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ABSTRACT. An interesting result of Veech more than 50 years ago is a parity, or
mod 2, version of the Kronecker-Weyl equidistribution theorem concerning the
irrational rotation sequence {ga}, ¢ = 0,1,2,3,.... If « is badly approximable
and b € (0,1) satisfies b # {ma} for any m € Z, then the parity of cardinalities of
the sets {1 < g < N :{qa} €[0,b)} as N — oo is evenly distributed.

We first answer a question of Veech and establish a stronger form of the mod n
analog of his result (Theorem 3.1). Furthermore, for irrational o and b = {ma}
for some m € N, we give a simple yet precise characterization of those cases that
give rise to even distribution (Theorem 2.1). We also obtain time-quantitative
description of some very striking violations of uniformity — this part is particularly
number theoretic in nature, and involves Ostrowski representations of positive
integers and a-expansions of real numbers (Theorem 3.4).

The Veech discrete 2-circle problem can also be visualized as a problem that
concerns 1-direction geodesic flow on a surface obtained by modifying the surface
comprising two side-by-side squares by the inclusion of symmetric barriers and
gates on the vertical edges, with appropriate modification of the vertical edge
identifications. We establish a far-reaching generalization of this case to ones
that concern 1-direction geodesic flow on surfaces obtained by modifying a finite
square tiled translation surface in analogous but not necessarily symmetric ways
(Theorem 3.2).

1. INTRODUCTION

Our starting point is the famous Kronecker-Weyl equidistribution theorem which
refers to the uniformity result concerning the irrational rotation sequence.

This says that the sequence {qa}, ¢ =0,1,2,3,..., where « is irrational and {z}
denotes the fractional part of z, is uniformly distributed in the unit interval [0, 1),
so that for any subinterval [a,b) C [0,1), we have

) 1
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1<g<N
{qa}ela)

It is easy to show that (1.1) holds for all [a,b) C [0, 1) if and only if it holds for all
[0,0) C [0,1). Furthermore, we can consider the more general sequence {7 + qa},
q=0,1,2,3,..., with an arbitrary starting point 7 € [0,1). Then for any 7 € [0,1)

and b € [0,1), we have
) 1
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1<q<N
{r+qa}€(0,b)

This sequence is called the irrational rotation sequence because if we take a circle
with circumference 1 and radius 1/27, then the unit interval can be represented by
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this circle, and moving from one term to the next corresponds to an anticlockwise
rotation by an angle 2w, as shown in Figure 1.1.

{2a} {9a}
{o}
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Figure 1.1: the irrational rotation sequence

The uniformity result concerning the irrational rotation sequence is the first
equidistribution type result, proved independently by Bohl, Sierpinski and Weyl
around 1910, followed soon by the multidimensional version and also the continuous
version concerning the torus line, both due to Weyl. And of course Birkhoff’s ergodic
theorem, proved about 20 years later, says that in general every ergodic measure-
preserving transformation is a rich source, namely that it provides half-infinite orbits
that exhibit equidistribution relative to the invariant measure.

An interesting problem studied about 50 years ago by Veech [15] is the following
parity, or mod 2, version of the classical equidistribution theorem. Take two copies
of the circle with circumference 1 and radius 1/27, and mark off a segment [0, b) of
length b in the anticlockwise direction on each circle. Let J; = J;(b) denote this
segment, on the first circle and let Jy, = Jy(b) denote this segment on the second
circle. We now take an irrational number «, and consider the discrete dynamical
system illustrated in Figure 1.2.

T P & )

S1 S4

Figure 1.2: the parity version of the classical equidistribution theorem

Start with an arbitrary point sq on the first circle C';. Rotating in the anticlockwise
direction by an angle 2w, we arrive at a point s;. If s; does not lie on J;, then we
leave it where it is. If sy lies on J;, then we move it to the corresponding point on
the second circle Cs.

In general, suppose that the point s; lies on the circle C, where j = 1,2. Rotating
in the anticlockwise direction by an angle 2wa, we arrive at a point s;1. If s;41
does not lie on J;, then we leave it where it is. If s, lies on J;, then we move it to
the corresponding point on the other circle Cy, where k € {1,2}\ {j}.

Clearly the sequence sg, s1, S2, S3, ... keeps alternating between the two circles.
The problem is to describe the distribution of this half-infinite orbit on the union of
the two circles, and find cases that exhibit equidistribution.
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There are at least two different ways of visualizing the Veech discrete 2-circle
system as a continuous flat dynamical system. This is motivated by the observation
that the problem of torus lines with irrational slopes in the unit square as well as
the problem of point billiards with initial irrational slopes on a square table are
basically equivalent continuous representations of the problem concerning discrete
irrational rotation sequences. More precisely, the 1-dimensional irrational rotation
sequence arises from these two continuous 2-dimensional flat dynamical systems with
irrational slopes via discretization, the general method of converting the problem of
describing the distribution of a continuous orbit to the discrete problem of studying
where the orbit hits the boundary.

We first discuss a simple continuous system which gives arguably the best way
to visualize the Veech discrete 2-circle system. In this simple continuous model, we
replace the 2-circle underlying set by a flat surface, and replace the discrete orbit by
a geodesic, or generalized torus line. This flat surface, which we call the 2-square-b
surface, is constructed from joining two unit squares side by side and adding an
extra vertical barrier, a wall of length 1 — b between them, as shown in Figure 1.3.
The vertical complement of the barrier, indicated by the line in light gray, is a b-size
gate, or b-gate, in the middle which makes it possible to travel from one square to
the other. To make this a surface, we identify pairs of boundary edges with the same
label via perpendicular translation. Note that the two sides of the vertical barrier
in the middle are different edges. Note also that the 2-square-b surface actually has
two b-gates. Apart from the obvious one in the middle, there is a second b-gate on
the far right vertical edge v; which is identified with the far left vertical edge v;.
This is a b-gate, as it is clear that a geodesic that reaches the far right vertical edge
vy continues from the corresponding point on the far left vertical edge vy, and in
doing so, passes from the right square to the left square.

hl h2
1 9 1
Vg V2| U3 v3
be { J))
U1 U1
0 . 0
0 hi 1 ho 2

Figure 1.3: 2-square-b surface

Since the 2-square-b-surface is a flat translation surface, geodesics on this surface
are 1-direction generalized torus lines. If the slope of a geodesic is «, then we call it
an a-geodesic or a-line.

Let us now clarify the connection between the Veech discrete 2-circle system in
Figure 1.2 and the 1-direction geodesic flow with slope a on the 2-square-b surface
in Figure 1.4.

First of all, we can represent the two circles in Figure 1.2 by two circles in the
vertical direction in Figure 1.4. We can first view the far left edges v; and vy of the
2-square-b surface as forming a circle, due to the identification of the point (0,0) at
the bottom with the point (0, 1) at the top. Thus we visualize the left vertical edge
of the left square of the 2-square-b surface as the left circle in Figure 1.2.
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We can next view the middle edge v3 and the b-gate below it of the 2-square-b
surface as forming a circle, due to the identification of the point (1,0) at the bottom
with the point (1,1) at the top. Thus we visualize the left vertical edge of the right
square of the 2-square-b surface as the right circle in Figure 1.2.

0 hi 1 ho 2
Figure 1.4: a geodesic with slope o on the 2-square-b surface

Indeed, we can go back and forth between Figures 1.2 and 1.4.

Consider the point sg on the left circle in Figure 1.2. Based on the representation
of the two circles just discussed, we find sy on the left vertical edge of the left square
of the 2-square-b surface as shown in Figure 1.4, and sy is the initial point of the
geodesic segment 1. The point s; is obtained from sy by rotating in the anticlockwise
direction by an angle 2ma, and we see from Figure 1.2 that it does not lie on J;, so
it stays on the left circle. Now the point s; is related to the terminal point of the
geodesic segment 1. As shown in Figure 1.4, this terminal point lies on the edge
vy in the middle, but in view of the identification of the edges vs, we can place the
point s; on the left vertical edge of the left square of the 2-square-b surface that
corresponds to the left circle.

As shown in Figure 1.4, s is the initial point of the geodesic segment 2. The point
s9 is obtained from s; by rotating in the anticlockwise direction by an angle 27,
and we see from Figure 1.2 that it lies on Jp, so it moves to the corresponding point
on the right circle. Now the point s is related to the terminal point of the geodesic
segment 2. As shown in Figure 1.4, this terminal point lies on the b-gate in the
middle, on the left vertical edge of the right square of the 2-square-b surface that
corresponds to the right circle.

As shown in Figure 1.4, s is the initial point of the geodesic segment 3. The point
s3 is obtained from sy by rotating in the anticlockwise direction by an angle 27,
and we see from Figure 1.2 that it does not lie on J5, so it stays on the right circle.
Now the point s3 is related to the terminal point of the geodesic segment 3. As
shown in Figure 1.4, this terminal point lies on the edge v3 on the right, but in view
of the identification of the edges vs, we can place the point s3 on the left vertical
edge of the right square of the 2-square-b surface that corresponds to the right circle.

And so on.

There is a fundamental difference between torus line flow on a square and geodesic
flow on the 2-square-b surface. Torus line flow in a square, or in any cube of higher
dimensions, exhibits remarkable stability and predictability, where two particles
moving on two parallel torus lines and close to each other with the same speed
remain close forever. Thus such dynamical systems are said to be integrable.

How about the analogous question for geodesic flow on the 2-square-b surface?
Here, there are singular points, and two particles moving with the same speed on
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two parallel geodesic segments close to each other do not remain close forever after
they pass through opposite sides of a split singularity, as shown in Figure 1.5.

h1 h2

U3

U1

ha ha
Figure 1.5: singular points on the 2-square-b surface

Thus this dynamical system is said to be non-integrable.

We next discuss the second model, a billiard system due to Masur. Billiards have
the advantage that they represent a more-or-less legitimate mechanical system, one
step closer to physics. The billiard table in this second model is the underlying
double-square of the 2-square-b surface. For convenience, we take a copy scaled by
half, as shown in the picture on the left in Figure 1.6.

The billiard flow is a 4-direction flow. The well-known trick of unfolding, first
introduced by Koénig and Sziics [6] in 1913, converts the 4-direction billiard flow on
the table in the picture on the left in Figure 1.6 to a 1-direction linear flow on the
corresponding 4-copy flat surface, obtained by a reflection across the right vertical
side, followed by a reflection of the whole image across the top horizontal side, as
shown in the picture on the right in Figure 1.6. Here the left and right vertical edges
are identified, the top and bottom horizontal edges are identified, and the two sides
of the two walls are appropriately identified as shown.
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Figure 1.6: the underlying double-square of the 2-square-b surface

and a torus with two vertical walls

In particular, the right side of the left wall and the left side of the right wall,
both indicated by +, are identified, while the left side of the left wall and the right
side of the right wall, both indicated by —, are identified. Now a torus has genus 1.
However, with the two walls, the surface in the picture on the right in Figure 1.6
has genus 2. And 1-direction geodesic flow on this surface is a 4-fold covering of
billiard flow on the table in the picture on the left in Figure 1.6.

Let us now clarify the connection between the Veech discrete 2-circle system in
Figure 1.2 and the 1-direction geodesic flow with slope a on the torus with two
vertical walls in Figure 1.7.
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Figure 1.7: a geodesic with slope o on the torus
with two vertical walls in the middle

First of all, we can represent the two circles in Figure 1.2 by two circles in the
vertical direction in Figure 1.7. We can first view the right side of the left wall and
its vertical extension to the points (1/2,0) and (1/2,1) as forming a circle, with the
extension forming the b-gate, due to the identification of the point (1/2,0) at the
bottom with the point (1/2,1) at the top. Thus we visualize this as the left circle
in Figure 1.2.

We can next view the right side of the right wall and its vertical extension to
the points (3/2,0) and (3/2,1) as forming a circle, with the extension forming the
b-gate, due to the identification of the point (3/2,0) at the bottom with the point
(3/2,1) at the top. Thus we visualize this as the right circle in Figure 1.2.

Indeed, we can go back and forth between Figures 1.2 and 1.7.

Consider the point sg on the left circle in Figure 1.2. Based on the representation
of the two circles just discussed, we find sy on the right side of the left wall in
Figure 1.7, and sq is the initial point of the geodesic segment 1. The point s is
obtained from sy by rotating in the anticlockwise direction by an angle 27w, and
we see from Figure 1.2 that it does not lie on Ji, so it stays on the left circle. Now
the point s; is related to the terminal point of the geodesic segment 1. As shown in
Figure 1.7, this terminal point lies on the left side of the right wall, but in view of
the identification of the left side of the right wall with the right side of the left wall,
we can place the point s; at the corresponding position on the right side of the left
wall. This corresponds to the left circle.

As shown in Figure 1.7, s; is the initial point of the geodesic segment 2. The point
s9 is obtained from s; by rotating in the anticlockwise direction by an angle 27,
and we see from Figure 1.2 that it lies on Ji, so it moves to the corresponding point
on the right circle. Now the point s, is related to the terminal point of the geodesic
segment 2. As shown in Figure 1.7, this terminal point lies on the extension of
the right side of the right wall that forms the b-gate. This corresponds to the right
circle.

As shown in Figure 1.7, s, is the initial point of the geodesic segment 3. The point
sz is obtained from sy by rotating in the anticlockwise direction by an angle 27,
and we see from Figure 1.2 that it does not lie on Js, so it stays on the right circle.
Now the point s3 is related to the terminal point of the geodesic segment 3. As
shown in Figure 1.7, this terminal point lies on the left side of the left wall, but in
view of the identification of the left side of the left wall with the right side of the
right wall, we can place the point s3 at the corresponding position on the right side
of the right wall. This corresponds to the right circle.

And so on.
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For the rest of this paper, we shall represent the Veech discrete 2-circle system as
1-direction geodesic flow on the 2-square-b surface.

The most natural question is the following. Since we are not interested in periodic
orbits, we shall always assume that the slope « is irrational.

Question 1. Let a be an irrational number. When can we guarantee that every
half-infinite a-geodesic on the 2-square-b surface is uniformly distributed?

An infinite discrete or continuous orbit is uniformly distributed if, given a nice
test set A, the asymptotic proportion of time the orbit visits A is equal to the
relative area of A. A classical result of Weyl [18] then says that it does not make
any difference in the definition of uniformity of an infinite discrete or continuous
orbit in the 2-dimensional case whether we choose the family of nice test sets to be
(i) the class of all triangles, or (ii) the very different class of all circles, or (iii) the
much larger class of all Jordan measurable sets which contains both (i) and (ii).

We recall that Jordan measurable means that the 2-dimensional Riemann integral
of the characteristic function of the set is well defined.

In this paper uniformly distributed and equidistributed have the same meaning.

We can assume that the irrational number « satisfies 0 < a < 1. To see this, let
n € Z be an arbitrary non-zero integer. Starting from the same point on a vertical
edge of the 2-square-b surface, it is clear that the a-geodesic and the corresponding
(v + m)-geodesic intersect the three vertical edges of the 2-square-b surface at the
same points. Thus if the a-geodesic is equidistributed on the 2-square-b surface,
then the corresponding (a 4+ n)-geodesic is also equidistributed on the 2-square-b
surface, and wvice versa.

We shall formulate the main results of this long paper in Section 3. Before that,
we discuss in Section 2 the interesting special case when b = {ma} for some non-zero
integer m € Z. This special case, not considered by Veech [15], is in part simple
and in part difficult.

Recall that geodesic flow on the 2-square-b surface is non-integrable, in view of the
singularities in the orbit space, making it difficult to predict the long-term behavior
of any given half-infinite geodesic. Assuming that a particle moves on the geodesic
with constant speed, it is often difficult to predict which square contains the particle
at any given time instance ¢, when ¢ is large. On the other hand, there are only
two candidates for the location of the particle, with one in each square, since the
a-flow on the 2-square-b surface modulo 1 reduces to a torus line in the unit square,
giving rise to a well-predictable integrable system, namely, a straight line on the
plane modulo 1. So the difficult question is which one of these two candidates is the
true location of the particle.

The special case when b = {ma} for some non-zero integer m € Z is simple, in
the sense that there is a particularly simple and efficient algorithm that answers the
question of which square. Indeed, this question is equivalent to the following number-
theoretic parity type problem. Consider the infinite irrational rotation sequence

sq={7+¢qa}, ¢=0,1,2,3 ...,

with arbitrary starting point 7 > 0. For every N € N, let U(«; 7;b; N) denote the
number of integers ¢ satisfying 0 < ¢ < N — 1 such that 0 < s, < b. It is easy to
see that the parity of W(«;7;b; N) answers the question of which square contains
the particle. This follows from discretization of the a-geodesic and studying the
consecutive intersection points on the vertical edges of the 2-square-b surface. Note
that an a-geodesic moves from one square to the other if and only if it crosses one of
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the two b-gates, and any two consecutive gate crossings always happen with different
b-gates.
We first consider the special case 0 <b=«a <1 and 7 =0. For N > 2, we have

(03035 N) = [(N = 1)al, (1.2)

where [5] denotes the upper integral part of a real number 5. To see this, consider
the numbers

T+qa, 0<qg<N-—1 (1.3)

Clearly they fall into the interval [0, [(N — 1)«]]. Now for every integer n satisfying
0 <n < [(N—=1)a], there is a unique number in (1.3) such that 7+ qa € [n,n+«a),
so that 0 < s, < b. On the other hand, 0 < s, < b if and only if 7 + g € [n,n + )
for some integer n satisfying 0 < n < [(N — 1)«].

A somewhat similar argument shows that for every integer N > 2, we have

{7} + (N —1Da], if0<{7} <D,
{7} + (N -1, ifb< {7} <1,

where || denotes the lower integral part of a real number §. Note that in the first
case 0 < {7} < b, the first term sy < b, whereas in the second case b < {7} < 1, the
first term s¢ > b.

We next consider the special case 0 < b = {2a} < 1 and 7 = 0. Here we apply
(1.4) to each of the two subsequences

U(a;1;0;N) = { (1.4)

S0, 52,84, S6,--. and Sy, S3, 55,57, ..,

with the same gap b = {2a}.
Suppose first that 0 < o < 1/2, so that b = {2a} = 2a. Then

W(a:0: {2a}: N) = H%J 24 + [a 4 L?J 24 | (1.5)

Note here that s; = a < 2a = b.
Suppose next that 1/2 < a < 1, so that b = {2a} = 2a — 1. Then

W(a: 0; {20}: N) = H%J (20 — 1)} + {a + {%J (20 — 1)J e

Note here that s; = a > 2a — 1 = b.
For the special case 0 < b = {3a} < 1, we apply (1.4) separately to each of the
three subsequences

50,53, 56,59, - - 51, 84, 87,5105 - - - » 52, 85,58, 511, - -+

with the same gap b = {3a}.

And so on. In general, for any b = {ma}, where m € 7Z is non-zero, we obtain
an analogous explicit formula for W(a; 7;b; N), and this gets more complicated as
m increases. Nevertheless, it is not difficult to determine from such an explicit
formula the parity of W(«;7;b; N), and this parity tells us which square contains
the particle. This explains why, on the one hand, we say that this special case when
b = {ma} for some non-zero integer m € Z is simple. More precisely, we may call
it a non-integrable dynamical system with very low algorithmic complexity.

On the other hand, this special case is still quite difficult. For instance, even in
the totally innocent looking special case 0 < b = {2a} with 1/2 < a < 1, it is not
easy at all to determine whether a half-infinite a-geodesic is equidistributed on the
whole 2-square-b surface.
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We conclude Section 1 with a simple technical observation. To study the special
case b = {ma} for some non-zero integer m € Z, it suffices to consider only positive
integers m. This follows on combining the trivial identity b = {ma} = {—-m(l—a)}
with the following result.

Lemma 1.1. A half-infinite a-geodesic on the 2-square-b surface with starting point
(0, z) lying on the far left vertical edge of the surface is equidistributed on the surface
if and only if the half-infinite (1 —a)-geodesic with starting point (0, {b+1—x}) lying
on the same far left vertical edge of the surface is equidistributed on the surface.

Proof. The proof follows from combining three simple transformations.

