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Abstract. We show that on any non-integrable finite polysquare translation
surface, superdensity, an optimal form of time-quantitative density, leads to an
optimal form of time-quantitative uniformity that we call super-micro-uniformity.

1. Introduction

Consider a half-infinite geodesic on a finite polysquare translation surface. It
is trivial that uniformity always implies density, and that the converse is false.
However, while density does not in general imply uniformity, we demonstrate here
an interesting case when some form of time-quantitative density implies some form
of time-quantitative uniformity.

The purpose of the present paper is to show how superdensity, an optimal form of
time-quantitative density, implies an optimal form of time-quantitative uniformity
that we call super-micro-uniformity. Here super refers to optimality andmicro refers
to microscopic scale.

To illustrate the latter, consider the irrational rotation sequence

{qα}, q = 1, 2, 3, . . . , (1.1)

of fractional parts of qα in the interval [0, 1), where α is irrational. Let I ⊂ [0, 1)
be an arbitrary subinterval of length 1/2n, and consider the first n elements of the
sequence (1.1). Then the expected number of elements of this n-element set in I
is clearly 1/2, corresponding to n times the length of I. On the other hand, the
visiting number Vn(I) of I, the actual number of elements in I coming from this
n-element set is clearly an integer, and so must differ from the expected number by
at least 1/2. We refer to this as the trivial error. Indeed, we have same phenomenon
if the length of I is C/n, where 2C is an odd integer. Here the error is at least 1/2,
and the expected number C is in the constant range.

Given the first n elements of the infinite sequence (1.1), intervals of length C/n
represent test sets in the microscopic scale. Here C > 0 is a fixed constant, and nmay
tend to infinity. The trivial error argument above implies that in the microscopic
scale of C/n, we cannot expect perfect local uniformity in the sense that the ratio of
the error term and the expected number tends to zero as C is fixed and n tends to
infinity. To put it slightly differently, to have perfect local uniformity, it is necessary
to have C = C(n) → ∞ as n → ∞.
It turns out that this necessary condition is sufficient to establish perfect local

uniformity if α is badly approximable. This perfect local uniformity is what we
call super-micro-uniformity. It has the intuitive meaning that the orbit exhibits
uniformity already in the shortest possible subintervals. We have the following
result on super-micro-uniformity of the irrational rotation sequence generated by a
badly approximable α.
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Theorem A. Let α be a badly approximable real number. For any subinterval
I ⊂ [0, 1), let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Vn(I) = |{q = 1, . . . , n : {qα} ∈ I}|
denote the visiting number of I with respect to the first n terms of the sequence (1.1).
Then for every sufficiently large integer n and every real number ε > 0, there exists
a finite threshold Cε = Cε(α) satisfying 1 < Cε < n such that for any subinterval I
with length |I| ⩾ Cε/n, the inequality

|Vn(I)− n|I|| < εn|I| (1.2)

holds.

The proof of this result is a fairly routine exercise using continued fractions, so
Theorem A is very possibly folklore. However, as we shall establish a more general
result, we briefly outline the ideas here.

First of all, we recall that the convergents pk/qk of α give excellent rational ap-
proximation, in the sense that ∣∣∣∣α− pk

qk

∣∣∣∣ < 1

qkqk+1

,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∣∣∣∣qα− qpk
qk

∣∣∣∣ < q

qkqk+1

⩽
1

qk+1

, q = 1, . . . , qk.

Hence any segment of qk consecutive terms of the sequence (1.1) is very uniformly
distributed in the interval [0, 1).

To take advantage of this, it makes sense to look at the Ostrowski decomposition
of integers, using the denominators of the convergents. For every integer N , we can
write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

N =
m∑
i=0

bkqk,

where m is the unique integer satisfying qm ⩽ N < qm+1, and the digits b0, b1, . . . , bm
satisfy xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

b0 ∈ {0, 1, . . . , a1 − 1},
bk ∈ {0, 1, . . . , ak+1}, k = 1, . . . ,m,

bk−1 = 0 if bk = ak+1, k = 1, . . . ,m.

where a1, . . . , am+1 are continued fraction digits of α.
Theorem A follows on combining these two ideas in a suitable way.
From the discrete super-micro-uniformity given by (1.2), it is easy to deduce that

every half-infinite geodesic, i.e. torus line, of badly approximable slope α is super-
micro-uniform in the unit torus [0, 1)2.
Note that geodesics on the unit torus [0, 1)2 is the simplest integrable system. If

we consider geodesic flow on an arbitrary finite polysquare translation surface, then
it is typically non-integrable.

