges of the first horizontal street, with 0 denoting the bottom
endpoint and 1 denoting the top endpoint, and w; = w;[0, \/5], 1 = 5,6,7, denote
the parametrizations of the 3 vertical edges of the second horizontal street, with 0
denoting the bottom endpoint and v/2 denoting the top endpoint.

a c b
w1 w2 w3 Wy
Ws We wr Ws

b a

w4 w1
C

Figure 3.3: the vertical edges of the regular octagon surface
represented as a polyrectangle surface

Like before, we consider a subinterval S on a vertical edge of the polyrectangle
surface. The a-flow shifts S until it hits some other vertical edge or edges of the
surface for the first time, with image S(«a/), say. Likewise, we can look at the effect
of such a shift under the a-flow on a point w;(y) € w;, where i =1,...,7.

In view of symmetry, we may assume, without loss of generality, that 0 < o < 1.

It is clear that the upward vertical travel under such a shift is either a or v/2a,
depending on the edge where the shift begins. Thus the total upward vertical travel
after n* successive such shifts is given by

njo + ng\/ﬁa,

where n; denotes the number of shifts from the edges wy, ws, ws, w; and ny denotes
the number of shifts from the edges wo, wy, wg, so that

ni,no =0 and ny+ng =n'.

Let n3 denote the total number of times when a shift moves a point on a long vertical
edge ws, wg, w; to a point on a short vertical edge wy, ws, w3, wy, so that

0<ng<n'.

Suppose now that these n* successive shifts take us from some point w; (y) € wy to
some point w;»(y*) € w;». Then there exists some integer ny such that

[n3\/§+n47n3\/§+n4+1)7 if i = 17273747
[TL3\/§ + Ny, 713\/5 +ng + \/5), if i = 5, 6, 7,

It is then absolutely clear that

y+n1a+n2\/§a€{

Y+ nia +noV20 = y* 4 ngV2 + ny.
This leads to the crucial expression
Ut —y = nia + noV2a — nsV2 — na, (3.2)
and this allows us to make use of the quantity
|n1a 4 nov2a — ngV2|

where 0 < nq,n9,n3 < n* and ny +ng > 1.
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For the remainder of this section, we assume that the slope « satisfies

\?yg

0<a=—<1,
“T 5

and consider the algebraic number field

K= Q(\/QJ \3/3)7

of degree 6, which is the extension of Q by v/2 and /3 = 2. Note that K contains
the elements «, V2 and V2a.
Suppose that for some integer ny,

lnia + navV2a — ng\/§|| = |na+ nsvV20 — ngV'2 — ng| = w,

so that 0 < w < 1/2. Then there exists a constant ¢4 = ¢4(cr) > 0 such that v = cw
is an algebraic integer in K. Let vy,...,7s, denote the conjugates of v in K, with
71 = 7. Then the norm of v, given by N(y) = 71 ...7, i a non-zero integer in Z.
Thus |N(y)| > 1, and this implies that

w:l> L

/ - .
Cy 64"72'--")/6’

This leads to the following analog of Lemma 2.1.

Lemma 3.1. Let o = v/3/2. Then there exists a constant cs = cs(a) > 0 such that
for any integers ny,na, n3 with n? +n3 > 1, we have

C
[n1a + o200 — ngV/2|| > %5,

where N = max{|nq|, |nz|, |n3|}.

We develop here a rather straightforward adaptation of the method in Section 2.
Since Lemma 3.1 gives a much weaker bound than Lemma 2.1, we cannot expect to
be able to establish superdensity here. Nevertheless, we can still establish polynomial
time-quantitative density.

Theorem 2. Let o = +/3/2. Consider a half-infinite geodesic L(t), t > 0, of slope
a and with the usual arc-length parametrization, on the reqular octagon surface as
represented by the polyrectangle surface P as shown in Figure 3.3. Then there are
explicitly computable constants cg = cg(a) > 1 and ¢z = c7(a) > 1 such that, for
any integer n = 2 and any aligned square A of side length 1/n on P, there ezists a
real number ty such that

0<ty<cen” and L(ty) € A.