The first simple transformation is illustrated in Figure 1.8. It maps an a-geodesic
with starting point (0, z) on the far left vertical edge of the 2-square-b surface to an
(ov — 1)-geodesic with the same starting point (0, x) on the far left vertical edge of
the 2-square-b surface. It is clear that they hit the same point (1,{z + a}) on the
middle vertical line of the 2-square-b surface. The first geodesic is equidistributed
on the 2-square-b surface if and only if the second geodesic is equidistributed on the
2-square-b surface.

a-geodesic (o — 1)-geodesic
[} [} e .. [}

Figure 1.8: a-geodesic and (« — 1)-geodesic

The second simple transformation is illustrated in Figure 1.9. It maps an (o —1)-
geodesic with starting point (0,x) on the far left vertical edge of the 2-square-b
surface to a (1 — «a)-geodesic with starting point (0,1 — x) on the far left vertical
edge of the 2-square-b surface reflected across the horizontal line y = 1/2. It is clear
that the first geodesic hits the point (1, {x + a}) on the middle vertical line of the
2-square-b surface, whereas the second geodesic hits the point (1,1 — {x + a}) on
the middle vertical line of the 2-square-b surface reflected across the horizontal line
y = 1/2. The first geodesic is equidistributed on the 2-square-b surface if and only
if the second geodesic is equidistributed on the 2-square-b surface reflected across

the horizontal line y = 1/2.
l1-x /

>

(o — 1)-geodesic

(1 — a)-geodesic

[

Figure 1.9: (o — 1)-geodesic and (1 — «)-geodesic

The third simple transformation is illustrated in Figure 1.10, which also shows
that the 2-square-b surface can be recovered from the 2-square-b surface reflected
across the horizontal line y = 1/2 by a vertical translation by b modulo 1. It now
maps a (1 — a)-geodesic with starting point (0,1 — x) on the far left vertical edge
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of the 2-square-b surface reflected across the horizontal line y = 1/2 to a (1 — «a)-
geodesic with starting point (0,{b + 1 — z}) on the far left vertical edge of the
2-square-b surface. It is clear that the two geodesics hit corresponding points on
the middle vertical line of their respective 2-square-b surfaces. The first geodesic is
equidistributed on the 2-square-b surface reflected across the horizontal line y = 1/2
if and only if the second geodesic is equidistributed on the 2-square-b surface.

(1 — a)-geodesic (1 — a)-geodesic

Py
@

Figure 1.10: vertical translation by b modulo 1

This completes the proof. [l

Remark. Strictly speaking, the 2-square-b surface reflected across the horizontal line
y = 1/2 followed by a vertical translation by b modulo 1 leads to another copy of
the 2-square-b surface if and only if the gates are open intervals or closed intervals.
However, for formulas such as (1.2) and (1.4)—(1.6) to hold precisely, the gates and
barriers need to be intervals that are closed at the bottom end and open at the top
end. In any case, an a-geodesic can hit any singularity of the 2-square-b surface at
most once, so equidistribution is not affected by altering the openness or closedness
of the gates.

2. SOME INTERESTING SPECIAL CASES, AND POLYGONAL INVARIANT SETS

We briefly consider the special case b = {ma} for some non-zero integer m € Z.
As explained in Section 1, we may assume that m is positive and 0 < a < 1.

Case m = 1. In the special case 0 < b = a < 1, we can show equidistribution for
any half-infinite a-geodesic with irrational .. Here is a relatively simple proof. The
idea is summarized in Figure 2.1.

v2| [0,1) [0’1; [iQ) [1,2)|vs
v1| [0,1) [1,2) [1,2) [0,1) [v1

Figure 2.1: thecase 0 < b=a < 1

Consider the sequence 7+qa, ¢ = 0,1,2,3,.... Without loss of generality, we can
assume that 0 < 7 < 1. Consider a geodesic £ on the 2-square-b surface with slope «,
starting at a point on the left vertical edge at height 7, and hitting the vertical edges
of the 2-square-b surface successively at height {7 +q¢a}, ¢ =0,1,2,3,.... For every
such integer ¢, consider the following assertion:

P(q): The condition 74 g mod 2 is in [0, 1) corresponds to a hitting point on the
2-square-b surface on the left vertical edge, or on the left side of the middle
vertical edge above the gate, or on the right vertical edge at the gate, while
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the condition 7 + ga mod 2 is in [1,2) corresponds to a hitting point on the
2-square-b surface on the right vertical edge above the gate, or on the right
side of the middle vertical edge above the gate, or on the middle vertical
edge at the gate.

It is clear that P(0) holds by definition. Assume now that P(k) holds for some
integer k.

Suppose first that 7+ ko mod 2 is in [0, 1). In view of vertical edge identification,
we may assume without loss of generality that the corresponding hitting point of £
lies on the left vertical edge. We have one of the following two possibilities:

(i) If 7+ (k + 1) mod 2 is in [0, 1), then since 0 < a < 1, we must have

{r+(k+Da} ={r+ka} + . (2.1)

It follows that aw < {7+ (k+ 1)a} < 1, so that the corresponding hitting point of £
is on the left side of the middle vertical edge above the gate, and so P(k + 1) holds.
(i) If 7+ (k+ 1)a mod 2 is in [1,2), then since 0 < a < 1, we must have

{tT+(k+Da}+1={r+ka}+a. (2.2)

It follows that 0 < {7+ (k+ 1)a} < «, so that the corresponding hitting point of £
is on the middle vertical edge at the gate, and so P(k + 1) holds.

Suppose next that 7+ ka mod 2 is in [1,2). In view of vertical edge identification,
we may assume without loss of generality that the corresponding hitting point of £
lies on the right side of the middle vertical edge above the gate, or on the middle
vertical edge at the gate.

(i) If 7+ (k4 1)a mod 2 is in [0, 1), then since 0 < av < 1, we must have (2.2). It
follows that 0 < {7+ (k+ 1)a} < «, so that the corresponding hitting point of £ is
on the right vertical edge at the gate, and so P(k + 1) holds.

(ii) If 74 (k+ 1)armod 2 is in [1,2), then since 0 < o < 1, we must have (2.1). It
follows that o < {7+ (k+ 1)a} < 1, so that the corresponding hitting point of £ is
on the right vertical edge above the gate, and so P(k + 1) holds.

Thus the statement P(q) holds for every ¢ =0,1,2,3,....

Finally, note that the sequence 7 + ga, ¢ = 0,1,2,3, ..., is uniformly distributed
in the double interval [0, 2).

Next come some surprises.

Case m = 2. A pleasant first surprise comes from the special case b = {2a} with
0 < o< 1/2,s0 that 0 < b = 2a < 1. Figure 2.2 summarizes a very quick proof
that any a-geodesic on the 2-square-b surface is not dense or equidistributed.

1

Figure 2.2: the case b = {2a} with 0 < v < 1/2
Note that any a-geodesic on the 2-square-b surface modulo 1 reduces to a torus
line of slope « in the unit square, and we know that this projected torus line is
uniformly distributed as long as « is irrational. On the other hand, Figure 2.2
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shows two invariant subsets of the 2-square-b surface under geodesic flow of slope a.
It is easy to see that any a-geodesic that passes through the shaded part of the
2-square-b surface remains forever in the shaded part and never reaches the white
part, and vice versa, so it is not dense on the 2-square-b surface.

It is easy to see that an a-geodesic in the shaded part has wvisit density o on the
left square of the surface and 1 — « on the right square of the surface. Likewise, an
a-geodesic in the white part has wvisit density o on the right square of the surface
and 1 — « on the left square of the surface. Since o # 1/2, this means that there
cannot possibly be equidistribution.

Note also from Figure 2.2 that the square-crossings, i.e., instances of passing from
one square to the other, occur in pairs along any a-geodesic.

Remark. 1t is easy to see that a similar argument works for the special case b = {ma}
for any even positive integer m with 0 < a < 1/m. Any a-geodesic on the 2-square-b
surface is not dense or equidistributed.

A second surprise is that the case b = {2a} with 1/2 < a < 1 turns out to
be completely different from when 0 < o« < 1/2. In this case, every half-infinite
a-geodesic on the 2-square-b surface with irrational « is equidistributed. We do not
have a quick proof of this result. It follows instead from the general Theorem 2.1
which we shall state later in this section. This general result has a fairly non-trivial
proof.

Case m = 3. The special case b = {3a} gives rise to equidistribution for every
half-infinite a-geodesic on the 2-square-b surface with irrational «. Again, we do
not know a quick proof, and refer the reader to Theorem 2.1.

Next come more surprises.
Case m = 4. Let us first consider the special case b = {4a} with
1 1 2 2 3
O<a<y or ;<a<i or F$<a<i.

Figures 2.3-2.5 summarize very quick proofs that any a-geodesic on the 2-square-b
surface is not dense or equidistributed.

In Figure 2.3, an a-geodesic in the shaded part has visit density 2a on the left
square of the surface and 1 — 2« on the right square of the surface.

1 1

b=4a¢ b b = 4o
3a<’ "3a
o —:.

X //0a

0 0

0 1 2
Figure 2.3: the case b = {4a} with 0 < o < 1/4

In Figure 2.4, an a-geodesic in the shaded part has visit density
({3a} —a)+ {20} =Ba—-1—a)+ (2a—1) =4a — 2
on the left square of the surface and

(1 —{3a}) + (a — {4a}) + {20}
=(1-3a+1)+(a—4a+2)+ (2a—1) =3 — 4«
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on the right square of the surface.

1 ? 1
{Sa}'/ {30}
b={4a}e b0 = {4a}
{2a} ¢ b {20}

0 * / 0
0 1 2

Figure 2.4: the case b = {4a} with 1/2 < v < 2/3
In Figure 2.5, an a-geodesic in the shaded part has visit density

(a —{2a})+{3a} = (a—2a+1)+ Ba—2) =2a—1
on the left square of the surface and

(1 —{4a}) + (« — {2a}) + {3a}
=(1-4a+2)+(a—2a+1)+Ba—2)=2—-2a

on the right square of the surface.

1 ? 1
b= {4a}</ b0 = {4a}

{20} {20}

{3&34 g /b~({)3a}
0 1 2
Figure 2.5: the case b = {4a} with 2/3 < a < 3/4
However, for the special case b = {4a} with 1/4 < a < 1/2 or 3/4 < a < 1, every
half-infinite a-geodesic on the 2-square-b surface with irrational « is equidistributed.
Again, we do not know a quick proof, and refer the reader to Theorem 2.1.

At first sight this case study may seem hopelessly complicated and mysterious.
However, there is a simple underlying rule that explains everything. We call this
the Double Even Criterion.

If the Double Even Criterion fails, then every half-infinite a-geodesic on the 2-
square-b surface with irrational « is equidistributed. This case forms the hard part
of the case n = 2 of Theorem 2.1.

On the other hand, if the Double Even Criterion holds, then there is a reasonably
simple algorithm to construct 2 non-trivial a-flow invariant subsets of the 2-square-b
surface. Clearly density and equidistribution for any a-geodesic on the 2-square-b
surface are impossible.

Let b = {ma}, where m > 2 is an integer and « is an irrational number satisfying
0 < a < 1. We take the parameter Y (m;«a) to denote the total number of integers
g such that 1 < ¢ < m and {ga} < a. For example, as clearly shown in Figures
2.3-2.5, we have

0, if0<a<1/4,
T4;a)=1¢ 2, ifl1/2<a<2/3,
2, if2/3<a<3/4
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Double Even Criterion. The integer m > 2 and the parameter Y (m;«a) are both
even.

The Double Even Criterion is a special case of a more general criterion which
applies to the n-square-b surface for any integer n > 2, the natural generalization
of the 2-square-b surface to a surface consisting of a horizontal row of n consecutive
unit squares with n — 1 b-size gates between the squares, and with appropriate edge
identification. The 3-square-b surface is shown in Figure 2.6.

h3
1
Vg
)
U1
0 ' g e 0
0 hy 1 ho 2 hs 3

Figure 2.6: the 3-square-b surface

GCD Criterion. For the n-square-b surface with b = {ma}, the greatest common
divisor d of the three integers n, m and Y(m; «) satisfies d > 1.

If the GCD Criterion fails, then every half-infinite a-geodesic on the n-square-
b surface with irrational « is equidistributed. This case forms the hard part of
Theorem 2.1.

On the other hand, if the GCD Criterion holds with greatest common divisor
d > 1, then there is a reasonably simple algorithm to construct d non-trivial a-flow
invariant subsets of the n-square-b surface. Clearly density and equidistribution for
any a-geodesic on the n-square-b surface are impossible. This case is relatively short,
and we discuss it now.

Suppose that the GCD Criterion holds. We now show how we can construct d
non-trivial a-flow invariant subsets of the n-square-b surface.

Consider the finite sequence

0,{a},{2a},...,{ma} =10
of m + 1 terms, and arrange it in increasing order
O0=by<b <...<by<bryi=a<byris<...<bpy, (2.3)
where the index T denotes the parameter T = Y(m; «),

by, = max {qa} < 1,

1<gsm
and b is one of the elements in (2.3), so that b = b, for some v =1,... ,m.
If we remove the term b, from the sequence (2.3), then we obtain a subsequence
O=0by<by<...<b, (2.4)
of m terms, where for every integer 7 =0,...,m — 1,

T bj+1, 1f1/<]<m—1
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Note that the elements of the subsequence (2.4) are in one-to-one correspondence
with the collection of division points

{ga}, ¢=0,1,..., m—1. (2.5)
This subsequence also leads to a partition of the unit interval [0, 1) into m intervals
I]: [b;7b;'+1)7 j:O717"'7m_17 (26)

with the convention that b, = 1.

Since d divides m, we can color the intervals (2.6) from top to bottom with distinct
colors ¢y, . .., ¢q, repeated periodically m/d times.

We now proceed to d-color the n-square-b surface as follows.

Double Periodic Coloring Algorithm. Suppose that the integer d divides both
n and m. Let ¢q,...,¢q denote d distinct colors.

(1) Suppose that £ =1, ..., d. Identify the left vertical edge of the ¢-th square face
of the n-square-b surface with the interval [0, 1), consisting of the m intervals (2.6).
We color these intervals from top to bottom by the colors ¢, ... ¢4, ¢1,..., ¢ 1,
repeated periodically m/d times. This clearly gives rise to a periodic d-coloring of
this edge. Using the a-flow, we can extend this periodic d-coloring to a d-coloring
C(£) of the ¢-th square face of the n-square-b surface.

(2) We then d-color the other square faces of the n-square-b surface by repeating
the d-colorings C(1),...,C(d) of the first d square faces periodically n/d times.

Remark. The m x n array

(1) C2) C@B) ... Cd—-1) C(d)

I, €1 C 3 ... Ca—1 Cq
L, _o o 3 G4 ... Cq €1
]m_g C3 Cq Cs e Cq Co ( )
2.7
I—ga Cd—1 Cd ¢ cee Cd—3 Cd—2
I—q 4 1 @ ... Cd—2 Cd—1

shows the coloring on each subinterval of the left vertical edge of each square face
of the n-square-b surface. The d x d sub-array on the top left repeats throughout
the whole array, with periodicty of the coloring vertically and horizontally. This
explains the terminology Double Periodic Coloring Algorithm.

It becomes particularly interesting if the GCD Criterion holds, so that the integer
d also divides the parameter T (m;«). Note that this is the case for n = 2 in each of
Figures 2.2-2.5, and in each case, we are able to give 2 non-trivial a-flow invariant
subsets of the 2-square-b surface. The next lemma is a far-reaching generalization
of this observation.

Lemma 2.1. Suppose that an integer d divides both n and m. Then the Double
Periodic Coloring Algorithm gives rise to d non-trivial a-flow invariant subsets of
the n-square-b surface if and only if d also divides Y (m; ).

Proof. The d-coloring C'(1) from the Double Periodic Coloring Algorithm also gives
the periodic d-coloring Cf of the far left vertical edge of the n-square-b surface,
viewed as the unit torus [0, 1), with m division points given by (2.4) or (2.5). In
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particular, the color pattern from the top is ¢y, ..., ¢g, with periodic repetition until
it reaches the bottom.

Let C* denote a new d-coloring of the unit torus, obtained from Cj by translating
each point in [0, 1) by @ modulo 1. Noting (2.4) and (2.5), it is clear that the division
points of C* are given by

{ga}, q=1,....,m. (2.8)

Thus the division points of Cy and C* are essentially the same, apart from 0 being
replaced by b = {ma}.

Let C** denote another new d-coloring of the unit torus, obtained from Cj by
keeping the colors in the interval [b,1) = [{ma}, 1) and replacing any color ¢; in the
interval [0, b) = [0, {ma}) by the next color ¢;;; along the chain ¢, ..., ¢ modulo d.
Note that in C**, the two sides of 0 now have the same color, so 0 is no longer a
division point. On the other hand, note that b = {ma} is not a division point of Cj.
However, switching from Cy to C**, we switch the color below b and keep the color
above b, so b = {ma} is clearly a division point of C**.

It follows that C* and C** are two d-colorings of the unit torus with precisely the
same division points (2.8).

We shall first show that the two d-colorings C* and C** are equal if and only if d
divides Y (m;a). In view of the vertical periodicity of the d-colorings, to show that
C* and C** are equal, it clearly suffices to check the equality of colors in just one
interval. We distinguish two cases.

Case 1: Suppose that b = {ma} < a. Since by = « and b = b, < «, it follows
that 1 < v < 7. Recall that b = b, is not a division point of Cy. Hence

O=by<by<...<b,1<bi<...<byy1=«

are successive division points of Cy. Hence the intervals [bg, b1) and [by,1, byyo)
have the same color ¢y in Cj if and only if d divides T. Next, note that the interval
[byi1,br12) = [, byi2) is obtained from the interval [by, b;) = [0, b1) by translation
by o modulo 1. It follows that [byy1, byio) has the same color ¢; in C* as [bg, by) has
in Cy. On the other hand, the interval [byi1,byy2) = [a, byy2) is not in the interval
[0,0), and so it has the same color in C** as in Cy. It now follows that the interval
[byi1,br12) = [, by12) has the same color ¢ in C* as in C** if and only if d divides
T(m; ).

Case 2: Suppose that b = {ma} > a. Since by = « and b = b, > «, it follows
that v > T + 1. Hence

O:b0<b1<...<by+1:a

are successive division points of Cy. Hence the intervals [bg, b1) and [by,1, byyo)
have different colors ¢y and ¢4_; respectively in Cj if and only if d divides T. As in
Case 1, [by41, byi2) has the same color ¢4 in C* as [by, by) has in Cy. On the other
hand, the interval [by 1, byi2) = [, bys2) is in the interval [0,b), and so its color in
C** is the next color ¢; along the chain ¢y,..., ¢ from its color ¢;_; in Cy. It now
follows that the interval [by,1,byi2) = [, byi2) has the same color ¢4 in C* as in
C** if and only if d divides Y(m; «v).

Finally, note that the equality of C* and C** and periodicity represent precisely
the division of the n-square-b surface into d monochromatic sets that represent d
non-trivial a-flow invariant subsets of the n-square-b surface. Indeed, C** exhibits
the key difference between the intervals [0, b) and [b, 1), that an a-geodesic can freely
cross the b-gate and is obstructed above it. This completes the proof. 0
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Remarks. Lemma 2.1 basically says that from the viewpoint of equidistribution on
the n-square-b surface, the GCD Criterion can be considered an obstacle. Note,
however, that any a-geodesic with irrational o in any monochromatic subset of the
n-square-b surface is equidistributed in that subset. We only need to recall that
any a-geodesic on the n-square-b surface modulo 1 reduces to a torus line of slope
« in the unit square. Since « is irrational, this projected torus line is uniformly
distributed in the unit square.

If the GCD Criterion holds, then we can always compute the corresponding visit
densities, analogous to the cases illustrated in Figures 2.2-2.5. It is not difficult to
see that each visit density is necessarily of the form ua + v, where u,v € Z. Since
this is strictly between 0 and 1, it follows that u # 0, and since « is irrational, the
visit density can never be equal to 1/n. Thus any half-infinite a-geodesic on the
n-square-b surface is always unevenly distributed between the squares.

Lemma 2.1 clearly establishes one half of the following result.

Theorem 2.1. Suppose that b = {ma}, where « is irrational and m is a positive
integer. Then any a-geodesic on the n-square-b surface is equidistributed on the
surface if and only if the GCD Criterion fails.

An interesting consequence of Theorem 2.1 is the following. If b = {ma}, where
« is irrational and m is a positive integer, and an a-geodesic on the n-square-b
surface is dense on the surface, then the geodesic exhibits the stronger property of
equidistribution.

We shall prove the remainder of Theorem 2.1 later; see Section 4 and the end of
Section 6.

3. MORE ON THE 2-SQUARE-b SURFACE AND BEYOND

We now consider the general case of the n-square-b surface when b # {ma} for
any m € Z. Here the answer is rather tricky.

For the original case n = 2, the paper of Veech [15] contains a study of the
following special case of Question 1 where the test sets are simply the two squares
of the 2-square-b surface.

Question 2. Let « be an wrrational number. When can we guarantee that every
half-infinite a-geodesic on the 2-square-b surface is evenly distributed between the
two constituent squares?

In other words, assuming that a particle moves along the a-geodesic with unit
speed, under what condition can we guarantee that for every starting point, the left
square is visited half the time? More precisely, we want the asymptotic visit-density
of this particle to the left square of the 2-square-b surface to exist, and to be equal
to 1/2.

Veech [15] has the following positive answer to Question 2.