Theorem 1. Let P be a polysquare translation surface with b atomic squares, and let
α be a badly approximable real number. Let Lα(t), t ⩾ 0, be a half-infinite geodesic
with slope α, equipped with the usual arc-length parametrization. For any positive
integer n, let Xn denote the set of the first n intersection points of Lα(t), t ⩾ 0, with
the vertical edges of P, and for any subinterval I of any vertical edge of P, let

Vn(I) = |I ∩ Xn|
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denote the visiting number of I with respect to Xn. Then for every sufficiently large
integer n and every real number ε > 0, there exists a finite threshold Cε = Cε(P ;α)
satisfying 1 < Cε < n such that for any subinterval I of any vertical edge of P with
length |I| ⩾ Cε/n, the inequality∣∣∣∣Vn(I)−

n|I|
b

∣∣∣∣ < ε
n|I|
b

holds. In other words, we have super-micro-uniformity.

The remainder of the paper is devoted to proving this result.
Needless to say, super-micro-uniformity implies traditional Weyl type uniformity

with respect to all Jordan measurable test sets.
We require a superdensity result in our earlier papers [1, 2]. Let P be a polysquare

translation surface with b atomic squares, and let α be a badly approximable real
number. Then there exists a finite superdensity threshold c0 = c0(P ;α) such that
for every integer m ⩾ 1, any geodesic segment of slope α and length c0m gets
(1/m)-close to every point of P .

2. Iteration process: step 0

Let C be a constant satisfying 1 < C < n. Let In(P ;C) denote the collection of
all subintervals I of any vertical edge of P with length |I| = C/n, and let I0, I1 ∈
In(P ;C) be subintervals satisfying

Vn(I0) = min
I∈In(P;C)

|I ∩ Xn| and Vn(I1) = max
I∈In(P;C)

|I ∩ Xn|,

so that I0 and I1 have respectively the smallest and largest visiting numbers with
respect to Xn among all the subintervals I under consideration. It is clear that

|I0 ∩ Xn| ⩽
C

b
⩽ |I1 ∩ Xn|. (2.1)

Let the real number ε satisfy 0 < ε < 1/2. We have two cases:

Case A. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0 ∩ Xn|
|I1 ∩ Xn|

⩾ 1− ε. (2.2)

Case B. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0 ∩ Xn|
|I1 ∩ Xn|

< 1− ε. (2.3)

We shall postpone the analysis of Case A to Section 6.
To complete the proof of Theorem 1, we shall show that Case B, where (2.3) holds,

is not possible. Indeed, we shall show that (2.3) leads to a contradiction. The proof
is rather long, and involves a complicated iteration process, with two possibilities
at each step. We shall derive the necessary contradiction by showing that at some
stage of this process, neither possibility is valid.

We need the following number theoretic technical result.

Lemma 1. Suppose that qk is the denominator of a convergent of α, and that I
is an interval of real numbers with length |I| ⩽ 1/2qk. Then at most one of the
translated intervals xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I + qα, q = 1, . . . , qk, (2.4)

contains an integer.
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Proof. Consider the qk points {qα}, q = 1, . . . , qk. It follows from a special case of
the famous 3-distance theorem [3, 4] that the distance between two neighbouring
points of this finite collection of numbers is at least

∥qk−1α∥ ⩾
1

qk + qk−1

>
1

2qk
.

This implies that if |I| ⩽ 1/2qk, then the qk translated intervals (2.4) are pairwise
disjoint modulo 1, so that at most one contains an integer. □

We also need the following counting result.