Consider the geodesic L(t) = L,(t) with slope « and starting point £(0) = R,
where R lies on a vertical edge w;, of the polyrectangle surface P. Assume that
L(t) has arc-length parametrization, and that it does not hit a vertex of P over
a sufficiently long neighborhood —T < t < T of 0. Then R = w;,(y) for some y
satisfying 0 < y < 1 if 49 = 1,2,3,4 and satisfying 0 < y < V2 if ig = 5,6,7. Let
Q) = w;,(z) be a point where 0 < z < y. We study the following question. What
can we say about the time ¢ with £(¢) € QR such that |¢| is minimum? Here QR
denotes the open interval with endpoints  and R. In other words, how long does
it take for the geodesic, starting at the point R, to visit the open interval QR of
length x = y — 2, if the geodesic can go both forward and backward?

Corresponding to Lemma 2.2, we have the following intermediate result.
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Lemma 3.2. Let a = \‘75/2 Let QR be an open vertical segment, with top endpoint
R and length 0 < x < 1/2, on a vertical edge w;, of the polyrectangle surface P
as shown in Figure 3.3. Consider a geodesic L(t) with slope o and starting point
L(0) = R. There exists explicit constants cg = cs(a) > 1 and cg = co(a) > 1 such
that there is a 2-direction visiting time t* satisfying
0 < [t*] < % and L(t) € QR.

Proof. Let Q = w;,(2) and R = w;,(y), where 0 < z <y < 1 ifip = 1,2,3,4, and
where 0 < z <y < V2 if iy = 5,6, 7.

If the shift of the open interval QR under the a-flow does not split, then there
exists an integer ¢; satisfying 1 < iy < 7 such that QR is shifted to an open interval
1Ry on the vertical edge w;,. Let us now repeat the argument with the open
interval Q1 R;. If the shift of )1 R; under the a-flow does not split, then there exists
an integer 75 satisfying 1 < 45 < 7 such that ()1 R; is shifted to an open interval Qs Ry
on the vertical edge w;,. We now repeat the argument with the open interval Q2 Rs,
and so on, until we get the first split.

Claim 1. Suppose that there is no split among the first [(30)%/cs2°] consecutive
shifts of the open interval QR under the a-flow, where QR has length 0 < x < 1/2,
and ¢; = c5(«) is the constant in Lemma 3.1. Then there is a visiting time ¢* such
that

2(30)°

C5X

0<t'< and L(t") € QR,

so that the conclusion of Lemma 3.2 holds with suitable constants c¢s = cg(«) and
cog = co(av).
Justification of Claim 1. The open intervals Q;R;, where 1 < j < (30)%/csa, all
have length x. Their total length is therefore at least

(30)°

051'4

— 1> (4+3V2)L, where L= L()ioiil : (3.3)

Note that the total length of the vertical edges of P is 4+ 3v/2 < 9. It follows easily
from the Pigeonhole Principle that there exists a point P on a vertical edge which
is covered by at least L of these open intervals (); ;. In other words, there exist
integers j,, v =1,..., L, such that

(30)°

C5°

I<in<je<...<Jjr <

such that P is contained in

le/RjU’ Vzl,...,L.

For every v = 1,..., L, the open interval Q;, R;, lies on the vertical edge w;; . It
follows that the values i;,, v = 1,..., L, are all equal to each other. Suppose that
t* is their common value. Then for every v =1,..., L, we can write

R;, = wi-(uy,),

where 0 < u, < 1 or 0 < u, < v/2, and define ¢, by writing L(t,)=R,,.
Suppose first that there exist two integers v/ and v such that

1<V <" <L and wuy > uyn. (3.4)
Since Q; , R; , and Q; , R; , intersect, we clearly have

Rjy,, = ﬁ(tyll) < ij, Rjy,.
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Applying the reverse a-flow for time ¢, then takes Q; ,R;, to QR, and also takes
R; , = L(t,n) to L(t,» —t,), so that L(t,» —t,) € QR. Now take t* = t,» —t,, > 0.
Then

s TP 2(30)°
O<t é \/5 1+Oz2(jyn—jy/) <

csxd
justifying the claim.
Suppose next that there do not exist two integers v’ and v” such that (3.4) holds.
Then we must have
U < up < ...<wur and wup—u; <z,

and a routine average computation argument shows that for at least 2L/3 of the
indices v =1, ..., L, we have