Theorem A. Suppose that the slope « is badly approzimable. Suppose further that
the gate-size b # {ma} for any m € Z. Then every half-infinite a-geodesic on the
2-square-b surface is evenly distributed between the two constituent squares.

We recall that badly approximable numbers are characterized by the property that
the continued fraction digits have a common upper bound. A well-known subclass of
badly approximable numbers is the set of all quadratic irrationals, i.e., real algebraic
numbers of degree 2, which are characterized by the property that the continued
fraction expansions are eventually periodic.
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Given a badly approximable slope «a, the condition b # {ma} for any m € Z in
Theorem A excludes a countable set of values of b. For these excluded values of b, we
now have a complete understanding of the situation. As explained in the Remarks
after the proof of Lemma 2.1, what happens depends on the Double Even Criterion.
Suppose that the Double Even Criterion fails. Then it follows as a consequence of
Theorem 2.1 that any half-infinite a-geodesic is evenly distributed between the two
constituent squares. On the other hand, suppose that the Double Even Criterion
holds. Then each constituent square has a well-defined visit-density, depending on
the starting point of the a-geodesic, which is never equal to 1/2, so the half-infinite
a-geodesic is never evenly distributed between the two constituent squares.

If the slope « is not badly approximable, then Veech [15] has the following very
interesting negative result.

Theorem B. Suppose that the irrational slope « is not badly approximable. Then
there exists an explicit construction of an uncountable set of values b with strong
violation of uniformity in the sense that for some half-infinite a-geodesics on such
a 2-square-b surface, the visit-densities of the constituent squares do not even exist.

So far, we have considered a fixed irrational slope a and asked the question of
what values of b lead to half-infinite a-geodesics on the 2-square-b-surface that are
evenly distributed between the two constituent squares.

Suppose instead that we consider a fixed gate size b. Then it is reasonable to
ask what irrational slopes a give rise to half-infinite a-geodesics on the 2-square-b
surface that are evenly distributed between the two constituent squares.

Veech [15] has the following result which shows that 2-square-b surfaces with
rational values of b are exceptional.

Theorem C. Suppose that the number b is rational. Then for any irrational slope a,
every half-infinite a-geodesic on the 2-square-b surface gives rise to equal visit-
densities of the two constituent squares.

We also have the following negative result of Masur and Smillie on the 2-square-b
surface; see [8, Theorem 3.2] or [7, Theorem 2.

Theorem D. Suppose that the number b is irrational. Then there exist uncountably
many slopes a such that for almost every starting point, a half-infinite a-geodesic
on the 2-square-b surface is not uniformly distributed.

Note that the uncountable set of bad slopes « in Theorem D can be extended to
a set of positive Hausdorff measure, but not to a set of positive Lebesgue measure.
This follows from a well known general result of Kerckhoff, Masur, and Smillie [5]
concerning geodesic flow on any rational polygonal surface. This important general
theorem, which works for almost every slope, unfortunately does not say anything
about any explicit slope, which is our main interest. For more about non-integrable
flat dynamical systems, the reader is referred to the survey papers [8] and [19].

Theorems A—D are very satisfactory results that give us a very good understanding
of the distribution of half-infinite a-geodesics on the 2-square-b surface. We can view
this as the mod 2 case. However, the corresponding mod n version, concerning the
n-square-b surface, remains open for any integer n > 3.

Veech [15] has asked the question of whether or not his method can be extended
to prove the mod n versions of Theorem A for n > 3. Here we can establish such
a result, but we do not use Veech’s method which is quite complicated. In fact, we
can prove the following stronger result that answers the mod n analog of Question 1.
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Theorem 3.1. Suppose that n > 2 and the slope « is badly approrimable. Suppose
also that the gate-size b # {ma} for any m € Z. Then every half-infinite a-geodesic
on the n-square-b surface is uniformly distributed.

Furthermore, we can establish a far-reaching generalization of Theorem 3.1. We
consider the larger class of flat finite polysquare, or square tiled, translation surfaces
with b-rational gates.

A finite polysquare, or square tiled, region is a connected, but not necessarily
simply-connected, polygon P on the plane which is tiled with unit squares, assumed
to be closed, that we call the atomic squares of P, and which satisfies the following
conditions:

(i) Any two atomic squares in P either are disjoint, or intersect at a single point,
or have a common edge.

(ii) Any two atomic squares in P are joined by a chain of atomic squares where
any two neighbors in the chain have a common edge.

To turn a given finite polysquare region P into a flat finite polysquare translation
surface P, we need identification of pairs of horizontal edges as well as identification
of pairs of vertical edges. In Figure 3.1, we show examples of the identification of
horizontal edges on the two leftmost columns of atomic squares as well as examples
of the identification of vertical edges on the two topmost rows of atomic squares.

Note that the finite polysquare surface P may have holes, and we also allow whole
barriers which are horizontal or vertical walls that consist of one or more boundary
edges of atomic squares. For example, the finite polysquare surface in Figure 3.1
has 32 atomic squares, 2 holes as well as 3 horizontal walls and 4 vertical walls.

hy
v U1
U3
ha
h3
ha
hy
hy hy

Figure 3.1: a flat finite polysquare translation surface

Geodesic flow on a flat finite polysquare translation surface is always 1-direction
linear flow.

Remark. Geodesic flow on a general finite polysquare surface may sometimes be a
4-direction flow. Consider, for example, geodesic flow on the cube surface. It is well
known that this 4-direction geodesic flow on the cube surface can be converted to
a 1-direction geodesic flow by using a 4-copy construction, where we take 4 rotated
copies of the cross-shaped net of the cube surface, and glue together corresponding
edges in the different copies to obtain a flat finite polysquare translation surface.
Indeed, an analog of this 4-copy construction works for any finite polysquare surface
with 4-direction geodesic flow.
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Meanwhile, it can also be shown that any 4-direction billiard orbit in a finite
polysquare region is equivalent to 1-direction geodesic flow in a corresponding flat
finite polysquare translation surface. This follows as a consequence of the concept
of unfolding, first demonstrated on the unit square by Kénig and Sziics [6] in 1913.

It is therefore sufficient to study 1-direction geodesic flow on flat finite polysquare
translation surfaces.

The 2-dimensional continuous Kronecker-Weyl equidistribution theorem for the
torus line in a square leads to an interesting uniform-periodic dichotomy, in the sense
that every torus line with irrational slope is uniformly distributed, whereas every
torus line with rational slope is periodic.

We have the following remarkable extension of this classical result by Gutkin and
Veech about 70 years later; see [3, 16, 17].

Theorem E. On any flat finite polysquare translation surface, every half-infinite
1-direction geodesic with wrrational slope is uniformly distributed, whereas every half-
infinite 1-direction geodesic with rational slope is periodic.

Note that we consider here only half-infinite 1-direction geodesics, as we need to
exclude any geodesic that hits a singularity of the polysquare surface after which
there is no well defined unique continuation.

If the gate size b is irrational, then the 2-square-b surface is not a polysquare
surface, so Theorem E does not apply. Furthermore, as Theorem B shows, for any
irrational slope which is not badly approximable, there is clearly no uniform-periodic
dichotomy. There is an uncountable set of values b for which even the simplest test
sets, namely the two constituent squares of the 2-square-b surface, violate uniformity.
On the other hand, any half-infinite 1-direction geodesic with irrational slope on any
2-square-b surface cannot be periodic.

As in Theorem A, we study uniformity in the case of badly approximable slopes.
Theorem 3.1 is such a result. Next we formulate a far-reaching generalization of it,
to the class of flat finite polysquare translation surfaces with b-rational gates.

An example of such a surface is the (L;b)-surface, an L-shaped 4-square surface
with three b-size gates and one b/2-size gate, as shown in Figure 3.2.

hy
top b/2-gate top b-gate
! \ ha _ / hs3
v60 / "UG
U5 Us
p ®
v2 v2 V3 ’U3I’U4 V4
[ ] ®
(% \ / V1

hi '\ ha /' h3

bottom b-gates
Figure 3.2: the (L;b)-surface

Here the left vertical edge of the bottom middle atomic square has two division
points b and 1 — b/2 = {—b/2} which determine the left bottom b-gate between 0
and b, as well as the top b/2-gate between 1 —b/2 and 1, separated by the fractional
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vertical barrier between b and 1 — b/2. On the other hand, the left vertical edge of
the bottom right atomic square has two division points b and 1 — b = {—b} which
determine the left bottom b-gate between 0 and b, as well as the top b-gate between
1 — b and 1, separated by the fractional vertical barrier between b and 1 — b.

We now extend the class of flat finite polysquare translation surfaces to the larger
class of flat finite polysquare-b-rational translation surfaces by following and then
extending the pattern of the (L; b)-surface. For any vertical side of an atomic square,
we may place any number of b-rational division points located at distance {rb} from
the bottom of the edge, where 0 < b < 1 is fixed and r is a non-zero rational number.
These division points, often called the division numbers, determine vertical gates
separated by fractional vertical barriers, where every gate and barrier is a subinterval
of the vertical edge, with endpoints which are b-rational division points. To obtain a
translation surface, we identify pairs of horizontal edges and pairs of vertical edges
in an appropriate manner. Then geodesic flow is 1-direction linear flow.

The flat finite polysquare-b-rational translation surface in Figure 3.3 is modified
from the flat finite polysquare translation surface in Figure 3.1 in this way. We have
not included the edge identifications.

Figure 3.3: a flat finite polysquare-b-rational translation surface

In Sections 5-7, we shall prove the following generalization of Theorem 3.1.

Theorem 3.2. Suppose that P is a flat finite polysquare-b-rational translation sur-
face, where b is irrational, and with division numbers {r;b}, i = 1,..., R, where
each r; 1s a non-zero rational number. Let o be a badly approrimable number such
that {r;b} # {ma} for anyi=1,...,R and m € Z\ {0}. Then every half-infinite
a-geodesic on P is uniformly distributed.

Remark. The study of geodesic flow on a flat finite polysquare-b-rational translation
surface is related to a suitable generalization of the Veech 2-circle problem. Here
the number of circles corresponds to the number of vertical streets of the underlying
finite polysquare surface, and the circumference of a circle is the length of the vertical
street that corresponds to it. This remains the case if the division numbers are
replaced by a finite set of real numbers, at least one of which is irrational, resulting
in surfaces that can be more general than polysquare-b-rational translation surfaces.
Unfortunately, we are not able to extend Theorem 3.2 to this more general setting,
as we are not able to establish a suitable generalization of the separation lemma as
given by Lemma 5.2.
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We can show that billiard in any finite polysquare-b-rational region is equivalent
to a l-direction geodesic flow on a corresponding flat finite polysquare-b-rational
translation surface. This follows from a generalization of the concept of unfolding,
pioneered by Konig and Sziics [6] in 1913, to show that billiard in the unit square
is equivalent to 1-direction geodesic flow in the square torus. Indeed, as mentioned
earlier, it can be shown that billiard in any finite polysquare region is equivalent
to a 1-direction geodesic flow on a corresponding flat finite polysquare translation
surface.

Thus we have immediately the following result concerning billiards.

Theorem 3.3. Let P be a finite polysquare-b-rational translation region, where b is
irrational, and with division numbers {r;b}, i =1,..., R, where each r; is a non-zero
rational number. Let a be a badly approximable number such that {r;b} # {ma} for
anyi=1,...,R and m € Z\ {0}. Then every half-infinite billiard orbit in P with
witial slope a is uniformly distributed.

Next we return to the 2-square-b surface and the somewhat negative Theorem B
of Veech. If the irrational slope « is not badly approximable, then there exists an
uncountable set of values of b such that the visit-densities of the constituent squares
do not even exist. For such gate-sizes b, it is perhaps natural then to call them bad.
This raises the question of finding a quantitative description of this phenomenon,
that extreme violation of uniformity can be exhibited by a concrete geodesic.

We shall give such a quantitative result which demonstrates serious violations of
uniformity. For appropriate pairs of the parameters o and b, we shall construct a
half-infinite a-geodesic £ on the 2-square-b surface which demonstrates extra-large
one-sidedness exhibited in an alternating way. Such a geodesic £ also violates any
form of quasi-periodicity. Using a completely different method from those that give
Theorems B and D, we shall prove in Sections 8 and 9 the following result.

For any 2-square-b surface, we denote by LS(b) the left constituent square of the
surface, and by RS(b) the right constituent square of the surface.

Theorem 3.4. Suppose that € > 0 is arbitrarily small but fized, and that o € (0,1)
15 any irrational number with continued fraction

: | |
o= ——— =[a1,09,a3,...],
ay + a2+a3-1‘r---
where the digits ay, as, as, ... satisfy the condition
1 £
— < —. 3.1
1‘21 a; 300 (3:-1)

There exists an explicitly given gate-size Sy = Po(a) such that the a-geodesic
Lo(t), starting from some explicitly given point on the 2-square-5y surface, satisfies
the following simultaneously, where C' is any positive integer satisfying C' < 200/e:

(i) There exists an infinite sequence T, n = 1,2,3,..., of positive real numbers
satisfying Ty, > 217 such that for every integer n = 1,2, 3, ... and for every integer
b=0,1,...,C apart from b =1,

1
7ot € T, (0 + DTT] = Lo(t) € LS(Bo)} > 1 —<, (3.2)
with an overwhelming bias for the left constituent square of the surface, as well as

%\{t € [T7, 277 : Lo(t) € RS(By)} > 1 — e, (3.3)

n
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with an overwhelming bias for the right constituent square of the surface.

(ii) There exists an infinite sequence T*, n=1,2,3,..., of positive real numbers
satisfying T5, > 217" such that for every integer n = 1,2,3,... and for every
integer b=10,1,...,C apart from b= 2,

1

€ BT (b + DT < Lo(t) € LS(A)} > 12, (3.4

with an overwhelming bias for the left constituent square of the surface, as well as
1

T {t € [2T",31,"] : Lo(t) € RS(Bo)}| > 1 — ¢, (3.5)

with an overwhelming bias for the right constituent square of the surface.

On the other hand, for any large but fized positive integer n, there exists another
explicitly given gate-size 51 = P1(a,n) such that |51 — Bo| < € and the a-geodesic
L(t), starting from some explicitly given point on the 2-square-f1 surface, satisfies
the following simultaneously:

(iii) There exists a finite sequence Wy, ..., W, of positive real numbers satisfying
Wi > 2W; whenever i < n such that for every integer i =1,... n,
1
€10, Wi] - Li(t) € LS(B1)} > 1 —e, (3.6)

with an overwhelming bias for the left constituent square of the surface, as well as
1
W!{t € Wi, 2W;] - L1(t) € RS(B1)}H > 1 —¢, (3.7)

with an overwhelming bias for the right constituent square of the surface.
(iv) There ezists a positive threshold W* such that for every positive real number
W > W=,

1 2
Wl{t € [0,W]: Ly(t) € LS(B1)}| > 376 (3.8)

with a significant bias for the left constituent square of the surface.

Removing the vertical barrier on the 2-square-f, surface or 2-square-3; surface
leads to a polysquare surface which is an integrable rectangle surface. It can then be
shown that applying some slow growth conditions on the continued fraction digits
of o without violating (3.1), we obtain essentially best possible time-quantitative
uniformity for any geodesic with slope «, with polylogarithmic error term, on this
integrable surface. Thus the barrier is the root cause of the polarizingly different
uniformity properties of the two geodesics with the same slope. We omit the details.

4. INTERVAL EXCHANGE TRANSFORMATION AND ERGODICITY

A common tool in the proofs of Theorems 2.1 and 3.2 is the concept of an interval
exchange transformation which represents a natural discretization of the linear flow
of slope o on the flat translation surface. As a first step, we need to exhibit ergodicity
of this transformation, and this step is summarized by Lemmas 4.1 and 5.1.

We discuss this standard technique here, and also illustrate a second key idea,
which is an application of the so-called 3-distance theorem, as given in Lemma 4.2,
an idea used earlier in related work by Boshernitzan [1, Theorem 7.2 (r = 2)].

Theorem 3.2 concerns flat finite polysquare-b-rational translation surfaces which
often can be far more complicated than the n-square-b surface in Theorem 2.1. Thus
to illustrate the idea of an interval exchange transformation, we shall use instead the
special case of the (L; b)-surface shown in Figure 3.2, as this special case already well
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captures the whole difficulty of the situation in general. We shall further assume
that 0 < b < a < 1/2, where « is a given irrational slope.

Before we introduce the interval exchange transformation, we first consider the
effect of the a-flow. For convenience, we shall assume that all the gates and barriers
are closed at the bottom end and open at the top end.

Let wq, we, w3, wy denote the left vertical edges of the 4 atomic squares that make
up the (L;b)-surface, as shown in Figure 4.1.

w4/

Figure 4.1: the vertical edges wy, wq, w3, wy and a-flow

For the vertical edge w;, we denote by w;(0) and w; (1) the bottom endpoint and
top endpoint of w; respectively, and denote by w;(z), where 0 < z < 1, the point
on w; which is a distance z from w;(0). Furthermore, for any set S C [0, 1], we let

w1 S = {wi(x) : x € S},

so that w[0, 1] = w;.

We now repeat this for the other 3 vertical edges ws, w3, wy.

Using Figures 3.2 and 4.1, we see that the a-flow maps the interval wy[0,1 — «)
to the interval wy|cr, 1). We denote this by

w4[0,1 — @) = wyfa, 1).

Careful analysis now shows that the effect of the a-flow is summarized by a collection
of increasing bijective linear mappings

w1 [0, 1—a—g)»—>w1[a,1—g), (4.1)
wi[l — o — —a) = wyl — 2,1), (4.2)
w1[1 —a, 1) = w0, a), (4.3)

w2[0,1 — a — b) — wala, 1 —b), (4.4)

wo[l —a—b,1 —a) — ws[l —b, 1), (4.5)
we[l —a, 1 — o+ b) — ws[0,b), (4.6)
wo[l —a+b,1) = wyb, a), (4.7)
ws3[0,1 — a — b) — wsla, 1 —b), (4.8)
[1—a—b1—a—g)+—>w2[1 b,1—1), (4.9)
will—a—21—a)—»wl-21), (4.10)
ws[l — a, 1—a+b)»—>w1[0,b) (4.11)
w3l —a+b,1) — wslb, a), (4.12)
wy[0,1 — @) — wyfa, 1), (4.13)

wy[l —a,1 — a+b) — wy[0,b), (4.14)
wy[l —a+b,1) = wib, a). (4.15)
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We next identify the edges wq, we, w3, wy with the intervals [0, 1), [1,2),[2,3),[3,4)
respectively. Using this identification and (4.1)—(4.15), the effect of the a-flow can
then be described by a piecewise linear map 7' : [0,4) — [0,4), where

T((0,1—a—3)) =[a.1 - 3), (4.16)
T[l-—a—-%1-0a)=[2-1%2), (4.17)
(U—aJ» 3,3 + o), (4.18)
T(l,2—a—-0)=[14+a«,2-0), (4.19)
T(2—a—0b,2—a))=[3-103), (4.20)
T(2—a,2—a+b)=[2,2+b), (4.21)
T(2—a+0b,2)=[1+b1+a), (4.22)
T(2,3—a—0))=[2+a,3-0), (4.23)
NB—@—b3—a—g»:p—b2 by, (4.24)
T(3—a— —a))=[1-2,1), (4.25)
T([S—oc?)—oz—i-b)) [,) (4.26)
T(3—a+b3)=[2+b2+a), (4.27)
T([3,4—a)) =[3+a,4), (4.28)
T([4—a,4—a+b)=[1,1+b), (4.29)
T(4—a+0b4)=[ba), (4.30)

and each of (4.16)—(4.30) represents an increasing bijective linear map. This map T
is known as the interval exchange transformation of the a-flow on the (L;b)-surface.
It is clear that T" preserves Lebesgue measure.

A quick inspection of (4.16)—(4.30) shows that 7" has many points of discontinuity.
However, if we take them modulo 1, then their values are given by

0, 1—a—-b, 1—a-% 1-a 1-a+b

We refer to these 5 numbers as the singularities of T modulo 1, or simply the
singularities. These are precisely the division numbers shifted by —a modulo 1,
together with 0 and 1 — a.

Suppose now that P is a flat finite polysquare-b-rational translation surface, with
division numbers {r;b}, i = 1,..., R, where each r; is rational and non-zero. Let

T =Ty (P;{rb},i=1,...,R)

denote the interval exchange transformation of the a-flow on this surface. Suppose
that s denotes the number of atomic squares in the underlying polysquare region.
Then T : [0,s) — [0, s) is a piecewise linear bijective map that preserves Lebesgue
measure, and the singularities of 7" modulo 1 are

0, 1—a and {rb—a}, i=1,...,R. (4.31)

For the remainder of this section, we concentrate on Theorem 2.1 concerning the
n-square-b surface in the special case b = {ma} for some integer m > 2. Our goal
here is to establish equidistribution when the GCD Criterion fails. We assume that
0<a<l

The interval exchange transformation is a piecewise linear map 7' : [0,n) — [0, n).
It has 3 singularities 0, 1 —« and {(m — 1)a} modulo 1. The inverse transformation
T~! has 3 singularities 0, @ and {ma} modulo 1.
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The simplest special case is n = m = 2 with b = {2a} where 1/2 < a < 1. It is
easy to check that the Double Even Criterion, i.e., the GCD Criterion for n = 2,
fails.