Lemma 2. Let α be a badly approximable number, and let A be an upper bound on
the continued fraction digits of α. Consider a set

Ym = {{β + qα} : q = 1, . . . ,m} ⊂ [0, 1),

where m is a positive integer, β ∈ R is arbitrary and the interval I⋆ ⊂ [0, 1). Then

|I⋆ ∩ Ym| ⩽ 2(A+ 1)m|I⋆|+ 2. (2.5)

Proof. Suppose that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

qk−1 < m ⩽ qk, (2.6)

where qk−1 and qk are the denominators of successive convergents of α. We expand
the set Ym to the set

Yqk = {{β + qα} : q = 1, . . . , qk} ⊂ [0, 1),

which has good distribution properties in [0, 1). Clearly

|I⋆ ∩ Ym| ⩽ |I⋆ ∩ Yqk |, (2.7)

so we need to find an upper bound for the right hand side. Using a special case of
the 3-distance theorem, we know that the distance between neighbouring points of
the set Yqk is equal to

∥qk−1α∥ or ∥qk−1α∥+ ∥qkα∥ < 2∥qk−1α∥. (2.8)

Thus a generous upper bound is given by

|I⋆ ∩ Yqk | ⩽ 2qk|I⋆|+ 2, (2.9)

where the first factor 2 covers for the different lengths (2.8) of the gaps between
neighbouring points of Yqk , and the second factor 2 covers for any error arising from
the two endpoints of the interval I⋆. The estimate (2.5) now follows on combining
(2.6), (2.7), (2.9) and the trivial estimate qk < (A+ 1)qk−1. □

Let qk be the smallest convergent denominator such that

qk(1 + α2)1/2 >
6c0n

C
. (2.10)

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

qk−1 ⩽
6c0n

C(1 + α2)1/2
,

and so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

qk ⩽ (A+ 1)qk−1 ⩽
6(A+ 1)c0n

C(1 + α2)1/2
, (2.11)

where A is an upper bound on the continued fraction digits of α. We divide the
interval I0 into subintervals I of common length

|I| = 1

2qk
<

C(1 + α2)1/2

12c0n
⩽

C

3n
, (2.12)
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provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c0 ⩾
(1 + α2)1/2

4
, (2.13)

and ignore the short remainder.
There is no problem with satisfying the requirement (2.13), as we simply increase

the superdensity threshold constant c0 if necessary. The inequalities in (2.12) and
(2.13) are vital, since otherwise the intervals I would be too long to be subintervals
of I0.

Superdensity implies that a geodesic segment with slope α and length 6c0n/C
visits the middle third of I1, and ensures also that a geodesic flow with slope α and
length 6c0n/C sweeps any subinterval I, in view of (2.12), to a union of subintervals
in I1 but not necessarily in the middle third of I1. Combining this with Lemma 1
and (2.10), we see that a geodesic flow with slope α and length 6c0n/C sweeps each
I with at most one splitting to a union of at most two subintervals in I1. Denote by
I1(0) the longest subinterval in I1 arising as part of an image of the geodesic flow in
this process, and let I0(0) denote the pre-image of I1(0) in I0. Then

C

3n
=

|I0|
3

⩾ |I0(0)| = |I1(0)| ⩾
1

4qk
⩾

C(1 + α2)1/2

24(A+ 1)c0n
= c1|I0|, (2.14)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

c1 = c1(α) =
(1 + α2)1/2

24(A+ 1)c0
.

Note that the number of vertical edges hit by the geodesic flow with slope α from
I0(0) to I1(0) is bounded above by (2.11), and the length of the flow is bounded by

qk(1 + α2)1/2 ⩽
6(A+ 1)c0n

C
. (2.15)

We have two cases:

Case 1. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1(0) ∩ Xn|
|I1(0)|

⩾
(
1− ε

2

) |I1 ∩ Xn|
|I1|

. (2.16)

Case 2. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1(0) ∩ Xn|
|I1(0)|

<
(
1− ε

2

) |I1 ∩ Xn|
|I1|

. (2.17)

Before we study these cases in detail, we first give some heuristics to explain
the underlying ideas. If Case 1 holds, then we show that the subinterval I0(0) ⊂ I0
exhibits a surplus density of points of Xn compared to I0. Removing this subinterval,
the remaining part of I0 then exhibits a deficit density of points of Xn compared
to I0. If Case 2 holds, then the subinterval I1(0) ⊂ I1 exhibits a deficit density
of points of Xn compared to I1. Removing this subinterval, the remaining part of
I1 then exhibits a surplus density of points of Xn compared to I1. Thus we either
obtain a subinterval of I0 that exhibits deficit density of points of Xn compared to I0,
or obtain a subinterval of I1 that exhibits surplus density of points of Xn compared
to I1. We then repeat the analysis on intervals of length equal to the length of this
subinterval, and this sets up an iteration process. We then show that if Case B
holds, then this iteration has to terminate after a finite number of steps, and this
gives the necessary contradiction.