3
Uyl — Uy < % (3.5)
On the other hand, we also have
. . . . , 30)¢
J1<Jj2<...<jp and jp—ji< ( )5,
CyT

and a routine average computation argument shows that for at least 2L/3 of the
indices v =1, ..., L, we have
v =gy < 2. (3.6)
x
It follows that there must exist some index v = 1,...,L such that both (3.5)
and (3.6) hold. For this value of v, it follows from (3.2) that there exist integers
ni,ns, N3, Ny such that

Upp1 — Uy = Ny + noV2a — ngV2 — ny (3.7)

and 0 < ny,n2,n3 < Jua1 — J, and ny + ny > 1. Using Lemma 3.1 and (3.5)—(3.7),
we deduce that

3 cs c5 0
— = ||u, —u,,:na+n\/§oz—n\/§> - - > .
I H +1 ” H 1 2 3 H (.71/+1 _jy)5 (30)5
However, this leads to the inequality
(30)°
L <
10cszt

which clearly contradicts the definition of L given by (3.3).
It follows that there exist two integers v/ and v such that (3.4) holds, and this
completes our justification of Claim 1. 0

In view of Claim 1, we may assume that there exists an integer k£ such that

1<k < (30)6

csa®
and the k-th shift under the a-flow of the open interval QR of length x splits for
the first time.

Suppose that the image of the original open interval QR after the first k shifts
under the a-flow now consists of a vertex of P, a top interval w;, (0, z;) of length 24
and a bottom interval of length z7, where x; + 27 = . Since the starting point R
of the geodesic is the top endpoint of the interval QR = w;,(z,y), we shall make use
of top intervals in our subsequent argument. We distinguish two cases. Either

16 16
1 = cpx or 0<zy < cpx’ (3.8)
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where the choice of the constant

c1o = crol@) = (%)6 (3.9)

and the choice of the exponent 56 for  will be explained later.

Suppose that the first case in (3.8) holds. Then we delete the bottom interval,
keep the top interval w;, (0, z;) and write QW R®Y = wj, (0, ;). It then follows from
our construction that the geodesic L(t), t > 0, starting at the point R, contains the
point R so that

RW = £(t;) for some t; > 0.

We now repeat this argument on the open interval QM R = wj, (0,27).
In view of a suitable analog of Claim 1, we may assume that there exists an integer
k1 such that

ot

and the k;-th shift under the a-flow of the open interval Q) R of length z; splits
for the first time.

Suppose that the image of the original open interval QW R™M after the first Ay
shifts under the a-flow now consists of a vertex of P, a top interval w;,(0,z3) of
length xo and a bottom interval of length 3, where x5 + 25 = 1. We distinguish
two cases. Either

16 16
Ty = cipr] or 0 < a9 < croT) . (3.10)

Suppose that the first case in (3.10) holds. Then we delete the bottom interval,
keep the top interval w;, (0, z) and write Q®® R® = wj, (0, z). It then follows from
our construction that the geodesic L(t), t > 0, starting at the point R, contains the
point R so that

R® = L(ty) for some ty > ty.

We now repeat this argument on the open interval Q® R®?) = w;, (0, 22).
In view of a suitable analog of Claim 1, we may assume that there exists an integer
ko such that

=]

(30)

cs575

1<k <

and the ky-th shift under the a-flow of the open interval Q@ R® of length x5 splits
for the first time.

Suppose that the image of the original open interval Q) R®) after the first ko
shifts under the a-flow now consists of a vertex of P, a top interval w;,(0,z3) of
length 3 and a bottom interval of length x3, where x5 + x5 = zo. We distinguish
two cases. Either

6 6

1
or 0<a3< cloxg .

(3.11)

Suppose that the first case in (3.11) holds. Then we delete the bottom interval,
keep the top interval wj, (0, z3) and write Q©) R® = w, (0, z3). It then follows from
our construction that the geodesic L(t), t > 0, starting at the point R, contains the
point R®) so that

51
Ty = CloTy

R(g) = E(tg) for some tg > t2.