To bring us one step closer to a complete proof of Theorem 2.1, we have the
following result on ergodicity.

Lemma 4.1. Consider a-flow on the n-square-b surface with b = {ma} for some
integer m > 2. Suppose that the GCD Criterion fails. Then the interval exchange
transformation T = T,., : [0,n) — [0,n) is ergodic.

Proof. We shall prove this by contradiction. Assume on the contrary that T is not
ergodic. Then there exists a T-invariant measurable subset Sy C [0,n) such that
0 < meas(Sy) < n, where meas denotes 1-dimensional Lebesgue measure. Since
T reduces modulo 1 to irrational rotation on the unit interval with the same «, it
follows that 7" modulo 1 is ergodic, and so Sy modulo 1 is the unit interval [0, 1),
implying that meas(Sy) is an integer strictly between 0 and n.

The irrational slope o € (0,1) has an infinite continued fraction expansion

1
o = lay,ag,as,...| = ———, (4.32)
ay + a2+a3-19—--»
where a; > 1,1 =1,2,3,..., are integers. The rational numbers
@:M:[al,...,ak], k=1,2,3,..., (4.33)
qk qr ()

where pr € Z and ¢ € N are coprime, are the k-convergents of a. It is well known
that they give rise to the best rational approximations of the irrational number «,
and we have
@<@<@<...<a<...<]§<@<]ﬂ, (4.34)
o G2 qa G 43 ¢
with po =0 and ¢y = 1.
Let ||y|| denote the distance of a real number y from the nearest integer. We shall
make use of the fact that for an irrational number «, the sequence

1I<nki£1n ke, n=1,2,3,...,

is well described by the continued fraction expansion of a.
For every k =0,1,2,3,..., we have

gl = llawall, 1< q < qrras (4.35)
gkl < llgrel],
as well as 1 {
——— < g < —. (4.36)
Qk+1 1 Gk Qk+1

Indeed, the sequences p, and ¢, k =0,1,2,3,..., are given by the initial values
p=0, pp=1 q=1 q=a,
and the recurrence relations
Pkl = Qkt1Pk + Pr—1,  Qkt1 = Qp1Qk + Qe—1, Kk = 1. (4.37)

We also have
Phoaqe — Qeape = (=%, k> 1.

On the other hand, using (4.34) and (4.37), it is easy to show that
lgerredl + arpallgred] = llgee]. (4.38)
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The following result is known as the 3-distance theorem. This surprising geometric
fact, formulated as a conjecture by Steinhaus, has many proofs, by Sés [10, 11],
Swierczkowski [14], Surdnyi [13], Halton [4] and Slater [9], with others published
more recently.

Lemma 4.2. Consider the N +1 numbers 0, a, 2a, 3cv, . .., Nao modulo 1 in the unit
torus/circle [0, 1), leading to an (N + 1)-partition. This partition exhibits at most 3
different distances between neighboring points. Furthermore, every positive integer
N can be expressed uniquely in the form

N = puqgr + qp—1 +r, with1 <p < appr and 0 <7 < g,

in terms of the continued fraction (4.32) of a and its convergents (4.33), with the
convention that g =1 and q_1 = 0. Then

(i) the distance ||qpa|| shows up precisely N + 1 — g times;
(ii) the distance ||qz—1|| — p||gpey|| shows up precisely r + 1 times; and
(iii) the distance ||qg—1c|]] — ( — 1)||gree|| shows up precisely qp —r — 1 times.

Given an integer k > 1, let Ai(«) denote the partition of the unit torus/circle
[0,1) with gxy1 = qr+1(e) division points {ga}, —1 < ¢ < gr+1 — 2. Note that the
choices ¢ = —1,0 in {ga} represent two of the singularities of the interval exchange
transformation 7" restricted to the interval [0, 1).

A consequence of the special choice N = g1 — 1 is that the 3-distance theorem
simplifies to a 2-distance theorem. This in turn leads to some very useful information
concerning the distances between neighboring points of the gy 1-partition Ag(«) of
the unit torus/circle [0,1). Indeed, using the second recurrence relation in (4.37),
we have

N =qu1— 1 =ar1qx + @r—1 — 1 = pge + q—1 + 1,
with 4 = agy1 —1 and r = ¢ — 1. Since gy —r —1 = 0, it follows from the 3-distance
theorem that there are only two distances

lgeall and  {lge-aal] = (aris = Dllgrell = llgeall + llased), (4.39)

in view of (4.38).

It follows immediately from (4.35) that one of the neighbors of 0 in the partition
Ai(a) is {grza} which clearly has distance ||gyc| from 0 in the unit torus/circle.
Since « is irrational, the other neighbor of 0 in the partition Ag(«) must have
distance ||ggs+10|| + ||gr]| from 0 in the unit torus/circle. Simple calculation then
shows that it is {((ax+1 — 1)@k + qr—1)c}. Thus the two neighbors

{awa} and  {((ax41 — Dax + qr—1)a}
of 0 in the partition Ay(«) exhibit the two gaps in (4.39) in some order. Similarly,
the two neighbors
{(gx =V} and  {((ar41 — Dgr + gp—1 — 1)}
of 1 — a = {—a} in the partition Ay(«) exhibit the same two gaps in (4.39) in the
same order. Furthermore, for every integer ¢ = 1,...,m — 1, the two neighbors
{(gx +@)a} and  {((ars1 = Dax + g1 + g)r}

of {ga} in the partition Ay («) also exhibit the same two gaps in (4.39) in the same
order.

The union of the left and right neighborhoods of 0 in the partition A () has the
form

B(0) = (—d*,d*). (4.40)
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Indeed, the union of the left and right neighborhoods of {¢qa}, ¢ = —1,0,1,...,m—1,
in the partition Ag(«) has the form

B(q) = ({ga} — ", {qa} +d™), (4.41)
with the two gaps in the same order, where
{d", d”} = {llgall, lgerrall + llgre}, (4.42)

but we have not specified which one is which. We refer to B(q), ¢ = —1,0,m — 1,
as the buffer zones of the singularities 1 — «, 0, {(m — 1)a} respectively of T'.

Now suppose that g, is much greater than m.

We consider the short special intervals

Ji(q) = J(as k;q) = ({qa} —d™ {qa} +d7), m < q<gryr—2. (4.43)

Note that these short special intervals have three crucial properties:

(i) They completely cover the m+ 1 long special intervals determined by the m+1
division points {qa}, ¢ = —1,0,1,...,m — 1, of the torus/circle [0, 1).

(ii) They avoid all the division points {qa}, ¢ = —1,0,1,...,m — 1, in view of
(4.40)—(4.43). In particular, they avoid the singularities 1 — «, 0, {(m — 1)a} of T.

(iii) Any two short special intervals contained inside the same long special interval
in (i) and arising from neighboring partition points exhibit substantial overlapping.
More precisely, if ¢’ # ¢” are two integers such that m < ¢/, ¢” < qx+1 — 2 and {¢'a}
and {¢"a} are neighboring points in the partition A;(«), and both points are in the
same long special interval in (i), then

length(Jx(q') N Ji(¢")) = min{d*,d™} = ||grc||. (4.44)
Note the trivial upper bound
length(Ji(q)) = 2llgeal] + l[gr+rcl < 3llgrall (4.45)

Then (4.44) and (4.45) together justify the term substantial overlapping.
Since T acts on the interval [0,n), for every interval Ji(q), m < q¢ < qr+1 — 2,
given by (4.43), we define its n-copy extension Jy(q;n) by

Ju(g;n) = Je(q) U (1 + Je(q)) U... U (n — 1+ Ji(q)) C [0,n),
a union of Ji(q) with n — 1 of its translates.
Lemma 4.3. Let € < 1/100 be positive and fized. Provided that the positive integer

k s sufficiently large, there exists an integer q* such that m < ¢* < qrr1 — 2 and for
each £ =0,1,...,n— 1, we have either

meas((¢ + Ji(q")) N Sp) > (1 — e) meas(Jx(q")), (4.46)

meas((£ + Jx(q")) N Sp) < emeas(Jx(q")). (4.47)

Remark. Lemma 4.3 resembles Lebesgue’s Density Theorem. It is rather tempting
to say that the latter almost implies the former, or at least makes the former quite
plausible. Nevertheless, our formal proof below does not make use of Lebesgue’s
Density Theorem, just the definition of Lebesgue measure.

Proof of Lemma 4.53. Since Sy is Lebesgue measurable, given any n > 0, there exists
a finite set of disjoint intervals Ij,, 1 < h < H = H(Sp;n), such that the union

v=J L (4.48)

1<h<H
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gives an n-approximation of Sy, in the sense that the symmetric difference VASy
satisfies the condition

meas(VASy) = meas(V \ Sy) + meas(Sy \ V) < 7. (4.49)

We will specify a suitable value of n = n(e) > 0 later.

A short special interval ¢+ Jy(q), where £ = 0,1,...,n—1 and m < ¢ < qg11 — 2,
is said to be V -nice if it is either completely contained in V', or it is disjoint from V.

Since V' given by (4.48) is a finite union of disjoint intervals, it is clear that there
exists an integer-valued threshold k = k(Sp; V';n) such that the union of the V-nice
short special intervals ¢ 4+ Ji(q), with £ =0,1,...,n—1 and m < ¢ < gx1 — 2, has
measure at least n(1 — 7).

On the other hand, let B denote the set of short special intervals ¢ + Ji(q), where
(=0,1,....,n—1and m < ¢ < qxy1 — 2, that are bad in the sense that

meas((VASy) N (€4 Je(q)))

> & (4.50)
gre|
Then it follows from (4.49) and (4.50) that
! 1
N> 3 lenl meas((VAS) N (€4 Ji(a))) > zelBlllanell,
m<g<gy p1—2
0+Ji(q)eB

where the factor 1/3 arises from the observation that an interval Ji(q) intersects at
most two other such intervals, namely its left and right neighbors, and |B| denotes
the cardinality of the set B. Combining this with (4.36), we deduce that

3 6
ellgrall e

Since 7 > 0 can be arbitrarily small, we choose n = €?/6. Then (4.51) simplifies
to |B| < eqgs1. Since € is small, the bad short special intervals in B form a small
minority of the short special intervals under consideration.

Thus the overwhelming majority of the short special intervals under consideration
are V-nice and violate (4.50). A routine application of the Pigeonhole Principle now
implies the existence of an integer ¢* such that m < ¢* < ¢z41 — 2 and each interval
0+ Je(q*), £ =0,1,...,n — 1, is V-nice and violates (4.50). For such an interval
0+ Ji(q%), it follows from (4.42) and (4.43) that

meas((VASy) N (€ + Jx(q"))) < e meas(Jx(q")).
Since VASy = (V' \ Sp) U (Sp \ V) is a disjoint union, it follows that
meas((V'\ So) N (€4 Jx(g"))) +meas((So\ V)N (£+ Jk(¢))) < e meas(Jx(q")). (4.52)
Suppose first of all that ¢ + Ji(¢*) is completely contained in V. Then

meas((V'\ So) N (£ + Ji(q"))) = meas((¢ + Jx(¢")) \ So)
= meas({ + Jx(¢")) — meas((¢ + Ji(¢*)) NSy), (4.53)
while
meas((So \ V) N (¢ + Jk(¢"))) = meas(()) = 0. (4.54)

The assertion (4.46) now follows on combining (4.52)-(4.54).
Suppose next that ¢ + Ji(¢*) is disjoint from V. Then

meas((V'\ Sp) N (¢ + Jk(¢*))) = meas()) = 0, (4.55)
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while
meas((So \ V)N (¢ + Ji(q"))) = meas(So N (£ + Jx(q"))). (4.56)
The assertion (4.47) now follows on combining (4.52), (4.55) and (4.56). O

In view of Lemma 4.3, we can define an ordered n-tuple

Q(k’ q*) - (00(k7 q*)7 01(k7 q*)7 s 70n—1(ka q*))a

where, for £ =0,1,...,n—1,

Oulk, ") = 1, if £+ Jp(q*) satisfies (4.46),
AT = 0, if 0+ Ji(q*) satisfies (4.47).

We are now in a position to complete the proof of Lemma 4.1.

The first key step in our argument is the extension of the local set Ji.(¢*; n) globally
via a T-power argument.

Consider an arbitrary set Ji(q;n) such that m < ¢ < gg1 — 2 and ¢ # ¢*. Then

Jolain) = T77 Ju(¢"sn).
Note that Sy C [0,n) is T-invariant, and that the three singularities
l—a= {—Oé}, 0, {(m - 1)0&}

modulo 1 never split the intervals in the process of iterated applications of the
transformation 7. It follows that Jx(g;n) N Sy defines an ordered k-tuple O(k, q)
which is either equal to ©(k, ¢*) or has the entries permuted.

The second key step in our argument concerns taking advantage of property (iii)
earlier concerning substantial overlappings of the intervals Ji(q).

Recall that the division points

{qa}, q=-1,0,1,....m—1,

of the torus/circle [0, 1) give rise to m + 1 long special intervals in the torus/circle
[0,1). They lead naturally to n(m + 1) division points and n(m + 1) long special
intervals in [0,n). Now the sets Jx(q;n), m < ¢ < @1 — 2, lead to n(gry1 — m — 1)
intervals which give rise to n(m+1) collections of substantially overlapping intervals
in [0,n). These n(m+1) collections cover the n(m+1) disjoint long special intervals.
Due to the substantial overlappings, neighboring short special intervals in the same
collection must have identical ordered n-tuples O(k, q).

It follows that the short special intervals within any given long special interval
Z C [0,n) must either all satisfy (4.46) or all satisfy (4.47). This means that the
given long special interval Z is e-almost entirely in Sy, in the sense that

meas(Z N Sy) > (1 — e) meas(Z), (4.57)
or is e-almost disjoint from Sy, in the sense that
meas(Z N Sy) < emeas(Z).

Let the set Sg C [0,n) be defined as follows, apart from the n(m + 1) division
points that give rise to the long special intervals. For every long special interval
Z C [0,n), we set

Z cC Sy ifand only if Z satisfies (4.57).

Then each of the long special intervals in [0, n) is either entirely contained in S§ or
disjoint from S;. It then remains to prove that if the GCD Criterion fails, then such
a set S cannot exist. Our argument is to show that the existence of such a set S§
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would give rise to a multi-coloring of the n-square-b surface, sufficiently restricted
as to allow us to derive the necessary contradiction.

The n(m + 1) division points in [0,n) that give rise to the n(m + 1) long special
intervals are

4+ {—-a},t,0+{a},....0+{(m—-1)a}, £=0,1,...,n—1.

Here, for each ¢ = 0,1,...,n — 1, we view the left vertical edge of the (¢ + 1)-th
square face of the n-square-b surface as the interval [¢,¢ + 1). We can then 2-color
these n intervals to distinguish points in S§ from points not in S;. This gives rise
to a 2-coloring of the set [0,n).

For ease of description, let us denote the bottom left vertex of the 1-st square face
and the top right vertex of the n-th square face of the n-square-b surface by (0, 0)
and (n, 1) respectively. Using the a-flow, the n(m + 1) division points now lead to
n(m + 1) line segments, linking pairs of points

(¢, {—a}) and (+1,1),
(¢,0) and ((+ 1,{a}),
(¢,{a}) and ((+1,{20}), ¢=0,1,....n—1, (4.58)

(. {(m—1)a}) and (€+1,{ma}),

lying on the (¢ + 1)-th square face of the n-square-b surface.
We shall show later that the line segments linking the points

((,{—a}) and (¢+1,1), ¢=0,1,...,n—1, (4.59)

do not come into the argument.

Note first of all that {ma} is not a division point of the vertical edges of the
n-square-b surface. As in Section 2, write b = b, = {ma}. Using (2.3), we see that
{ma} is in the interior of the interval [b,_1,b,41), of the form (2.6).

Suppose that meas(Sg) = meas(Sy) = 7, so that precisely 7 of the intervals

é-'-[byfl,b,hkl), €:O,1,...,n— 1, (460)

belong to S§. Assign the color B or W to an interval in (4.60) according to whether
it is contained in S or is disjoint from 5. This gives rise to a 2-coloring sequence
of n terms, corresponding to the n intervals (4.60) on the left vertical edges of the
square faces of the n-square-b surface and made up of 7 copies of B and (n — 1)
copies of W. We determine a shortest subsequence of consecutive terms of this
2-coloring sequence of length d > 1 such that the 2-coloring sequence modulo n is
the d-term subsequence repeated n/d times. In particular, the number d > 1 must
divide n. In view of cyclic periodicity, we may restrict our attention to the d square
faces corresponding to this d-term subsequence.

For these d square faces under consideration, we color the interval [b,_1,b,,1) on
the left vertical edges according to the 2-coloring subsequence of length d, and then
use the a-flow to spread this 2-coloring of the intervals to the relevant square faces.
Figure 4.2 below, which is not to scale, illustrates our observations thus far in the
case d = 4, where the 2-coloring subsequence W, B, B, B has length 4.
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M

Figure 4.2: a partial 2-coloring on 4 consecutive square faces
of the n-square-b surface where 4 divides n

bu+1
b=0b,={ma} ¢

v—1

We next consider the line segments linking the pairs of points
(,{(m—1)a}) and (£+1,{ma}) (4.61)

on the square faces under consideration. Since {(m — 1)a} is one of the division
points, it follows from (2.3) that there exists a unique p = 0,1,...,m such that
p # v and {(m — 1)a} = b,. Let b,_y and b,41 be the closest division points
to b, from below and above respectively. We next investigate the coloring of the
intervals [b,_1,b,) and [b,,b,+1) on the left vertical edges of the square faces. The
T-invariance of Sy, and hence S, clearly dictates that the interval [b,,b,+1) must
have the same coloring as the interval [b,_1,b,.1) on the left vertical edge of the
same square face, whereas the interval [b,_1,b,) must have the same coloring as
the interval [b,_1,b,41) on the left vertical edge of the square face immediately to
the right. Figure 4.3 continues with our example, and we see that the 2-coloring
sequence of the intervals [b,, b,41) in the 4 square faces remain W, B, B, B, whereas
the 2-coloring sequence of the intervals [b,_1,b,) in the 4 square faces becomes
B, B, B,W, representing a shift by 1 to the left of the original 2-coloring sequence.
Furthermore, the color pattern sequence across the line segments (4.61) is

WB,BB,BB, BW, (4.62)

where, for instance, W B denotes W above and B below.

Figure 4.3: extending the 2-coloring on 4 consecutive square faces
of the n-square-b surface where 4 divides n
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Let b,_» denote the closest division point to b,_; from below, and let b,_ denote
the closest division point to b,_; from below. Note that b,_o = {b,—» + a}. We
next consider the line segments linking the pairs of points (¢,b,_») and (£ +1,b,_5)
on the square faces under consideration. As these line segments can be obtained
from those in (4.61) under the inverse transformation 7!, the color patterns across
them must be preserved. Cyclic periodicity and the maximality of d then dictate
that they must appear in the same order modulo d. The unique solution to this
problem is a shift by 1 to the left of the earlier color pattern sequence across the
line segments. Figure 4.4 illustrates this observation in our continuing example.

Figure 4.4: cyclic periodicity at work on 4 consecutive square faces
of the n-square-b surface where 4 divides n

Note that the new color pattern sequence across the line segments is
BB,BB, BW,WB, (4.63)

a shift to the left by 1 of the sequence (4.62).

Let b,_3 denote the closest division point to b,_s from below, and let b,_3 denote
the closest division point to b,_» from below. Note that b,_3 = {b,_3+ a}. We next
consider the line segments linking the pairs of points (¢,b,_3) and (¢ + 1,b,_3) on
the square faces under consideration. Again, the color patterns across them must be
preserved. Cyclic periodicity and the maximality of d then dictate that they must
again appear in the same order modulo d. The unique solution to this problem is a
shift by 1 to the left of the earlier color pattern sequence across the line segments.
Figure 4.5 illustrates this observation in our continuing example.

bl/-‘rl
b=0b,={ma} ¢

v—1

but1
by ={(m —1)a}

Figure 4.5: cyclic periodicity at work on 4 consecutive square faces
of the n-square-b surface where 4 divides n
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Note that the new color pattern sequence across the line segments is
BB, BW WB,BB

a shift to the left by 1 of the sequence (4.63).