We now repeat this argument on the open interval Q¥ R®) = wj, (0, z3).
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And so on, assuming that at each step, the first case in the corresponding analog
of (3.8), (3.10) and (3.11) holds.
This forward shift process under the a-flow defines a sequence of top intervals
QURY = w; (0,z;), i>1, (3.12)

each of which arises when the k;_;-th shift under the a-flow of the open interval
QU=DRE=D of length x;_1 splits for the first time, and the integer k;_, satisfies

30)6
<y < 5) . (3.13)
C5li g
The lengths z; of these intervals (3.12) satisfy
T = crorl (3.14)

with the convention that zq = x. Furthermore, the geodesic L(t), t > 0, starting at
the point R, contains the point R®, so that

RW = L(t;) for some t; > t; 1,

where t5 = 0.

As there are only finitely many vertical edges in the polyrectangle surface P,
there will at some point be edge repetition, when there exist two integers i; and s
satisfying 1 < 41 < 79 such that the corresponding top intervals

QU R — wj,, (0,2;,) and QU2 RU2) — w;,, (0, 24,)

lying respectively on the vertical edges wj, and wj, , overlap. Thus j;, = j;,. Now
suppose that j* is their common value. Then

QURM = . (0,2;,) and QU R = 1w (0, ;). (3.15)
Furthermore, since there are precisely 7 vertical edges on P, it follows that

Claim 2. Suppose that there exist integers i; and iy satisfying (3.16) such that the
following conditions hold:

(1) For every integer i satisfying 1 < i < iy, there exists an integer k;_; satisfying
(3.13) such that the top interval QW R®) given by (3.12) arises when the k;_;-th
shift under the a-flow of the open interval QU~V R gplits for the first time,
where QO R® = QR.

(2) For every integer i satisfying 1 < i < iy, the condition (3.14) holds, where
o= T.

(3) There exists an integer j* such that the condition (3.15) holds.

Then there is a visiting time ¢* such that 0 < ¢t* < t;, and L(t*) € QR, where
R2) = L(t;,), and the conclusion of Lemma 3.2 holds with suitable constants cg =
cs(a) and ¢g = cy(a).

Justification of Claim 2. Since i; < is, we have z;, > x;,. It follows from (3.15) that
R® = £(t;,) € QU R,

Applying the reverse a-flow for time ¢;, then takes Q@ R(Y) to QR, and also takes
R2) = L(t;,) to L(t;,—t;,), so that L(t;,—t;,) € QR. This justifies the first assertion
in Claim 2. Next, note that the open interval Q2 R(2) arises as a consequence of
7
(30)8 _
E+ki+...+k, 1< .. ;3%5
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consecutive shifts under the a-flow of the open interval QR, using (3.13). Since
each shift under the a-flow corresponds to a geodesic segment of length /1 + a2 or
V2v/1 + a2, both less than 2, it follows that

2(30)5
ti, < (30) > (3.17)

c
5 =0

Finally, note that the finite sum in (3.17) can be bounded by a polynomial in 2~

with non-negative coefficients depending at most on ¢;p = c¢19(), in view of (3.14).
It is then clear that the conclusion of Lemma 3.2 holds with suitably chosen constants
cs = cg(a) and cg = co(av). O

Suppose next that before edge repetition takes place, the condition (3.14) fails.
More precisely, suppose that r satisfying 0 < r < 7 is the smallest integer ¢ such
that Tiy1 < CloiC?w. Then

516

Try1 < C10T, (3.18)
and
516 .
Ty = CoT;_q, t=1,...,m7,
with x¢o = x. Furthermore, there exists an integer k, such that
30)6
1<k < % (3.19)
C5,.

and the k,-th shift under the a-flow of the open interval Q") R(™ of length z, splits for
the first time, with the image consisting of a vertex of P, a top interval wj, ., (0, z,41)
of length z,,; and a bottom interval of length z7 ,, where x, 1 + 27, = z, and
(3.18) holds.

We now start with the interval QU R = w; (0, x,) and apply the reverse a-flow
until it splits for the first time on a vertical edge. We have the following analog of
Claim 1. The justification is similar to that of Claim 1 in this section or Claim 3 in
Section 2.

Claim 3. Suppose that there is no split among the first [(30)®/cs2] consecutive
shifts of the open interval QR under the reverse a-flow, where Q" R(") has
length z, > 0, and ¢5 = c5(«) is the constant in Lemma 3.1. Let £,.(t) = L(t + t,)
for every ¢t < 0. Then there is a visiting time ¢* such that

2(30)8
0>t"> —<—5> and L.(t") € QWRM,
C5T,.

i.e. L(t* +t,) € QMWRM. Applying the reverse a-flow for time ¢, then leads to
L(t*) € QR, so that the conclusion of Lemma 3.2 holds with suitable constants
cs = cg(a) and cg = co(a).

It is clear that we can assume that the constant ¢; = ¢5(«) in Lemma 3.1 satisfies

0<ecy <.

We thus make this assumption for the rest of our discussion here.
In view of Claim 3, we may assume that there exists an integer k,.,; such that

(30)°

C5TD

1< kot < (3.20)

and the k,,-th shift under the reverse a-flow of the open interval Q) R of length
x, splits for the first time.
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Suppose that the image of the open interval Q") R(") after the first &, shifts under
the reverse a-flow now consists of a vertex of P, a top interval wy,, (0, yy,+1) of length
yr+1 and a bottom interval of length vy, ,, where y,41 + ;. ; = x,. Then we delete
the bottom interval, keep the top interval and write Q, 1 R,11 = wj;H(O,y,.H). It
then follows from our construction that the geodesic L(t) starting at the point R
contains the point R, 1, so that

R.i1 = L(t,41) for some t,,1,
where ¢, can be positive or negative.
To estimate .1 from below, note that the point R, = qufnﬂ(yrﬂ) is obtained
from the point RU*Y = w; , (,11) by k, shifts under the reverse a-flow to the point

R followed by another k,,; shifts under the reverse a-flow from the point R,
Using (3.19) and (3.20), we see that

2(30)° _ 26(30)6 _ <@)6$5 (3.21)

< :
C5TD S’ Cs "

kr + kr+1 <

Meanwhile, it follows from (3.2) that there exist integers nq, ns, ng, ng4 such that

Y1 — L1 = M+ 1oV 200 — n3V/2 — ny,
with |ni|, [nal, [n3] < k. + k.41 and n? + n3 > 1, so that

Yri1 = |nia+ naV2e — ngV2|| =z

It then follows from Lemma 3.1 and (3.21) that
31
05 C5 25
Z = — Tr1 2 35730 8r — Lr
y’f‘+1 (k‘,r + kr+1)5 z +1 230(30)30‘7; z +1

36 36

% 2% _ (% 25
> SR(zoym () = (3:22)
provided that

36 36
C Cr
Traq < — 5 2 = (—) .7725

236(30y%6 " — \go/ T
a condition that is clearly satisfied, in view of (3.9) and (3.18).

We now repeat this argument on the open interval @, 1 R,11 = wj;H(O, Yri1)-

In view of a suitable analog of Claim 3, we may assume that there exists an integer
k..o such that
(30)8
0591?-1-1
and the k,,o-th shift under the reverse a-flow of the open interval ), R, of length
Yr11 splits for the first time.

Suppose that the image of the open interval Q)1 R, 1 after the first k, o shifts
under the reverse a-flow now consists of a vertex of P, a top interval wj;+2(0, Yri2)
of length y,,» and a bottom interval of length ¥y, ,, where y,o + yi o = yrp1.
Then we delete the bottom interval, keep the top interval and write Q, 2R 12 =
wjr (0, Yr42). 1t then follows from our construction that the geodesic L(¢) starting
at the point R contains the point R, o, so that

1< ks < (3.23)

R, 19 = L(t,2) for some t, 9,

where t,.,5 can be positive or negative.
To estimate y,;o from below, note that the point R, o = wj;”(yr“) is obtained

from the point R"*Y = w; , (2,11) by k, shifts under the reverse a-flow to the
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point R followed by another k,,; + k,.o shifts under the reverse a-flow from the
point R, Using (3.21)—(3.23), we see that

26(30)° 306 26(30)6  2180(3())186
kr+kr+1+kr+2< (6 ) ( ) < ( ) ( )

5 5 X7 6.5 181,125
C5Ly C5Yrt1 C5 Ty C5 Ty
216 216 216
< % ~ (@ z, 1 (3.24)
cz'0x 125 s

Meanwhile, it follows from (3.2) that there exist integers nq, ns, ng, ng4 such that
Yrio — Tpp1 = M + 1oV 20 — n3V/2 — ny,
with [n1], [na|, [ns| <k + kry1 + kry2 and nf +n3 > 1, so that
Yrio = ||maa + noV20 — ngV2|| — 1.