The reader will by now observe that this 2-coloring can be replaced by a d-coloring,
and all the properties we have described so far will be preserved. For instance, for
our continuing example, Figure 4.5 can be replaced by Figure 4.6.

Figure 4.6: a partial 4-coloring on 4 consecutive square faces
of the n-square-b surface where 4 divides n

Proceeding in the same way will allow us eventually to d-color the entire d square
faces under consideration.

We have claimed earlier that the line segments linking the points (4.59) do not
come into the argument. It can easily be shown that the color pattern across each
of these line segments is monochromatic. Thus there are only m division points on
the left vertical edge of each square face. The cyclic periodicity described earlier
now shows that we have a double periodic d-coloring pattern on the d square faces
analogous to (2.7) and which can be obtained by the Double Periodic Coloring
Algorithm. It follows that d must divide m. Furthermore, each color represents a
T-invariant subset of the n-square-b surface. It now follows from Lemma 2.1 that
d also divides Y(m; ). Since d > 2, it follows that the GCD Criterion is satisfied,
a contradiction. Hence such a non-trivial T-invariant subset Sy of [0,n) does not
exist, and it follows that T is ergodic. O

Lemma 4.1 tells us that if the GCD Criterion fails, then 7' is ergodic. Birkhoff’s
ergodic theorem then gives equidistribution of the half-infinite a-geodesic on the n-
square-b surface for almost every starting point. This time-qualitative result arises
from our 2-distance method. Later in Section 6, we shall extend this result to
half-infinite geodesics with any starting point.

5. STARTING THE PROOF OF THEOREM 3.2: PROVING ERGODICITY

Let P be an arbitrary flat finite polysquare-b-rational translation surface with s
atomic squares and with division numbers {r;b}, i = 1,..., R, where b is irrational
and each r; is rational and non-zero. Let

T =T,(P;{rib},i=1,...,R)

denote the interval exchange transformation of the a-flow on this surface. Then T
maps the interval [0, s) to itself.
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Since reflecting a polysquare-b-rational translation surface across a horizontal or
vertical line gives rise to another polysquare-b-rational translation surface, we can
assume, without loss of generality, that the slope satisfies 0 < o < oc.

To bring us one step closer to a complete proof of Theorem 3.2, we have the
following analog of Lemma 4.1 on ergodicity.

Lemma 5.1. Consider a-flow on a polysquare-b-rational translation surface P with

s atomic squares and division numbers {r;b}, 1 =1,..., R, where b is irrational and
each r; 1s rational and non-zero. Assume that
{rib} #{ma}, i=1,...,R, meZ\{0}. (5.1)

Then the interval exchange transformation T : [0,s) — [0, ) is ergodic.

Proof. We shall prove this by contradiction. Assume on the contrary that 7' is not
ergodic. Then there exists a T-invariant measurable subset Sy C [0, s) such that
0 < meas(Sy) < s. Since T reduces modulo 1 to irrational rotation on the unit
interval with the same «, it follows that 7" modulo 1 is ergodic, and so Sy modulo 1
is the unit interval [0, 1), implying that meas(Sy) € {1,2,...,s — 1}.

The irrational slope a € (0, 00) has an infinite continued fraction expansion

1
a = lag; a1, a9,as, ...| = ag + ———, (5.2)
a1+ T 1
a2+
where ag > 0, a; > 1,7 =1,2,3,..., are integers. The rational numbers
a
Pk _ Pr(@) = lag;a1,...,ax), k=0,1,2,3,...,
@ (@)

where p, € Z and ¢, € N are coprime, are the k-convergents of a.. Since « is badly
approximable, there exists an integer A such that

ap, a1, a9, a3, ... < A. (53)

As in the proof of Lemma 4.1, we again use the 3-distance theorem as stated in
Lemma 4.2. We also work with the same partition Ag(«) of the unit torus/circle
[0,1) with g1 = qry1(e) division points {ga}, —1 < ¢ < gry1 — 2. Note that the
choices ¢ = —1,0 in {ga} represent two of the singularities of the interval exchange
transformation 7" restricted to the interval [0,1). Here k£ > 1 is an integer chosen to
be sufficiently large.

Recall that for the special choice n = g1 — 1, the 3-distance theorem simplifies
to a 2-distance theorem, and that there are only two distances

lgrall - and {lgere]] + llgre]

between adjacent partition points in Ag(c). Thus the union of the left and right
neighborhoods of 0 in the partition Ay (a) has the form

B(O) = (_d*’d**)7 (54)

while the union of the left and right neighborhoods of {—a} in the partition Ay («)
has the form

B(-1) = ({—a} —d" . {—-a} +d7), (5.5)
with the two gaps in the same order, where
{d", d} = {llgrall, lgerall + llgre}, (5.6)

but we have not specified which one is which.
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We consider the short special intervals

Ji(q) = (i ks q) = [{qa} —d™ {ga} +d"), 1<q¢<qgpa—2. (5.7)

Note that these short special intervals have three crucial properties:

(i) They completely cover the two long special intervals determined by the two
division points 0 and {—a} of the torus/circle [0,1).

(ii) They avoid the singularities 0 and {—a} of T, in view of (5.4)—(5.7).

(iii) Any two short special intervals inside the same long special interval in (i)
arising from neighboring partition points exhibit substantial overlapping.

Recall from (4.31) that the singularities of 7" modulo 1 are 0 and {—a}, together
with {r;b —a}, i = 1,..., R. These latter singularities require extra care, and we
deviate from the proof of Lemma 4.1. Our new argument depends on a crucial but
rather complicated technical lemma. To formulate this, we first need some notation
and definitions.

For each i = 1,..., R, we write the non-zero rational number r; in the form
u.
ri = —, with coprime u; € Z and v; € N. (5.8)
Uj

Furthermore, we write

U= max |u;] and V = max |v;]. (5.9)
1<i<R 1<i<R

On the other hand, let the integer £ > 1 be given. For every i = 1,..., R, let
hi(i;4) = hp(a;mib;+)  and  hg(i; —) = hg(o; rb; —)
denote the two integers satisfying
—1 < he(d;4), he(; =) < @1 — 2 (5.10)
such that {h(i; +)a} and {hg(i; —)a} are the two neighbors of the singularity {r;b—
a} in the partition Ay («) of the unit torus/circle [0,1). Clearly, for ¢ = %, we have
{hi (@ o)} = {rib — a}|| < [{hn(i; +)a} = {he(i; —)at]]

1 1 2
< @] + |lgeal| < + < .
Qr+2  Qk+1 qr+1

It then follows from (5.11) that for every i =1,..., R and 0 = &+,

(5.11)

hi(i;0) = hg(a;rib; o) — 00 as k — oo,

for otherwise there exists an integer value m such that h(i;0) = m for infinitely
many distinct values of k, and so the corresponding limit in (5.11) must have the
value ||ma — {r;b — a}|| = 0, which contradicts the hypothesis (5.1).

We have the following separation lemma.

Lemma 5.2. Let a € (0,00) be badly approzimable, with continued fraction (5.2)
and digits satisfying (5.3), where A is a fized positive integer. Write
B 1
~ 100(A + 2)2U4V5’
where U and V' are given by (5.8) and (5.9). Then there exists an infinite set
]C() = Kg(a;rib,z' = 1,,R)

of positive integers such that for every k € Ky, the following hold:

(i) For everyi=1,...,R and 0 = £, we have

(5qk+1 < hk(Z, 0) < (1 — (5) qr+1- (513)

0

(5.12)
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(ii) For everyiy,is = 1,..., R and 01,09 = £ such that (i1, 01) # (i2, 02), we have
|hk(ll, 0'1) — hk(lg, 0'2)| > 6qk+1. (514)

The underlying idea of the proof of Lemma 5.2 is quite simple. Unfortunately,
the details are rather complicated and involve a case study. We thus postpone the
proof to Section 7.

Since T acts on the interval [0, s), for every interval Ji(q), 1 < ¢ < qx+1 — 2, given
by (5.7), we define its s-copy extension Ji(q;s) by

Je(q;8) = (@)U (14 Je(@)) U...U((s — 1)+ Jr(q)) C [0,s),

a union of Ji(q) with s — 1 of its translates.
We have a more complicated variant of Lemma 4.3.

Lemma 5.3. Let § be given by (5.12), and let

1)
D<e < —.
=100

Provided that the positive integer k is sufficiently large, for any subset
W C {1,2,37...,Qk+1 —2}

such that the cardinality |W| = 0qy.1, there exists an integer ¢* € W such that for
each £ =0,1,...,s — 1, we have either

meas((¢ + Jix(q*)) N Sy) > (1 — &) meas(Jx(q%)), (5.15)

meas((¢ + Jx(q")) N Sp) < emeas(Jx(q")). (5.16)

Proof. Since S is Lebesgue measurable, given any 1 > 0, there exists a finite set of
disjoint intervals Ij,, 1 < h < H = H(Sp;n), such that the union

V = U Ih
1<h<H

gives an n-approximation of Sy. Let B denote the set of bad short special intervals
C+ Ji(q), where £ =0,1,...,s —1 and 1 < ¢ < ¢x41 — 2, in the sense that

meas((VASy) N (L + Ji(q)))
lgne]

Mimicking the proof of Lemma 4.3 and choosing 7 = £2/6, we deduce that

=

3n ONqr+1 5Qk+1
Bl < < < < —. 5.17
1Bl < el = SIS T (5.17)

Suppose on the contrary that the conclusion of Lemma 5.3 fails. Again mimicking
the proof of Lemma 4.3, we can show that there exists a subset

WO C {172)37"'7Qk+1 - 2}7
with cardinality [Wy| = 0qks1, such that for every integer ¢ € W, there exists
¢ = ((q) satisfying 0 < ¢ < s — 1 such that
meas((VASy) N (4(q) + Ji(q))) -
lgral]

Thus |B| > |[Wh| = dqk+1, contradicting (5.17). This completes the proof. O
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In view of Lemma 5.3, we can define an ordered s-tuple
@(ka (]*) = (90(1{3, q*)v 6 (ka q*)a s 95—1(1{77 q*))> (518)

where, for £ =0,1,...,s5 — 1,
0,(k, g*) = 1, if £+ Ji(¢*) satisfies (5.15),
AT =90, if £+ Ju(q*) satisfies (5.16).

The R+ 2 singularities 0, {—a} and {r;b—a},i=1,..., R, of T modulo 1 divide
the unit torus/circle [0, 1) into R + 2 disjoint long critical intervals.
The next lemma follows from combining Lemmas 5.2 and 5.3.

(5.19)

Lemma 5.4. If k € Ky = Ko(a;r;b,i = 1,..., R) is sufficiently large, then for every
short special interval Ji.(q), 1 < q¢ < qre1—2, that is fully contained inside one of the
R+ 2 long critical intervals, the intersection Ji(q; s) NSy defines an ordered s-tuple
O(k, q) that is either equal to ©(k,q*) or has the entries permuted.

Proof. Suppose that Ji(q) is fully contained inside one of the R + 2 long critical
intervals with endpoints z; < z, which are two adjacent singularities of 7" modulo 1.
Suppose first that z1,29 & {0, {—a}}, where z5 = 0 denotes the endpoint 1 = 0.
Then z; = {r;b} and 2z = {r;,b} for some i; # iy satisfying 1 < 41,42 < R, and
there exist 0y, 09 € {£} such that
21 < {hk(il;al)a} < {hk(iz;gg)a} < 29.

It follows from (5.14) that the finite sequence of consecutive integers with integer
endpoints hy(i1; 01) and hy(i9; 02) has at least dgi1 terms and contains the integer ¢.
If 2y or z2 belongs to {0,{—a}}, then a modification of the argument, using (5.13)
as well as (5.14), will also lead to a sequence of consecutive integers with at least
0qr+1 terms and which contains the integer ¢. It then follows from Lemma 5.3 that
this finite sequence of consecutive integers also contains an integer ¢* such that
an ordered s-tuple ©(k,¢*) of the form (5.18) exists and satisfies (5.19) for every
¢=0,1,...,s — 1. Note next that

Ji(q; s) =TT Ju(q*; s).

Note that Sy C [0,s) is T-invariant, and the R + 2 singularities never split the
intervals in the process of iterated applications of the transformation 7T'. The desired
conclusion follows immediately. ([l

Our next step is to take advantage of property (iii) earlier concerning substantial
overlappings of the intervals Jy(q).

Recall that R + 2 division points 0, {—a} and {r;b — a}, i = 1,..., R, of the
torus/circle [0, 1) give rise to R + 2 long critical intervals in the torus/circle [0, 1).
They lead naturally to s(R + 2) division points and s(R + 2) long critical intervals
in [0, s).

Consider the s(gx+1 — 2) short special intervals

€+Jk(Q)7 62071778_17 1<¢]<Qk+1—2

For large values of k, the overwhelming majority of these short special intervals
are fully contained in some long critical interval in [0, s), and give rise to s(R + 2)
collections of substantially overlapping intervals in [0, s). These s(R+ 2) collections
essentially cover the s(R + 2) disjoint long critical intervals; more precisely, each
long critical interval has an extremely short subinterval at each end which may not
be covered. Due to the substantial overlappings, neighboring short special intervals
in the same collection must have identical ordered s-tuples ©(k, q).
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It follows that the short special intervals fully contained within any given long
critical interval Z C [0,s) must either all satisfy (5.15) or all satisfy (5.16). This
means that the given long critical interval Z is essentially e-almost entirely in Sy, or
is essentially e-almost disjoint from S.

Let the set S§ C [0,s) be defined as follows, apart from the s(R + 2) division
points that give rise to the long critical intervals. For every long critical interval
Z C[0,s), we set

Z C Sy ifandonlyif Z is essentially e-almost entirely in Sp.

Then each of the long critical intervals in [0, s) is either entirely contained in S§ or
disjoint from S. It then remains to prove that such a set S; cannot exist.

The two sets S§ and [0, s) \ S§ lead naturally to a 2-coloring of the interval [0, s),
which in turn lead to a 2-coloring of the s vertical edges of the underlying finite
polysquare-b-rational translation surface P. We can then use the a-flow to extend
this 2-coloring to the whole of P.

It is clear that P cannot be monochromatic, for otherwise meas(S;) must be
equal to 0 or s, implying that meas(Sy) is close to 0 or s, contradicting our earlier
conclusion that meas(Sy) € {1,2,...,s — 1}. Thus the 2-coloring must have a color
switch across some division point.

Suppose first of all that there is a color switch across some division point {—a}, as
illustrated in the picture on the left in Figure 5.1. Applying the reverse a-flow takes
{—a} to the point {—2a} on some vertical edge of P. As Sy is T-invariant, there
must be a color switch across {—2a}, a contradiction since this is not a division
point.

{—a}
Z

{20}

Figure 5.1: contradicting a 2-coloring

Suppose next that there is a color switch across some division point 0, as illustrated
in the picture on the right in Figure 5.1. Applying the a-flow takes 0 to the point
{a} on some vertical edge of P. As Sy is T-invariant, there must be a color switch
across {a}, a contradiction since this is not a division point.

Suppose finally that the 2-coloring has a color switch across a division point
{ri,b —a}, 1 < iy < R, on some vertical edge of P. The a-flow moves this point to
a new point on some vertical edge of P. As Sy is T-invariant, there must be a color
switch across this new point, so this new point must be a division point. Repeating
this argument sufficiently long, this process must visit some division point twice,
meaning that there exist some positive integers n; < ny such that

{ri,b — a+na} = {ri,b—a+ na}.

But this implies that (ny — ny)a is an integer, contradicting the assumption that «
is irrational.
This completes the proof of Lemma 5.1. U
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6. EXTENDING ERGODICITY TO UNIQUE ERGODICITY

Lemmas 4.1 and 5.1 establish ergodicity of some Lebesgue measure preserving
transformation 7". This means that we can apply Birkhoff’s well known pointwise
ergodic theorem concerning measure preserving systems (X, A, u,T). The triple
(X, A, ) is a measure space, where X is the underlying space, A is a o-algebra
of sets in X, while p is a non-negative o-additive measure on X with u(X) < oo,
and T : X — X is a measure-preserving transformation, so that 7-!A € A and
w(T~rA) = u(A) for every A € A.

Let L'(X, A, 1) denote the space of measurable and integrable functions in the
measure space (X, A, ). Then Birkhoff’s pointwise ergodic theorem says that for
every function f € L'(X, A, i), the limit

lim 1 if(T]x) = () (6.1)

m—00 1M, 4

exists for p-almost every x € X, where f* € L'(X, A, u) is a T-invariant measurable
function satisfying the condition

/deu=/xf*du-

A particularly important special case is when T is ergodic, when every measurable
T-invariant set A € A is trivial in the precise sense that u(A) =0 or p(A) = pu(X).
This is equivalent to the assertion that every measurable T-invariant function is
constant p-almost everywhere.

If T is ergodic, then (6.1) simplifies to

1 m—1
lim — f(Tz) = | fdpu, (6.2)
=,

m—00 M, 4

and the right-hand side of (6.1) is the same constant for py-almost every =z € X.

The remarkable intuitive interpretation of (6.2) is that the time average on the
left hand side is equal to the space average on the right hand side.

Unfortunately, Birkhoft’s theorem does not say anything about the speed of con-
vergence in (6.1) or (6.2).

In the special case of Lemma 5.1, we have X = [0, s), formed from the s vertical
edges of the given finite polysquare-b-rational translation surface P, the measure p is
1-dimensional Lebesgue measure and 7" = T, is the interval exchange transformation
corresponding to the a-flow on P. Combining Lemma 5.1 with (6.2), we immediately
obtain that for almost every starting point, a half-infinite a-geodesic is uniformly
distributed on the surface P, a weaker version of Theorem 3.2. Similarly, combining
Lemma 4.1 with (6.2), we obtain a corresponding weaker version of Theorem 2.1.

To prove Theorem 3.2, we need to extend almost every starting point to every
non-pathological starting point that gives rise to a half-infinite a-geodesic. In other
words, we need to establish the following result.

Lemma 6.1. Under the hypotheses of Lemma 5.1, consider the measure-preserving
interval exchange transformation T = T, : X — X of the polyrectangle-b-rational
surface P, where X = [0,s). Then for every subinterval J C X and for every
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non-pathological starting point x € X, we have

where x; denotes the characteristic function of J and \ denotes 1-dimensional
Lebesgue measure.

Using the standard extension argument, this discrete result can be converted to
the continuous version concerning the uniformity of a-geodesics on P and every
non-pathological starting point.

Proof. The proof is by contradiction, and consists of two parts. The first part

simply follows Furstenberg’s argument, and the basic idea is to reformulate the

problem of unique ergodicity in terms of T-invariant Borel measures, and to apply

nontrivial results from functional analysis. The key idea of the second part is then an

application of Birkhoft’s ergodic theorem to a new measure that is different from .
The first part of the argument is summarized in the following lemma.

Lemma 6.2. Suppose that there exist a non-pathological starting point yo € X and
an interval Jo C X for which uniformity fails, so that the infinite sequence

1 .
= xa(Tw), m=1, (6.3)

where x4, is the characteristic function of Jy, does not converge to X(Jy)/s. Then
there exists an ergodic measure-preserving system (X, B,v,T), where B is the Borel
o-algebra on X, and v is a new T-invariant Borel probability measure, such that

Ao) _ AlD)

v(Jo) # O s (6.4)
Proof. In view of the assumption, there exists an infinite subsequence
0< hg<hy <hy<hs<... (6.5)
of the non-negative integers such that the limit
B —1
nll_fgoh— Z X0 (T 0) (6.6)

exists, but is not equal to A(Jy)/s.
Claim. There exist another infinite subsequence
1<d1<d2<d3<...

of the positive integers and an infinite sequence of corresponding starting points
y(m) € X, m=1,2,3,..., such that the limit

Qdypy, —1
lim — o, (T7y( 6.7
exists, but is not equal to )\(JQ)/S. Here, for every integer m = 1,2,3,..., the

number ¢4 = represents the denominator of the d,,-th convergent of a.
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We shall justify this Claim at the end of our proof of Lemma 6.2.

We now repeat and adapt some ideas in [2, Sections 3.2-3.3]. For every integer
m > 1, we introduce the normalized counting measure v,,, defined for every Borel
set B C X by

1 Qdy, —1 A
vm(B) = — > xs(T’y(m)), (6.8)
L ——
where yp is the characteristic function of B.

Now we make use of a general theorem in functional analysis which says that the
space of Borel probability measures on any compact set is compact in the so-called
weak-star topology. The latter means that

fm — 4 if and only if /fd/ﬁm—>/fdu,

where f runs over all continuous functions on the compact space.

This compactness theorem is a non-trivial result. The standard proof is based on
the Riesz Representation Theorem.

Let M denote the set of Borel probability measures ¢ on X. By the general
theorem, M is compact. Let M; C M denote the set of those Borel probability
measures g on X that are T-invariant and such that p # A/s. It is obvious that
M is a closed subset of M and therefore compact.