It then follows from Lemma 3.1 and (3.24) that
1081

Yr+2 Z “ — Tyry1 P> C5—x625 — Xri
ez (kr + kg + kig2)® T+l = 21080(3())1080" r—+
1296 1296
% 625 _ (G5 625
> eyt = () (3.25)
provided that
3% 625 (C5\1296 oo
Tr1 < er = <@> 7,

a condition that is clearly satisfied, in view of (3.9) and (3.18).
We now repeat this argument on the open interval Q, s R,12 = wyr ., (0, Yri2).
And so on.
This shift process under the reverse a-flow defines a sequence of top intervals

Qrrillri = wyr, (0,yr4i), 021 (3.26)

Each interval in (3.26) arises when the k,;-th shift under the reverse a-flow of the
open interval Q,,; 1R, ;1 of length y,;, 1 splits for the first time, and the integer
k.., satisfies

(30)°
C5y§+i71 7

with the convention that y,. = x,. It is not difficult to prove by induction on ¢ that

1< kss < (3.27)

60\ i
kr 4 kppr + ...+ kpys < (—) x> (3.28)
Cs
and that
Cy 6> 521
vz () o (3.29)
provided that
621' o
Tpyq < (g—g) x> (3.30)

a condition that is clearly satisfied, in view of (3.9) and (3.18), if i < 8. Note that
(3.21) and (3.24) represent the inequality (3.28) when ¢ = 1,2 respectively, while
(3.22) and (3.25) represent the inequality (3.29) when ¢ = 1, 2 respectively.

Furthermore, the geodesic L(t) starting at the point R contains the point R,.;,
so that

R, = L(t,4;) for some t,;,
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where t,,; may be positive or negative.

As there are only finitely many vertical edges in the polyrectangle surface P,
there will at some point be edge repetition, when there exist two integers ¢; and i
satisfying 1 < i; < i5 such that the corresponding top intervals

Qri iy = wir (0, 4r4i,)  and - Qi Brgiy = wjr (0, Yri)

lying respectively on the vertical edges wr, and Wit overlap. Thus j,,; = j;.s,-
Now suppose that j* is their common value. Then

Qr+i1 Rr+i1 = Wy~ (07 yr—i—h) and QT-‘riQRT-HQ = Wiy (07 yT+i2> (331>
Furthermore, since there are precisely 7 vertical edges on P, it follows that

This and (3.30) explain our choice of the constant c¢19 = cjp() given by (3.9), as
well as our choice of the exponent 5' in (3.8) and its analogs.

Claim 4. Suppose that there exist integers i; and iy satisfying (3.32) such that the
following conditions hold:

(1) For every integer i satisfying 1 < i < i, there exists an integer k,; satisfying
(3.27) such that the top interval Q,,;R,.; given by (3.26) arises when the k,,;-th
shift under the reverse a-flow of the open interval Q,,; 1R, ;1 splits for the first
time, where Q, R, = QMR

(2) For every integer i satisfying 1 < ¢ < g, the condition (3.29) holds.

(3) There exists an integer j* such that the condition (3.31) holds.

Then there is a visiting time ¢* such that 0 < |t*| < |t,44, —tr44, | and L(t*) € QR,
where R,.;, = L(t,4;,) and R, ;, = L(t;+i,), so the conclusion of Lemma 3.2 holds
with suitable constants cg = cg(a) and cg = co().

The justification is similar to that of Claim 2 in this section or Claim 4 in Section 2.
Lemma 3.2 now follows if we choose the constants cs = cs(@) and cg = cy(a)
appropriately. O

We have the following simple corollary of Lemma 3.2. The proof uses Lemma 3.1.

Lemma 3.3. Under the hypotheses of Lemma 3.2, the distance between the point
L(ty) and either endpoint Q or R is at least

C12
C11x 7,

where the positive constants c;1 = c11(a) and c12 = cia(«) depend at most on the
constant cs = cs(a).

Let w be a vertical edge of the polyrectangle surface P as shown in Figure 3.3.
As in Section 2, we can consider a finite segment I'(o;7T), given by (2.42), of the
geodesic L(t), and the maximum gap MaxGap(I'(o; T; w)) defined by (2.44). Using
this concept, we can establish an extension to Lemma 3.3 as follows.