The compactness of M implies that there is a subsequence v,,, of the sequence
Vm defined by (6.8) such that v,,,, — v as i — oo, where v, is a Borel probability
measure on X. It easily follows from (6.8) that v, is T-invariant. Indeed, writing
y1(m) = Ty(m), we have

n(TB) = Y xa(Tys(im)) = —— > xa(Tly(m)
LS ) XAl
() 4 T y(m) = Xs(y(m))
qd,,
and
xp(Tmy(m) —xs(m)| - L0 o o

qd,, qd,,

Moreover, the limit measure v, clearly satisfies the requirement (6.4), implying that
Voo € My, and so M is a non-empty compact set.

To find an appropriate v € M; which guarantees that the measure-preserving
system (X, B,v,T) is ergodic, we use the almost trivial fact that M; is convex.
The well known Krein—Milman theorem in functional analysis implies that the non-
empty convex set M is spanned by its extremal points. It is a well known general
result in ergodic theory that the extremal points are precisely the ergodic T-invariant
measures; see [2, Proposition 3.4]. Thus we can choose our measure v € Mj to be
such an extremal point, and this completes the deduction of the lemma. It remains
to establish the Claim.

To establish the Claim, we use the a-representation, or Ostrowski representation,
of an arbitrary integer N > 1.
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It is well known that every integer N > 1 has a unique representation in the form

N = Zbqu = Zbk(N)CIk;
k=0 k=0

where the integer coefficients by, . . ., b, satisfy the conditions
0<by<a, 0<b,<ap1, 0<by<agr, k=1,...,n—1, (6.9)
as well as the restrictions
b1 =0 if bp=ar1, k=1,...,n, (6.10)
where ay, as,as, ... are digits of the continued fraction (5.2) of «, and qo, g1, ¢2, - - -

are the denominators of the successive convergents of o. Furthermore, the value of
the integer n is determined by the inequalities ¢, < N < @p1-

We now do likewise for the sequence of integers hy, £ = 0,1,2,3,..., in (6.5), so
that we have the Ostrowski representations

ng
hﬂzzbk,éqka €20a172737"'a
k=0

where the coefficients by ¢ satisfy conditions analogous to (6.9) and (6.10).
Next, observe that

ne—1 ((ko—1 ko
{0.1,....h—1}= {Z Dl - - Y Dt — 1} : (6.11)
k=0 k=0

ko=0

where each set in the union is a collection of consecutive integers. Write

ko—1
Ni(ko) = > bregr, ko =0,1,...,n,— 1. (6.12)
k=0
Then for each kg =0,1,...,n, — 1, we have
ko—1 ko bko,é_l Qko_l
{Z breGrs - - - 7251@,@% - 1} = U U {Ne(ko) + bar, + Jo}- (6.13)
k=0 k=0 b=0  jo=0

It now follows from (6.11)—(6.13) that

he—1 ng—1 bko,l_l Qko_l

Z XJo(ijO) _ Z Z Z XU (TNZ(kO)+bqk0+j0y0)- (6.14)
=0

ko=0 b=0 jo=0
Write yg(ko, b) = TNeko)Tbaro g - Replacing the dummy variables ko and jy by &k and
J respectively in (6.14), we then conclude that

he—1 ng—1bke—1q,—1

Z Xoo(Ty0) = D > X (T yu(k, b)). (6.15)

k=0 b=0 j=0
Motivated by (6.15), write

1 & . MJ
“(6ki) = | 3 u(Tilk.b) - L)
=0

S

and

e(k) = sup e(4;k;b).
£20
0<b<bk72
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Noting that the limit (6.6) exists and is not equal to A(Jy)/s, it is clear that (k)
does not tend to zero as k — oo. Hence there exists an infinite sequence

1<di<dy<ds < ...

of integers and a positive g9 > 0 such that e(dy) > g for all £ > 1. This clearly
implies that the limit (6.7) exists, but is not equal to A(Jy)/s. This completes the
proof of the Claim and also of Lemma 6.2. O

Since the measure-preserving system (X, B,v,T) given by Lemma 6.2 is ergodic,
it follows from Birkhoff’s ergodic theorem that for every Borel set B € B and for
v-almost every y € X, we have

m—1
1 )
1 QN
Jim =% yp(T7y) = v(B). (6.16)
§=0
Let W be an arbitrarily large but fixed positive integer. We claim that there
exists a non-empty open interval Q) = Q(W) C X such that

v(Q)
(%)

Thus the measure v can be arbitrarily more dense in some subintervals () C X than
the Lebesgue measure A.
To prove (6.17), we choose B = Jy in (6.3), and consider the set

> W. (6.17)

m—1
1 :
Y = {y €X: lim — 2_03 Xao(TPy) = V(Jo)} : (6.18)
We already know that for A-almost every y € X, we have
m—1
.1 , A Jo)
lim — T7y) = . 6.19
Jim jZOXJo( v)=— (6.19)

Combining (6.4), (6.16), (6.18) and (6.19), we conclude that
v(Y)=1 and AY)=0. (6.20)

Let § > 0 be arbitrarily small but fixed. Since A(Y) = 0, there exists an infinite
sequence R;, 1 > 1, of open intervals such that

> AMR) <6 and Y C|JR: (6.21)
i=1 =1

By (6.20) and (6.21), we have
> v(R) =1 (6.22)
=1

It follows from (6.21) and (6.22) that there exists an integer o > 1 such that
)‘<Ri0)
V(Rio)

Choosing § = 1/W in (6.23), the inequality (6.17) follows with the choice Q = R;,.
Next we derive a contradiction from (6.8) and (6.17). In (6.8) the orbits

X={T"y(m):0<j<qu,} (6.24)

< 0. (6.23)
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of v, have sizes equal to the denominator of a convergent of a. We shall show that
they are uniformly not crowded. Then v, being a limit point of the set of counting
measures v,,, cannot be arbitrarily more dense than X. This then contradicts (6.17).

To prove the sets X in (6.24) are uniformly not crowded, we recall that T' modulo 1
is the a-shift in the unit torus/circle [0, 1). We also recall from (4.36) that

. . ] ]
ja—2inl oI o <—, 0<j<dqa,
qd,, qd,+19d., qd,,+1 qd,,
which implies
. JPd,, 1 :
'{m}—{—}\<—, 0<) < . (6.25)
qd77L daTL
Since
{jfdm } . 0<j < qu, (6.26)
i

gives an equipartition of the unit torus/circle [0, 1), the points in (6.26) exhibit a
best possible form of quantitative uniformity. Combining this fact with (6.25), we
deduce that for every subinterval J C X = [0, s) with A\(J) > s/qa,,, we have

A J

|JﬂX!<s(qdm ( >—|—2), (6.27)
s

where |J N X| denotes the number of elements of X' in the interval J of length A(J),

and the factor s comes from the fact that there are s atomic squares in P. The

bound (6.27) proves that the set X C X = [0, s) in (6.24) is uniformly not crowded.

This completes the proof of Lemma 6.1. U

The slope in Theorem 3.2 is badly approximable. However, in this section this
special property of « is never used, only that it is irrational. Thus we can routinely
repeat the same extension argument to Lemma 4.1 for the 2-square-b surface, and
obtain the unique ergodicity for ewvery irrational slope and complete the proof of
Theorem 2.1.

Remark. The expert reader may well be wondering why we have not established
Theorem 3.2 by using Boshernitzan’s Criterion for unique ergodicity of an interval
exchange transformation as given in [16]. Unfortunately, we are not able to see how
we may prove Theorem 2.1 via this method, and have already developed a different
technique in Section 4. It therefore seems natural to adapt this other technique in
Section 5 in the case of Theorem 3.2.

7. PROOF OF THE SEPARATION LEMMA

The proof of Lemma 5.2 depends on the following very simple property of the
given badly approximable number a.

Lemma 7.1. Let a € (0,00) be badly approximable, with continued fraction (5.2)
and digits satisfying (5.3), where A is a fixed positive integer. Then for every integer
n = 1, we have

1

”TLO(H > m
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Proof. For every integer n > 1, we can find an integer k£ > 0 such that ¢ < n < qxy1,
where g, = qx(«) denotes the denominator of the k-th convergent of a. Using well
known diophantine approximation properties of continued fractions, we have

1 1 1

> > > ;
@+ a1 Gt (e + g~ (A+2)as ~ (A+2)n
as required. O
Proof of Lemma 5.2. Suppose that the integer ky > 1 violates (5.13) or (5.14). Then
at least one of the conditions (V1)-(V3) holds:

(V1) There exist i = 1,..., R and ¢ = £ such that
hio (i50) < Oqryt1- (7.1)

In this case, it follows from (5.11) that

[nall = flgeall =

1Py (35 )+ Dev = mibl] = [[{hy (35 0)a} = {rsb — af} < — » (7.2)
0
Writing r; = u;/v; and multiplying by v; leads to the inequality
2v;
vi (B (65.0) + D — ud]| < ——.
qko-l—l
Thus there exists a real number x; > 1 such that
. 2v;
|lvi(hgy (35 0) + 1)ov — w;b|| = : (7.3)
L1qko+1
(V2) There exist i = 1,..., R and 0 = 4 such that
hio (i3.0) 2 (1 = 0)Grg+1- (7.4)
In this case, write
Py (55.0) = Qg1 — hiy (45.0). (7.5)
This is equivalent to
(—higy (G5 0)a = (rib — @) = (hio (5 0)x = (rib — @) = qry1v,
and it follows from the triangle inequality and (4.36) that
_ . ) 1
[l = higy (i 0) e = (rib — @) | = ([, (i3 o) = (rib — ||| < [ groaal| < 7
Qro+2
and then from (5.11) that
(b, (i5.0) + D) = 7ibl| < [[(hay (450) + D = 73] + [lgrp1f| < (7.6)

ko+1

Writing r; = u;/v; and multiplying by v; leads to the inequality

. 3v;
|vi(—hy, (5;0) + 1)a — u;b|| < )
qk0+1
Thus there exists a real number x5 > 1 such that
3v;
vi(—h, (1;0) + Do —u;b|| = L.
[vi(=hy, (i50) + 1) | o

Note from (5.10) with k = kg, (7.4) and (7.5) that
2 < h,;o(i; 0) < OQry+1-
(V3) There exist i1,i3 = 1,..., R and 01,09 = + such that (i1, 01) # (iz, 02) and

|Peo (15 01) — hig (123 02) | < Oqrg41-
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For notational simplicity, we assume that
hio(i1;01) > hgy(ig;09)  and  {ryb — a} > {r,b— a}.
The argument for the other possibilities requires only minor modification. Then
{rib—a} —{ri,b—a} ={(ry, —r,)b},
and it follows from the triangle inequality and (5.11) that
[ (115 1) = Py (25 02) ) = (13, — 73,) b
= || (o (i1 01) = gy (23 02) Jor — { (13, — 73, )} |
= || (Ao (013 01) = higy (i2; 02) ) = {73, 0 — a} + {ri,b — a}|]

< ko (i15 01) a0 — {73, b — a} || + || Ay (425 02) o — {73,0 — a}]| <

Gro+1 .
Write

iy (i1, 125 01, 02) = higg (i1; 01) — i, (425 02).
Then it clearly follows that

(7.7)

| ko (41, 323 01, 02) o — (13, — 73,)b| <

Writing r;, = u;, /v, T, = Wi, /v;, and multiplying by v;,v;, leads to the inequality

o 4o, v;
H'Uil'UiQhkO (217 125071, 02)05 - (uilviQ - uiQUh)bH < ﬁ'
ng+1
Thus there exists a real number x3 > 1 such that
o 4o, v;
HvilviQhko (21722; 01, 02)04 - (uilviQ - uizvil)bH = M'
T3qky+1

Note in particular that
1 < gy (i1, 925 01, 02) < OGrgt1-

Next let k > ko be any integer which violates (5.13) or (5.14). We distinguish
various cases.

Case 1A. Suppose that kg satisfies (V1) and k satisfies the k-analog of (V1). Then
there exist ¢* = 1,..., R and ¢* = 4 such that

hi (%5 0%) < OQs1- (7.8)

Writing 7+ = w;+ /v and multiplying the analog of (7.2) by w;v;+ leads to the
inequality

AT S
lusvee (s o) + D — wsugbl] < 224 (7.9)
dk+1
On the other hand, multiplying (7.3) by u;-, we obtain
2 l ’i*
||vitix (b, (35 0) + 1) — wyuib|| = Juitsie| . (7.10)
L1Gko+1

We shall show that the integer
d11 = ViU* (hko (’l, O') -+ 1) — UV (hk(l*, O'*) —+ 1) 7£ 0 (711)

if the condition
v o 1

~
qr+1 T1Gky+1

(7.12)
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holds. Indeed, combining (5.9), (7.9), (7.10) and (7.12), we see that

20V 2
| w;vi= (hi (15 0%) + 1)or — uzubl| < <
qk+1 T1qko+1
2|V .
< i = [|vjup (hiy (1, 0) + 1) — wzupb)|.
L1Gkg+1

This clearly implies that dy; # 0. Since r; and r;+ are non-zero, so are u; and ;.

Case 1B. Suppose that kg satisfies (V1) and k satisfies the k-analog of (V2). Then
there exist i* =1,..., R and ¢* = £ such that

hi (i%50%) = Qrg1 — hi(i"50%) < 0qpy1-
Writing 7+ = w;« /v and multiplying the analog of (7.6) by w;v;» leads to the

inequality
3 ’ U;V;* |

|wivi (—hy, (7% 0%) + 1) — usw=b|| < (7.13)
Qk+1
On the other hand, multiplying (7.3) by w;«, we obtain (7.10). We shall show that

the integer
d12 = V;U;* (hko(l, O') + 1) — UZUZ*<—h,;<Z*, O'*> + 1) % 0

if the condition
33UV 1
<
2Qk41  T1qrgt1
holds. Indeed, combining (5.9), (7.10), (7.13) and (7.14), we see that

33UV 2
| < <
qk41 L1Gko+1

(7.14)

|wvis(—hy, (i%507) + 1) — wju=b

2]viui*|

N

= |Jvjup (hiy (50) + 1) — uzugb

T1Gkg+1
This clearly implies that di5 # 0.
Case 1C. Suppose that kg satisfies (V1) and k satisfies the k-analog of (V3). Then
there exist if,i5 = 1,..., R and o7, 04 = &£ such that (i}, 0}) # (i3, 05) and
| (15 07) = B (i35 03)| < 01
For notational simplicity, we assume that
hi(i1;07) > hi(iz;05) and  {rib—a} > {rsb—a}.
The argument for the other possibilities requires only minor modification.
Writing rg = w;: /vis, 75 = ug/vi; and multiplying the analog of (7.7) by wvsvig
leads to the inequality
4 Ui ViV
|uivisvis hi (i1, i3; 07, 05 ) — wi(Usrvis — viugs )b|| < M (7.15)
qk+1
On the other hand, multiplying (7.3) by wusvi; — vizug, we obtain

| (wiz viz — vistig) (A (350) + 1) — wi(usrviy — virugs )b|

L1Gko+1
We shall show that the integer

dig = vi(Uiz Vig — Vst ) (M (15 0) 4+ 1) — wviz v he (47, 355 07, 03) # 0
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if the condition

20V 1
<
Qr+1 T1qko+1
holds. Indeed, combining (5.9) and (7.15)—(7.17), we see that

(7.17)

| wiviz vis hi (i1, 0%; 07, 05 ) — wi (Ui v — Virugs ) b||
_ oy c2 2fvi (i vig — viguss )|
Qr+1 T1qko+1 T1qko+1
= [Jvi(uevig — vt ) (i (45 0) + 1) — us(uzvis — vizugg)b||.

This clearly implies that di3 # 0.

Let us compare the requirements (7.12), (7.14) and (7.17). Clearly the last one is
the strongest requirement. Let k; be the smallest integer such that the inequality

20V? < 1

~
ki +1 T1Gky+1

holds, so that in particular, we have
Q41 = 2UV2$1%0+1-

Note that gk, +1 is the denominator of a convergent of the continued fraction of the
badly approximable number «, and clearly k; > kq. Recall (5.3) that the continued
fraction digits are bounded by an integer A. Using the recurrence relations (4.37),
we see that for every real number X > 1, there exists a denominator ¢, between X
and (1 + A)X. The minimality property of k; then ensures that

Aki+1 < 2(14 + 1>UV2I1ko+1. (718)

We shall show that this k; > kg belongs to Ky, and prove this by contradiction.
Suppose on the contrary that ki & K. Then one of the cases 1A, 1B and 1C
holds with k = k;.
Suppose that Case 1A holds with k = k;. Starting with (7.9) with k& = &y, (7.10)
and (7.11), applying the triangle inequality, and then using (7.18), we obtain

|diia]] = ||vsw (hgy (45 0) + 1) — wsvps (b, (i%50%) + Da|
< Jvsup (hiy (50) + 1) — wupb|| + [|wves (i, (755 0) + 1)ae — wjug=b

2|’UZ‘UJZ‘* 2|Uzvz* 4(A + ].)UV2|’UZ‘UZ'* 2’”11}1*
+ < +
L1Gko+1 Qk1+1 Qk1+1 Qk1+1
4(A+2)U?V3
< HA+ UV (7.19)
Qk‘l-i-l

Let n = |dy;| with & = k;. Then n > 1. Using (7.1) and (7.8) with k = k;, we have
n = |viup (hiy (1;0) + 1) — wvp (hy, (755 0%) + 1)|

< 20UV qigv1 + 20UV qiy 11 < 40UV gy 11 (7.20)

Applying Lemma 7.1 and using (7.20), we deduce that
1 1
(A+2n ~ 26(A+ 200V
Combining (7.19) and (7.21), and noting that ||[nal| = ||di1a|, we conclude that
1

. 22
O (AT 2P0 (7.22)

(7.21)

Inadl >
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Clearly (7.22) contradicts the definition of ¢ as given by (5.12). It then follows that
Case 1A does not hold with k = k;.
Essentially similar arguments show that Case 1B and Case 1C also do not hold
It follows that if ko satisfies (V1), then there exists k; > ko such that k; € Ko.
Similar arguments then show that if ky satisfies (V2) or (V3), then there exists
ki > ko such that ky € Ky. This clearly implies that the set Ky is infinite, and
completes the proof of Lemma 5.2. 0

8. PROVING TIME-QUANTITATIVE ANTI-UNIFORMITY

Our goal in this section is to establish quite serious violations of uniformity. More
precisely, we establish Theorem 3.4 which concerns half-infinite a-geodesics that
start from explicitly given points on the 2-square-b surface.

The proof is based on a rather complicated parity formula for certain counting
number of the irrational rotation sequence. To describe this, we need the concept
of continued fractions as well as the concept of a-representations, or Ostrowski
representations, both introduced earlier in this paper.

The rudiments of continued fractions are given in the proof of Lemma 4.1, so we
give here only a brief summary of what we need.

The irrational slope o € (0,1) has an infinite continued fraction expansion

1
a = lay,a9,as,...| = ———, (8.1)
ay + a2+a3<1k»-»
where a; > 1,1 =1,2,3,..., are integers. The rational numbers
«
pe_Pel@) ) k=123
4k qr ()

where p, € Z and ¢ € N are coprime, are the k-convergents of a. Write also
m=qo—pg, k=123 ....
We have the recurrence relations
Phi1 = Qe1Pk + Ph—1, Q1 = Qhi1Qe + Qh—1, Mkl = Q1 + M1, K21, (8.2)
with initial conditions
po=0, @o=1 m=a, p=1, g=a, m=ama-1.  (83)

It is well known that the k-convergents satisfy (4.34) and give rise to the best rational
approximations of «, and

> 0, if k is even,
M= (=1)" el { <0, if k is odd. (8-4)

We also have the crucial diophantine approximation property
1

—— < = | — pr| = ||| < —, 8.5

o S 7| = lawee — pi| = [lanar]| < -~ (8.5)

where ||y|| denotes the distance of a real number y from the nearest integer.
The concept of a-representations, or Ostrowski representations, is first introduced
in Section 6. Every integer N > 1 has a unique representation in the form

k k
N = Z biq; = sz’(N)% (8.6)
i=0 i=0
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where the integer coefficients by, . . ., by satisfy the conditions
0<by<a, 0<bp<ag, 0<b<ap, i=1....k—1, (8.7)
as well as the restrictions
bioi=0 if bj=a;1, 1=1,... )k, (8.8)
where ay, as, ag, ... are digits of the continued fraction (8.1) of «, and qo, q1,¢a, . . .

are the denominators of the successive convergents of a. Furthermore, the value of
the integer k is determined by the inequalities ¢z < N < qr+1. We also say that a
sequence by, by, . .., b that satisfies (8.6)—(8.8) is a-legitimate.