Lemma 3.4. Let o = /3/2. For any finite segment T'(o;T), given by (2.42), of a
geodesic L(t) of slope «, let MaxGap(I'(o; T;w)) = x with 0 < © < 1/2. Then the
longer finite segment

F<a;T+ﬁ> - {E(t) 0< |o— 1 <T+C—8}
e T
has the property that
MaxGap (F (a; T+ C—i;w)) <o — 2.
a;-C

Iterating Lemma 3.4 sufficiently many times, we obtain the following.
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Lemma 3.5. Under the hypotheses of Lemma 3.4, there exists positive constants
c13 = ciz(@) and c14 = ci4(a) such that the longer finite segment

F(O’;T—}—%) :{E(t):0§|a—t\§T+ 613}
xC

rcla

has the property that
x
oL
We can now deduce Theorem 2 from Lemma 3.5 in the same way as we deduce
Theorem 1 from Lemma 2.5 at the end of Section 2.

MaxGap (F <0;T + Cﬁ;@u)) <
Trcll4

4. EXTENSION TO ALGEBRAIC POLYRECTANGLES

Since the slope a = v/3/2 in Theorem 2 is irrational, it follows from a celebrated
result of Veech that a half-infinite geodesic of slope v on the regular octagon surface
is uniformly distributed on the surface. However, the result of Veech unfortunately
does not say anything about the time-quantitative behavior of such a geodesic. This
is due to the fact that the proof uses ergodic theory. More precisely, ergodicity of
some relevant transformation is established, and then Birkhoft’s ergodic theorem is
applied. But Birkhoft’s ergodic theorem does not have any explicit error term.

The interesting point of Theorem 2 is that this is a time-quantitative result. It
also has far-reaching generalization to algebraic polyrectangle surfaces. For such a
surface, there is a net of the surface on the plane with the following two properties:

(i) The net is a rectangular polygon, possibly with holes inside.

(ii) The coordinates of all the vertices are algebraic numbers.

We call such a net an algebraic net of the surface.

We can study geodesic flow on an arbitrary algebraic polyrectangle surface. Using
the standard 4-copy construction trick, we can reduce the problem if necessary to
one concerning 1-direction geodesic flow on an arbitrary algebraic polyrectangle
translation surface. With a straightforward generalization of the proof of Theorem 2,
one can establish the following result.

Theorem 3. Let P be an algebraic polyrectangle translation surface, and let L(t)
be a 1-direction geodesic on P such that the slope o is an algebraic number. Let K
denote the smallest extension of Q that contains the coordinates of all the vertices of
an algebraic net of P, and suppose that a & K. Then there are explicitly computable
positive constants c15 = c15(P; ) and c16 = c16(P; ) such that, for any integer
n > 2 and any aligned square A of side length 1/n on the surface P, there exists a
real number ty such that

0 < to < 61571016 and E(to) € A.

In view of unfolding, the same holds for any billiard on an algebraic polyrectangle
table P, where the initial slope is an algebraic number independent of the number
field generated by P.

Theorem 2 is clearly a special case of Theorem 3. Suppose that in Figure 3.2, the
vertex Ag has coordinates (0,0), and the vertex As has coordinates (0,/2). Then
the coordinates of all the vertices of this algebraic net in Figure 3.2 are all in the
quadratic field Q(v/2), and it is clear that the cubic slope a = v/3/2 is not in this
number field.

The class of algebraic polyrectangle translation surfaces is large. For instance,
every regular polygon billiard is equivalent to a 1-direction geodesic flow on one of
these surfaces. Note that the same holds for any Veech surface.

It is interesting to mention that for the family of street-rational polyrectangle
surfaces, we can prove stronger results, at least for an explicit countable set of slopes.
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Here we can establish superdensity and also determine the irregularity exponent
which represents a precise form of time-quantitative uniformity; see [2, 3, 4, 5].
Note that this family also contains every regular polygon billiard surface and every
Veech surface.

These are the two general classes of flat surfaces for which we can prove time-
quantitative results concerning the long-term behavior of geodesic flow. These will
be discussed in our first monograph in progress.
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