We need one more concept that is not so well known. If « is irrational, then any
real number § € (—a,1 — a) can be written in the form

B = Z CiTli (8.9)
=0

where the integers ¢, . . ., ¢; satisfy the conditions
O0<co<a, 0<¢<ay, 1=1,23, ..., (8.10)
and
cii1=0 if ¢=a1, 1=1,2,3,..., (8.11)
where ay, as, as, ... are digits of the continued fraction (8.1) of a. Furthermore, if

we exclude the case
Cug+2i = Qugt2i41  for some ug and all ¢ > 0, (8.12)
d (

then the representation (8.9) under the conditions (8.10) an
call this the a-expansion of the real number 5 € (—a, 1 — ).
The a-expansion of the real number 5 € (—a, 1 — «) follows from the density of
na mod 1 and the a-representations of positive integers. Indeed, since na mod 1 is
dense in the unit interval, for any real number 5 € (—a, 1 — «), there is an infinite

sequence of positive integers 1 < n; < ng < ...<n, <...such that
lim n,o0 =  mod 1. (8.13)

r—00

8.11) is unique. We

For each integer n, of this sequence, consider the a-representation

k(r)
n, = Zbi(nr>Qi7
=0

where the digits by(n,), . .., biy(n,) satisfy conditions analogous to (8.7) and (8.8).
Using (8.2)—(8.4) and (8.7), we have the upper bound

k(r)
Z bi(ne)m: < (a1 — 1)no + azne + asna + azne + ...
i=0

= (a1 = Do+ (3 —m) + (ms —m3) + (N7 —ns) + ...
=(@m—n—m=(a1—a—(ama—1)=1-—a, (8.14)

and the lower bound
k(r)
> bi(ne)mi = asm + aans + agns + ..
i=0

= (le — o) + (774 — 772) + (7]6 — 774) +...=—1n=—qa. (8.15)
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Note next that

k(r) k(r) k(r)
bi(n)n; = Z bi(n.) (v — p;) = npa — Z b;(n,)p; = n.a mod 1. (8.16)
i=0 =0 =0
Since € (—a, 1 — ), it now follows on combining (8.13)—(8.16) that
k(r)

lim ; bi(n)n; = 3

Combining this with a standard compactness argument, we obtain the existence of
an a-expansion (8.9) with the coefficients satisfying (8.10) and (8.11). Indeed, since
0 < bo(n,) < ay, there exists an infinite set Ry such that by(n,) for every r € Ry
has the same value ¢y, say. Since 0 < by(n,) < ag, there exists an infinite subset
Ry C Ry such that by(n,) for every r € R; has the same value ¢;, say. And so on.
Compactness defines the infinite sequence of coefficients ¢;. On the other hand, the
convergence of the series on the right hand side of (8.9) is clear from the bound
(8.5) and the exponent growth of the sequence gx.; as shown by (8.2) which gives
the estimate qxi1 = qr + qe—1 = 2qx_1-

The fact that (8.12) guarantees uniqueness of the a-expansion is left to the reader
as an exercise.

We shall be concerned with real numbers g satisfying 0 < 8 < 1 — a. It is well
known that for any § with a-representation (8.9), we have 0 < 8 < 1 — « if and
only if

min{i =0,1,2,3,...: ¢ > 1} is even. (8.17)

Let a € (0,1) be a fixed irrational number, and let N > 1 be an integer. For any
non-zero real number [ satisfying 0 < <1 — «, let

®(a; 5 N) = {g=0,....,N —1:{qa} € [0, 5)}. (8.18)

The next result gives a fairly complicated parity formula for the difference of two
counting numbers ®(a; '; N) and ®(a; 5”; N) in terms of the continued fraction
of a, the a-representation of N and the a-expansions of 5" and " under some very
special circumstances.

Lemma 8.1. Suppose that o € (0,1) is a fized irrational number, and that the
integer N satisfies 1 < N < qgr1. Suppose further that

k k

N = Z big; = Zbi(N)CIi (8.19)
i=0 i=

0
denotes the a-representation of an integer N > 1, and that
[e.e] oo
B = Z c¢mi and B = Z cln; (8.20)
i=0 i=0

denote respectively the a-expansions of two real numbers ', 8" € (0,1 — «), where
the digits ¢, and ¢! are all even, and where ¢, and ¢! are non-zero whenever i is
even. For every integer j =0,... k, let

J
N; = N;(N) = Zbi% (8.21)
i=0
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denote an integer defined in terms of the a-representation of N, and let
J J
G- =3 da =N =Yda (5
i=0 1=0
denote respectively integers defined in terms of the a-expansions of ' and ". For
every integer £ =1,... k, let

1, iflis even and C)_; < Ny < Ny < (Y,

A, =AyN)=< —1, iflisodd and Ny < C,_; < C) < Ny, (8.23)
0, otherwise,
and
1, iflis even and C} | < Ny—y < Ny < CY,
v =AJ(N)=1< =1, iflis odd and Ny_1 < C}/ | < CJ < Ny, (8.24)
0, otherwise.
Then, provided that the coefficients by, ..., b, in (8.19) and (8.21) satisfy
b < iy, i=1,...k (8.25)
we have

®(a; " N) — @(; B N)

k k k k
= Z min{b,, c,} + Z min{b,, )} + Z Aj + Z A7 mod 2. (8.26)
=0 =0 =1 =1
We shall prove Lemma 8.1 in Section 9. There the reader will see that a parity
formula for a single counting number ®(a; 3; N) contains a translation term which
we are not able to handle. Thus by studying the difference of two counting numbers,
this term appears twice and therefore cancel each other modulo 2.

Remark. The counting number ®(«; 5; N) is related to the discrepancy function
D(a; 3;N)=[{g=0,...,N—1:{qa} € [0,8)}| = NB

for which there is an explicit formula due to Sés [12]. In fact, one can derive our
parity formula using the ideas of S6s. However, it would be most unkind to ask the
reader to work out the details. Instead, we include in the next section a detailed
proof by closely following the method of Sés.

The conditions in (8.23) and (8.24) may look elegant, but as they stand, they are
not of much use. For applications later, we need a less elegant but more convenient
form. We summarize it below. The proof is almost trivial.

Lemma 8.2. Suppose that for every integer j = 0,...,k, the integer C; is defined
in terms of (8.9) in precisely the same way as the integers C and C} are defined
by (8.22) in terms of the a-expansions (8.20) of 5" and B" respectively.

(i) The condition Cy_1 < Ny_1 < Ny < Cy is equivalent to

by < ¢y, (8.27)
together with the existence of an integer m < { such that
Cm <byn and ¢ =0b, m<i<H/. (8.28)
(ii) The condition Ny_1 < Cp_q1 < Cp < Ny is equivalent to
cp < by, (8.29)
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together with either
bi=c;, 1<, (830)
or the existence of an integer m < ¢ such that

by < Cm and bi=c;, m<i</l. (8.31)

To prove Theorem 3.4, the simple basic idea is to use discretization to convert the
continuous problem of the distribution of an a-geodesic on the 2-square-b surface
to the discrete problem of the distribution of the sequence of points at which the
a-geodesic hits a vertical edge of the surface. The latter gives the irrational rotation
sequence {ga}, ¢ = 0. The question of left or right square clearly leads to a parity
problem, where left or right is converted to even or odd.

Let an irrational number a € (0, 1) be given and fixed. Let N > 1 be an arbitrary
integer, and consider the unique a-representation of N as given by (8.6)—(8.8).

Next, we use the unique a-expansion of real numbers, and define the length 5 of
a first gate in terms of the a-expansion

; =, o2, if 7 is even,
p= ;Ci”“ €= { 0or2, ifiisodd, (8.32)
and the length " of a second gate in terms of the a-expansion
" ic,, o 4, if i is even, (8.33)
TS ST o, s odd, '

Clearly the condition (8.17) is satisfied by both " and 8", s0 0 < ', 5" <1—a. In
fact, we have

0<f <p'<1-q. (8.34)

Lemma 8.3. Suppose that the irrational number o € (0, 1) satisfies (3.1), and that
the lengths ' and 5" of the gates satisfy (8.32) and (8.33). For every integer k > 0,
consider the set

B(k)={0,1,...,qes1 — 1}.
Then we have the lower bound
[{N € B(k) : parity(®(a; 8" N) — (a; 85 N)) = 0} > (1 = €)qrr1,  (8.35)
provided that € > 0 is sufficiently small.

Proof. The condition (3.1) clearly guarantees that a; > 6, i > 1, so that our choices
of f" and B” in (8.32) and (8.33) are valid.
For each element N € B(k), we can write

k
N=> bh(N)g,
=0
where, for each i = 0, ..., k, the coeflicient b; = b;(N) satisfies (8.7) and (8.8), and
with the convention that by(0) = ... = bx(0) = 0. In this way, we see that the set

B(k) is in one-to-one correspondence with the collection of a-legitimate sequences
bo, b1, ..., by together with the trivial sequence 0, ... 0.
Suppose that for an integer N € B(k), we have

5§bg<ag+1, ng,...,k. (836)
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In view of (8.32), the first sum in (8.26) modulo 2 is equal to

k k
Z min{by, ¢;} = min{bg, ¢4} + Z min{by, ¢, }
£=0 £=1

- 1, ifby=1
o : /o ) 0 — 1,
— min{by, 2} + Kzlce = { 0 b 21 (8.37)
In view of (8.33), the second sum in (8.26) modulo 2 is equal to
k k
Z min{by, ¢; } = min{by, ¢} + Z min{by, ¢;
=0 =1

k
. . "o ].7 if b(]:]_,?),
= min{by, 4} + ;1 ¢ = { 0 ifby£1.3 (8.38)

For the third sum in (8.26), note that (8.27) does not hold with ¢, = 2, so it follows
from (8.23) and Lemma 8.2(i) that Aj, = 0 for even ¢ > 2. Also (8.30) and (8.31)
do not hold with ¢; = 0 or ¢; = 2, so it follows from (8.23) and Lemma 8.2(ii) that
A} =0 for odd ¢ > 3. Thus the third sum in (8.26) is equal to

k
> A=A (8.39)
/=1

For ¢ =1, it is clear that (8.29) holds. For by = 0,1, it is clear that (8.31) holds.
For by = 2, it is clear that (8.30) holds. For by > 3, it is clear that neither (8.30)
nor (8.31) holds. Thus it follows from (8.23) and Lemma 8.2(ii) that

, [ -1, ifby=0,1,2,
Ar = { 0, ifby>3. (8.40)
For the fourth sum in (8.26), note that (8.27) does not hold with ¢/ = 4, so it follows
from (8.24) and Lemma 8.2(i) that A} = 0 for even ¢ > 2. Also (8.30) and (8.31)
do not hold with ¢; = 0 or ¢; = 4, so it follows from (8.23) and Lemma 8.2(ii) that
A}, =0 for odd ¢ > 3. Thus the fourth sum in (8.26) is equal to
k
> AY =AY (8.41)
=1
For ¢ = 1, it is clear that (8.29) holds. For by = 0, 1,2, 3, it is clear that (8.31) holds.

For by = 4, it is clear that (8.30) holds. For by > 5, it is clear that neither (8.30)
nor (8.31) holds. Thus it follows from (8.24) and Lemma 8.2(ii) that

" __ _17 if bO :071a273747
Ar= { 0, ifbo>5. (8.42)
Hence if (8.36) holds, then it follows from (8.26) and (8.37)—(8.42) that
: o o 1, if by =4,
pariy (0 65 ) — b 9 ) = { 3 102 (843
We have the trivial bounds

k+1 k+1

[ — 1) < 1Bk)| = ger < JJ(ai +1). (8.44)

=1 i=1
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Using the condition (3.1), we have

’ﬁa1+1 H( . _1>’ﬁ(ai—1)<ﬁ(l+%)]ﬁ(ai—l)

=1 =1 =1 =1

o o g\ k1 ) 5/100k+1
< exp Za' H( 1)<e H (8.45)

i=1 '/ i=1

where exp(z) = e” is the exponential function. Thus (8.44) and (8.45) give

k+1 k+1

[[(a: — 1) < IBk) = geer <[ [(ai - 1). (8.46)

i—1 i=1

We wish to find a lower bound for the cardinality of the set

{N € B(k) : parity(®(a; ", N) — ®(a; ', N)) = 0}
Observe from (8.43) that parity (®(«; 5”; N) —®(«; 5'; N)) = 0 except possibly when
bo(N) =4,
or (8.36) fails, so that
be(N) e J,={0,1,2,3,4,ap41} forsomel=1,..., k.
Accordingly, we need to find a lower bound for the cardinality of the set
B(k;0) = {N € B(k) : bo(N) # 4},
as well as upper bounds for the cardinality of each of the sets
B(k;l;5) ={N € B(k) : by(N) =34}, (=1,....k je€Jy,

and combine these with the inequality

{N € B(k )'parity(q)( ;B0s N) — @(a; f'5 N)) = 0}]

> B kO|—ZZ|Bk€j (8.47)

(=1 jeJ,

Indeed, we have the trivial lower bound

k41 k+1

B(+:0)| > (an ~ 1) [ J (o~ 1) = [J(a ~ 1)

=2 =1
Combining this with (3.1) and (8.46), we obtain
|B(k;0)] > e /1%, ;. (8.48)

Also, for each ¢ =1,...,k and j € J;, we have the trivial upper bound

k+1 00 3 k+1

tisti)l < [T @+ < I (1+2) TL -1
it =1 ' it
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Combining this with (3.1) and (8.46), we obtain

k ) k 9 os/100
DD Bl G <6 D ) s < i (8.49)

a
(=1 jeJ, =1 "

Finally, combining (8.47)—(8.49), we obtain the desired lower bound
{N € B(k) : parity(®(a; 8" N) — ®(a; 55 N)) = 0}

os/100
e Q1 > (1 = €)qry,
25
provided that ¢ > 0 is sufficiently small. 0
Next, for every b=1,...,ax42 — 1, we consider the sets

B (k;b) = {bqi+1,bq41 + 1, .., (b+ 1)grs1 — 1} = bayy1 + B(k),

where every element N € B*(k;b) can be written in the form

k k
N = bqj41 + Z bi(N)gi = qr+1 + Z bi(N — bgr+1)a,
i=0 i=0

and the coefficients b; = b;(N) = b;(N — bgr+1) satisfy (8.7) and (8.8). For every
element N € B*(k), the analog of (8.26) is
®(a; B N) = (a; 55 N)
k1 k1 kt1 k1

= Z min{by, ¢} + Z min{by, ¢} + Z A+ Z A7, (8.50)
=0 =0 =1 =1

where b1 = b.

Lemma 8.4. Under the hypotheses of Lemma 8.3, suppose further that k is odd.
Then for everyb=1,... axso — 1 apart from b = 2, we have the lower bound

H{N € B*(k;b) : parity(®(c; B”; N) — ®(c; B’ N)) =0} > (1 — €)qry1, (8.51)
provided that € > 0 is sufficiently small. Furthermore, we have the lower bound
{N € B*(k;2) : parity(®(e; B N) — @(a; 85 N)) = 1} > (1 — €)gs1,  (8:52)
provided that € > 0 is sufficiently small.
Proof. Clearly k + 1 is even, so it follows from (8.32) and (8.33) that ¢, = 2 and

¢yy1 = 4. Then the first sum in (8.50), compared modulo 2 to the corresponding
sum in (8.26), has an extra term

. . 1 oifh=1,
min{by1, ¢, } = min{b, 2} = { 0 ;f b1 (8.53)

The second sum in (8.50), compared modulo 2 to the corresponding sum in (8.26),
has an extra term

. . 1, ith=1,3,
min{by1, ¢y, } = min{b,4} = { 0 % b£13 (8.54)

The third sum in (8.50), compared to the corresponding sum in (8.26), has an extra
term A} ;. If b =1, then (8.27) and (8.28) hold with £/ = k + 1 and m = k, so it
follows from (8.23) and Lemma 8.2(ii) that Aj,, = 1. If b # 1, then (8.27) does



58 J. BECK, W.W.L. CHEN, AND Y. YANG

not hold with ¢ = k 4 1, so it follows from (8.23) and Lemma 8.2(ii) that A}, = 0.
Thus ¢
;1 ifb=1,

A1 = { 0, ifb#1. (8.55)
The fourth sum in (8.50), compared to the corresponding sum in (8.26), has an extra
term Ay, ;. If b =1,2,3, then (8.27) and (8.28) hold with ¢ = k+1 and m = k, so it
follows from (8.24) and Lemma 8.2(ii) that A}, = 1. If b # 1,2, 3, then (8.27) does
not hold with ¢ = k + 1, so it follows from (8.24) and Lemma 8.2(ii) that A}, , = 0.

Thus .
"o 17 itb= 17 27 37
Ak"‘l o { 0, ifb#1,2,3. <8'56)

We now combine (8.53)—(8.56). If b # 2, then compared to (8.26), there is no change
in parity, so that if (8.36) holds, then

‘ o o . ]_, lf b0:47
parity(®(a; 8", N) — ®(a; B'; N)) = { 0, if by # 4,

resulting in a lower bound (8.51), provided that ¢ > 0 is sufficiently small. If b = 2,
then compared to (8.26), there is a change in parity, so that if (8.36) holds, then

. Lol .l o 07 lf bo — 4,
parit (s 7 ) - 0(as 58 = { § {0 ST
resulting in a lower bound (8.52), provided that € > 0 is sufficiently small. d

Lemma 8.5. Under the hypotheses of Lemma 8.3, suppose further that k is even.
If ¢, =0, then for every b=1,... ary2 — 1, we have the lower bound
{N € B*(k;b) : parity(®(a; 8" N) — @(a; f'3N)) = 0} > (1 — &)gesr,  (8.57)
provided that € > 0 is sufficiently small.
If ¢ = 2, then for every b =1,... arro—1 apart from b = 1, we have the lower
bound
{N € B*(k;b) : parity(®(a; 8s N) — @(a; B3 N)) = 0} > (1 — €)gesr,  (8.58)
provided that € > 0 is sufficiently small. Furthermore. we have the lower bound
{N € B*(k; 1) : parity(®(e; 8" N) — @(a; 85 N)) = 1} > (1 —€)qpr1,  (8.59)
provided that € > 0 is sufficiently small.
Proof. Clearly k + 1 is odd, and it follows from (8.33) that ¢;,; = 0. The second
sum in (8.50), compared to the corresponding sum in (8.26), has an extra term
min{by11, ¢}, } = min{b,0} = 0. (8.60)

The fourth sum in (8.50), compared to the corresponding sum in (8.26), has an extra
term A} ;. But then (8.30) and (8.31) do not hold with ¢ = k41, so it follows from
(8.24) and Lemma 8.2(ii) that
L =0, (3.61)
Suppose that ¢, ; = 0. The first sum in (8.50), compared to the corresponding
sum in (8.26), has an extra term

min{by;1, ¢, } = min{b,0} = 0. (8.62)

The third sum in (8.50), compared to the corresponding sum in (8.26), has an extra
term A} ;. Then (8.30) and (8.31) do not hold with ¢ = k + 1, so it follows from
(8.23) and Lemma 8.2(ii) that

Ay, =0. (8.63)
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We now combine (8.60)—(8.63). Compared to (8.26), there is no change in parity, so
that if (8.36) holds, then

. 1, if by = 4,
parity(®(a; 8", N) — ®(a; 85 N)) = { 0. if by £ 4.

resulting in a lower bound (8.57), provided that € > 0 is sufficiently small.
Suppose that ¢}, = 2. Then the first sum in (8.50), compared modulo 2 to the
corresponding sum in (8.26), has an extra term

. . 1 oifh=1,
min{by;1, ¢, } = min{l,2} = { 0 % bA1 (8.64)

The third sum in (8.50), compared to the corresponding sum in (8.26), has an extra
term A} ;. Then (8.30) and (8.31) do not hold with ¢ = k + 1, so it follows from
(8.23) and Lemma 8.2(ii) that

Af,, =0. (8.65)
We now combine (8.60), (8.61), (8.64) and (8.65). If b # 1, then compared to (8.26),
there is no change in parity, so that if (8.36) holds, then

. . " . /. o 1’ lf bO - 47
parity(®(a; 8", N) — ®(a; 8'; N)) = { 0, if by # 4,

resulting in a lower bound (8.58), provided that ¢ > 0 is sufficiently small. If b = 1,
then compared to (8.26), there is a change in parity, so that if (8.36) holds, then

| 0, if by = 4,
parity(®(a; 8”; N) — ®(c; #'; V) :{ L by £ 4,

resulting in a lower bound (8.59), provided that € > 0 is sufficiently small. d
Proof of Theorem 3.4. In view of the inequalities (8.34), note that the difference
®(a; B N) = @(a; f3 N) (8.66)

corresponds to a surface with a gate [, 5”), as shown in the picture on the left in
Figure 8.1, and an a-geodesic that starts from the bottom of the left vertical edge
of the surface. With the horizontal edge identifications shown, it is not difficult to
see that this is equivalent to the 2-square-(/3” — ') surface shown in the picture on
the right in Figure 8.1, and an a-geodesic that starts at a point on the left vertical
edge at a distance ' from the top left vertex.

h1 ha

1—g—

' YoM ¢ op" —

Py
@

hl h2
Figure 8.1: two equivalent surfaces

Note also that when we the integer parameter N in (8.66) progresses by 1, this
corresponds to the a-geodesic travelling from one vertical edge of the 2-square-b

surface to the next vertical edge, and the length of this geodesic segment is clearly
(14 a?)/2,
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The length 5y = B — B of the gate, given in terms of the a-expansions
66 - ZCQ% C; = 2,
i=0
and

" = " s ) 4, ifiiseven,

0= Z;Ci”“ “% = { 0, ifis odd,

satisfies (8.32) and (8.33), so that Lemmas 8.3-8.5 are valid.
(i) For every positive integer n, let

T; = (1 + 042)1/2(]2n+1~

Then (3.2) follows from (8.35) for b = 0 and from (8.58) for b = 2,...,C. Meanwhile,
(3.3) follows from (8.59).
(ii) For every positive integer n, let

T:* = (1 + 042)1/261271-

Then (3.4) follows from (8.35) for b = 0 and from (8.51) forb=1orb=3,...,C.
Meanwhile, (3.5) follows from (8.52).

The length 5, = B — ] of the gate, given in terms of the a-expansions
o0 2, if i is even,
Bl =Y dm, & =1 2 ifiisoddandi<2n+2,
i=0 0, if7is odd and i > 2n + 2,
and

" = I s ) 4, ifiis even,
1= ;Cﬂ’“ € _{ 0, ifiis odd,
satisfies (8.32) and (8.33), so that Lemmas 8.3-8.5 are valid.
(iii) For every positive integer i = 1,...,n, let
Wi = (1+a®) g1,

as in Part (i). Then (3.6) follows from (8.35), and (3.7) follows from (8.59).
(iv) Let Q* = ¢o,13. For any integer ) > Q*, there clearly exists a unique integer
k > 2n + 2 such that g1 < @ < @gio. Furthermore, either

Q € B*(k;b*) for some b* =1,...,ap2 — 1, (8.67)
or () is almost as large as ¢or1 0, in the sense that

Q € [Akr2Qt1, ot2)- (8.68)
Suppose first that (8.67) holds. Then

b*—1

{0,1,...,Q =1} = B(k)u [ B*(k; ) U{b" 11, ..., Q — 1},

b=1
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so that

{N €[0,Q) : parity(®(a; 8”; N) — ®(; 8'; N)) = 0}
> {N € B(k) : parity (®(c; 8”; N) — ®(a; f'; N)) = 0}]

b*—1

+ > N € B*(k; D) : parity(®(e; 8”; N) — ®(a; 83 N)) = 0}
b=1
+ {N € [b*qr11, Q) : parity(®(a; 87, N) — ®(a; 55 N)) = 0} (8.69)

If k is even, then it follows from (8.35), (8.57) and (8.69) that

{N €[0,Q) : parity(®(c; 8; N) — ®(; 8'; N)) = 0}
>0 q(l—¢e) +(Q — 0" @1 — Gopre) = Q — (0" + 1)qryae

>Q (1 _ o 15) > Q1 — 2),. (8.70)

b*

If £ is odd and b* = 1, then the middle sum on the right hand side of (8.69) is
empty, and it follows from (8.35) and (8.51) that

{N €[0,Q) : parity(®(a; 8”; N) — ®(; f'; N)) = 0}
> Geg1(1 =€) + (Q = Grg1 — Ge416) = Q — 2qp16 = Q(1 — 2¢). (8.71)

If k is odd and b* = 2, then we ignore the last term on the right hand side of (8.69),
and it follows from (8.35) and (8.51) that

{V € [0,Q) - parity(®(a; 8; N) — (o 3 N)) = 0}
> 2qp1(1 —¢) > ;Q(l —g)>Q (% — 5) : (8.72)

If £ is odd and b* > 3, then we ignore the term corresponding to b = 2 in the middle
sum on the right hand side of (8.69), and it follows from (8.35) and (8.51) that

{N €10,Q) : parity(®(a; 8"; N) — ®(a; 85 N)) = 0}
> (0" = Dagg1(1 =€) +(Q = @1 — qr118) = (Q — qry1) — (0" + 1)qrtae

2 2 br+1 2
= gQ — (0" + Dgrae > Q (g - b—"i‘_ 5) > @ (5 - 25) : (8.73)

Suppose next that (8.68) holds. Then analogous to (8.69), we have
{N €10,Q) : parity(®(a; 8" N) — ®(a; §; N)) = 0}
> [{N € B(k) : parity(®(a; 8% N) — ®(a; 85 N)) = 0}
ak+2—1
+ Y {N € B*(k;b) : parity(®(e; B'; N) — ®(o; B N)) = 0}, (8.74)

b=1
b£2

where we have ignored the term corresponding to b = 2 and the last term. Combining
(8.35) and (8.74) with (8.51) if k is odd and with (8.57) if k is even, we have

{N €[0,Q) : parity(®(a; s N) — ®(a; 5 N)) = 0}

> (s — Deps(1—2) > §Q<1 _ >0 (; _ 5) | (8.75)
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Since € > 0 is arbitrary, we see that (3.8) follows immediately from (8.70)—(8.73)
and (8.75) if we take W* = (1 + a?)Y/2Q*. We leave the deduction of the inequality
|f1 — Bo| < € to the reader. O

9. ESTABLISHING THE PARITY FORMULA

Throughout this section, we assume that the integers cg, 1, co, ... are even, and
that ¢; is non-zero whenever 7 is even.

Proof of Lemma 8.1. Recall the definition of ®(«; 5; V) as given by (8.18). We need
to find a description of the condition 0 < ¢ < N —1 in terms of the a-representations
of ¢ and N, as well as a description of the condition {ga} € [0, ) in terms of the
a-representation of ¢ and the a-expansion of 3. For these, we recall some elementary
facts in the theory of continued fractions.

Fact 1. Suppose that

k k
¢=Y wig and N=> by
1=0 1=0

are the a-representations of ¢ and N respectively, with the convention that when
q=0, we have o = ... =2, = 0. Then 0 < ¢ < N — 1 if and only if there exists
some integer m = 0, ..., k such that

Ty <bp, x;=0;, 1=m+1,... k.
Fact 2. We have
k k k k
{qa} = {Zﬂ%ql‘a} = {Z%‘(Qia —pz')} = {Z%Th} = mei
i=0 i=0 =0 =0
if and only if
(xo,...,xk) =(0,...,0) or min{i=0,...,k:x; > 1} is even. (9.1)

Suppose further that

k
b= Z CiTi
is the a-expansion of 3, and that 0 < /8 Z<01 — «. Then {qa} € [0, ) if and only if
there exists an integer ¢ such that
sign(c, —x0) = (1), zi=¢, i=0,...,0—1,
and (9.1) holds.
For N € B(k) ={0,1,...,qx+1 — 1}, combining Facts 1 and 2, we have

O(a; B;N) =D ) Byl B N, (9.2)

m=0 ¢=0
where ®,,,(c; 3; N) denotes the number of integer sequences (o, . .., zy) such that
(9.1) holds,
Lo =Coy .-+ Tyg—1 = Cp—1,

sign(c, — ) = (—1)%,

9.3
T < b, (9:3)

Tm+1 — bm+1, cey T = bk,
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and the remaining terms satisfy
O<Ii<Gi+1, ZEi_1:Oif[L’Z‘:aZ‘+1, @zé—l—l,,m—l (94)
To study some of these terms Py, (a; 5; N), we need a technical lemma.

Lemma 9.1. Let A, ,(s) denote the number of integer sequences (Yn, Yn+1, - - -+ Yr)
such that y, = s,
Oéyiéaiﬂ, i:h—i—l,...,r,

and
Yio1 =0 if yi=a1, t=h+1,...r
Then
Anr(s) = (=1)"(gnpre1 — putrsr), s> 1, (9.5)
and
Anr(0) = (=)™ ((Prs1 — P)Gr41 — (Gra1 — @n)Pra). (9.6)

Proof. For s > 1, we shall prove (9.5) by induction on r, starting with » = h. Clearly
Apn(s) =1, and

Apnsr = anpz = ane2(=1)"(@npns1 — Putns1) = (—1)" (@nPrr2 — Prnr2).
Note next that we have the recurrence relation

Apj(s) = aji1Ap;-1(s) + Anj-2(s).
To see this, note that for each of the a;; choices of y; satisfying 0 < y; < a;41, there
are Ay, j_1(s) choices for the integer sequence (yn, Ynt1,--.,y;j—1), and for y; = a1,
we must have y;_; = 0 and so there are Aj ;_o(s) choices for the integer sequence
(Yns Ynt1, - - -, Yj—2). Using the induction hypothesis for the right hand side, we have
Anj(s) = aj1(=1)"(anp; — prgy) + (—1)"(@npi—1 — Prgj—1)
= (=1)"(gnpjs1 — Prgj+1)-
The identity (9.5) follows from the Principle of induction. Finally, note that
Anr(0) = App (1) + Apgrr(ango).

Applying (9.5) to the terms on the right now leads to the identity (9.6). O

To evaluate ®(«; 5; N), we need to split into cases.

Case 1. Suppose that m > ¢, with ¢ even, so ¢, > 1. The conditions (9.3) become
To==¢C .--y Tp-1 = Cp,
xe €4{0,1,...,¢,— 1},
T € {0, 1, ... by — 1},
Tmg1 = g1, ..., T = by,

and the remaining terms satisfy (9.4). Let ®;, (a;8; N) denote the number of
integer sequences (o, ..., x;) such that (9.3) and (9.4) hold. The restriction (8.25)

gives Tm41 7& Am+2, SO
@7 (5 85 N) = by Q1

where €,,,_1 is the number of those sequences (z¢, 411, ..., ZTm_1) such that

[L’gE{O,l,...,Cg—l},



64 J. BECK, W.W.L. CHEN, AND Y. YANG

and (9.4) holds. Using Lemma 9.1, we have
cp—1

mel = Z A&mfl(S) + Aé,mfl(())
s=1

= (¢t — 1)(Pm@e — qmpe) + (@m(Pes1 — Pe) — Pm(@es1 — @)
= co(Pme — qmpPe) — (Pmes1 — GmPey1)-
Since ¢ is even, it follows that

D} (@ B N) = b (PmGes1 — GmPes1) mod 2.

Suppose that ¢ # 0. The assumption that ¢y is non-zero and the requirement
Ty = ¢o then guarantee that zy is non-zero, so that (9.1) is clearly satisfied, and
80 @y (a; B3 N) = @7, (a; 3; N). On the other hand, when ¢ = 0, we do not have
xo = ¢o but sign(co—xo) = 1, so that zg < ¢g, and this does not guarantee that (9.1)
holds. To obtain @, (; B; V), we then have to deduct from @5, (; 3; N) the count

of those sequences (zo, ..., z) that do not satisfy (9.1). We shall not give a precise
value of this count. Instead, it suffices to show that this count is independent of the
sequence cg, €1, C2, C3, - . . . The details are slightly different, depending on whether m

is odd or even.

Suppose first of all that m is odd. Then those sequences (zy, ..., zx) that need
to be excluded from the count are the following: either m > 3 and there exists an
even integer s = 0,2,...,m — 3 such that

To=x1=...=2s =0,
Ts41 € {1,...,CLS+2},
Ts42 € {O, e, Qg3 — 1},
Tgigy ..., Tm_1 satisfy (9.4),
T < by,
Tm41 = bm+17 sy T = bka
or, if bm+1 7é Am+1,
To=21=...=Ty_1 =0,
Ty €{1,...,b, — 1},
Tm41 = bm+17 sy T = bka
or
To=T1=...=2, =0,

min{i =m+1,...,k:b; > 1} is odd.
This count is clearly independent of the sequence cg, ¢, ¢, c3, . . ..
Suppose next that m is even. Then those sequences (x, ..., z;) that need to be
excluded from the count are the following: either m > 4 and there exists an even
integer s = 0,2,...,m — 4 such that

To=T1=...=x, =0,
Ter1 €4{1,... as12},
Tero € {0,... a5y3 — 1},
Tgig, ..., Ty satisfy (9.4),
T < b,

Tm+1 — bm+1, Cey T = bk,
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or m > 2 and

"Eolez...:‘?}m,Q:O,
Tm—1 E{l,...,am},
T < b,
Tm+1 :bm+1, cey QTk:bk,
or m > 2 and
To=T1=...=2, =0,

min{i =m+1,...,k:b; > 1} is odd.
This count is also independent of the sequence cg, ¢, ca,c3,. ...
In summary, corresponding to these values of £ and m, we can write

ko k
L = Z Z b (PmGe+1 — GmPer1) — Er, (9.7)

m=0 ¢=0
m>f
£ even

where & is independent of the sequence cg, ¢y, ¢o,c¢3, .. ..

Case 2. Suppose that m > ¢, with ¢ odd, so ¢, > 1. The conditions (9.3) become
To==¢Cy, ...y Tp-1=C,
xp€{ee+1,... a0 — 1},
xm € {0,1,... b, — 1},
Tmg1 = g1, ..., T = by,
and the remaining terms satisfy (9.4). The restriction (8.25) gives X411 # G2, SO
Dpm(; 85 N) = b1,
where €,,,_1 is the number of those sequences (z¢, 411, ..., Zm_1) such that
xp€{ee+1,... a0 — 1},
and (9.4) holds. Using Lemma 9.1, we have

a4+1—1

Q1= > Am1(s) = —(ars1 — ce — 1) (Pme — qmpr)-

s=cp+1

Since ¢ is even, it follows that

Pyl 35 N) = by (ars1 — 1) (Pmqe — gmpe) mod 2.

Corresponding to these values of £ and m, we can write, for instance

k k k k
o= bmarsi(Pnge = Gmpe) + Y > bm(pmte — gmpe) = T3 + T (9.8)

m=0 (=0 m=0 (=0
m>{ m>{
¢ odd ¢ odd

Case 3. Suppose that m = ¢, with ¢ even. The conditions (9.3) and (9.4) become

To = Cp, cey Tp—1 = Cp—1,
ze € {0,1,...,min{b,, c,} — 1},
Topr =beyr, oo, TE = by

The restriction (8.25) gives xp1 # 12, and so @7, (a; 8; N) = min{by, c;}.
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As in Case 1, for £ = 0, we need to deduct from @87m(a; B; N) the count of those
sequences (zo, ..., xx) that do not satisfy (9.1), i.e., those that satisfy

91:0:0,
min{i =1,...,k:b; > 1} is odd.

As before, this count is independent of the sequence c¢q, ¢q, o, 3, . . ..
In summary, corresponding to these values of £ and m, we can write

k k k
I3 = Z Zmin{bg, oy — & = Z min{by, ¢;} — &s, (9.9)

m=0 ¢=0 =0
m=0 { even
{ even

where &3 is independent of the sequence cg, ¢y, o, 3, .. ..

Case 4. Suppose that m = ¢, with ¢ odd. The conditions (9.3) and (9.4) become
Ty = Co, ..., Tp—1 = Co_1,
xp€{ee+1,... a0 — 1},
20 € {0,1,... by — 1},
Topr = begpr, ..., T = by
The restriction (8.25) gives xpy1 # apr2, and it is not difficult to see that
Dy (a; f; N) = max{b, — ¢, — 1,0}.

Corresponding to these values of £ and m, we can write

k k k
1y = Z Zmax{be —c— 1,0} = E max{b, — ¢, — 1,0}. (9.10)
m=0 {=0 =0
m=~{ ¢ odd
¢ odd

Case 5. Suppose that £ > m. Note here that the condition (9.3) is very restrictive
and the condition (9.4) is void. It is easy to see that

Ppm(a; B; N) = 6(L,m),
where

1, if e < b, ¢ = b, m <i < £, and sign(c, — by) = (—1)%,
o(6;m) = { 0, otherwise.

Corresponding to these values of ¢ and m, we can write

k k
Iy =Y > 8(t,m). (9.12)

(9.11)

m=0 (=0
£>m
Combining (9.2), (9.7)—(9.10) and (9.12), we see that
S(a;BN) =T+ IV + TP + Ty + Ty + T + & + & mod 2. (9.13)
We shall show that
T, + 7 = 0 mod 2, (9.14)
and that
k k
Iél) = Z b (PmGo — gmpo) + Z by mod 2. (9.15)
m=0 (=0

¢ odd
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We then show that

Is+1, = me{bg, Cot + Z by + Z 1 mod 2, (9.16)

Z odd E odd
be>cy

and that

I5_ZA4+ Z 1 mod 2. (9.17)

Z Odd
be>cy

Then combining (9.13)—(9.17), we deduce that

k
( : 3; N = me PmGo — GmPo —|—Zmln{bg,05} +ZA£+51 + & mod 2,
m=0

where the translation term

k
D bu(pmdo — Gmpo) + € + E
m=0

proves to be a nuisance.

Taking two numbers " and 8" satisfying 0 < f’ < 5"’ < 1 — «a, with a-expansion
digits ¢, and ¢ respectively and taking the difference ®(«; 5”; N) — ®(«; 5'; N),
we remove this translation term, and the deduction of the parity formula (8.26) is
essentially complete, apart from the deduction of the congruences (9.14)—(9.17).

To establish (9.14), note simply from (9.7) and (9.8) that

k k
7 = Z Z Om(Pmde = gme) Z Z b (PmQes1 — GmPes1)
m=0 ¢=0 m=0 ¢=0
m>{ m>0+1
£ odd £ even
k k
- Z Z b (PmGes1 — GmPer1) — bey1 (Pes1Gers — Qerapess) = .
m=0 ¢=0
m>{
{ even

To establish (9.15), note that using the recurrence relations (8.2), we can write

k k
P =3 bpn(Gess — qem1) = Gm(pess — pe—r)) =T + I8, (9.18)
m=0 ¢=0
m>{
£ odd
where

kook
IéH) = Z Z bin (P (@41 — @e-1) = Gm(Pes1 — pe-1))

k k
= > bn(P(gm — @) = G (P Z b (Pmdo — gmpo),  (9.19)

m even m evi Il
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and

k k
27 = 37 buomss — 1) — b —p1-1)

= Y bu(Pm(Gm-1 — ) = G (Pm—1 — 10))

m=0
m odd

= Z bm pm m QO) - Qm<pm _po))

m odd
k

+ Z bm(pm(Qm—l - Qm) - Qm(pm—l - pm)>

m=0
m odd

k
Z b (Pmdo — GmPo) Z by, mod 2. (9:20)
m odd m odd

The congruence (9.15) now follows on combining (9.18)—(9.20).
To establish (9.16), note that

by —co— 1, if by > ¢y,
so that
. . C@Zbg-(bg—Cg—l)—l, ifbg>C@,
min{by, ¢/} = { by = by — 0, if b, < ¢y,
and so
. . bg—maX{bg—Cg—l,O}—l, if bg>Cg,
mln{bg, Cé} o { bg — max{bg — Cyp — 1, 0}, if bg < Cy.
Hence
Z min{by, ¢,} = Z by + Z max{b; — ¢, — 1,0} + Z lmod2.  (9.21)
Lot Lot Lot lz; (;dd
L >Cy

The congruence (9.16) now follows on combining (9.9), (9.10) and (9.21).
Finally, to establish (9.17), we note from (8.23), (8.24) and Lemma 8.2 that A, =1
if and only if there exists an integer m < ¢ such that

¢ is even, (8.27) holds and (8.28) holds, (9.22)
and A, = —1 if and only if
¢ is odd, (8.29) holds and (8.30) holds. (9.23)

or there exists an integer m < ¢ such that
¢ is odd, (8.29) holds and (8.31) holds. (9.24)

Naturally for a given ¢, the integer m for which (9.22) or (9.24) is valid is uniquely
determined. Suppose first that £ > 1 is even. Then A, = 1 if and only if there exists
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an integer m < ¢ such that (9.22) holds. For the integer m in question, it follows
from (9.11) that §(¢,m) = 1. Thus

k k k
A=) 6(m) (9.25)
¢'even i

Suppose next that £ > 1 is odd. Then A, = —1 if and only if (9.23) holds or there
exists an integer m < ¢ such that (9.24) holds. In the latter case, for the integer m
in question, it follows from (9.11) that §(¢,m) = 0. Thus

ij zk: 5(6,m) =0, (9.26)

m=0 (=0
>m
¢ odd
and
k k
A=) 1 (9.27)
=1 =0
¢ odd ¢ odd
bp>cy
The congruence (9.17) now follows on combining (9.12) and (9.25)—-(9.27).
This completes the deduction of the parity formula (8.26). O
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