6 BECK AND CHEN

2.1. Case 1: density decrease. Suppose that the inequality (2.16) holds. To find
a lower bound to |I0(0)∩Xn|, we consider the transportation process as the geodesic
flow with slope α moves the interval I0(0) to the interval I1(0). Let

Xn = {x1, . . . , xn},
and let n∗ denote the number of times that this finite transportation process from
I0(0) to I1(0) intersects a vertical edge of P , so that I1 is the n∗-th vertical edge
in this process. Suppose that j = 1, . . . , n and the point xj ∈ I1(0), contributing a
count of 1 to |I1(0) ∩ Xn|. Then provided that j − n∗ > 0, the point xj−n∗ ∈ I0(0),
contributing a count of 1 to |I0(0)∩Xn|. On the other hand, if j ⩽ n∗, then while the
point xj ∈ I1(0) contributes a count of 1 to |I1(0) ∩ Xn|, there is no corresponding
contribution to |I0(0) ∩ Xn|. In other words,

|I1(0) ∩ Xn| − |I0(0) ∩ Xn| ⩽ |I1(0) ∩ Xn∗|, (2.18)

where Xn∗ is the collection of the first n∗ intersection points in Xn. Since geodesic
flow on P modulo 1 is geodesic flow on the unit torus, and the slope α is badly
approximable with continued fraction digit upper bound A, it follows from Lemma 2
that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1(0) ∩ Xn∗| ⩽ 2(A+ 1)n∗|I1(0)|+ 2. (2.19)

On the other hand, we have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

n∗ ⩽ qk ⩽
6(A+ 1)c0n

C(1 + α2)1/2
. (2.20)

Combining (2.18)–(2.20), we deduce that

|I0(0) ∩ Xn| ⩾ |I1(0) ∩ Xn| −
12(A+ 1)2c0n

C(1 + α2)1/2
|I1(0)| − 2. (2.21)

Note that (2.16) gives

|I1(0) ∩ Xn| ⩾
(
1− ε

2

)
|I1(0)|

|I1 ∩ Xn|
|I1|

. (2.22)

Combining (2.21) and (2.22) and noting that |I1 ∩ Xn| ⩾ C/b, |I1| = C/n and
|I0(0)| = |I1(0)|, we obtain the inequality

|I0(0) ∩ Xn| ⩾
(
1− 3ε

4

)
|I0(0)|

|I1 ∩ Xn|
|I1|

, (2.23)

provided that

12(A+ 1)2c0n

C(1 + α2)1/2
⩽

ε

8

|I1 ∩ Xn|
|I1|

and 2 ⩽
ε

8
|I0(0)|

|I1 ∩ Xn|
|I1|

,

and these are guaranteed if we ensure that

C ⩾
96(A+ 1)2c0b

ε(1 + α2)1/2
and C ⩾

16b

c1ε
, (2.24)

the latter inequality in view of (2.14). Combining (2.3) and (2.23) now leads to the
inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0(0) ∩ Xn| ⩾
(
1− 3ε

4

)
(1− ε)−1|I0(0)|

|I0 ∩ Xn|
|I0|

>
(
1 +

ε

4

)
|I0(0)|

|I0 ∩ Xn|
|I0|

, (2.25)

provided that (2.24) holds.
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There are at most two subintervals I0,1, I0,2 ⊂ I0 such that

I0 = I0(0) ∪ I0,1 ∪ I0,2. (2.26)

Removing the interval I0(0) and combining (2.25) and (2.26), we obtain

|I0,1 ∩ Xn|+ |I0,2 ∩ Xn| = |I0 ∩ Xn| − |I0(0) ∩ Xn|

< |I0 ∩ Xn|
(
1−

(
1 +

ε

4

) |I0(0)|
|I0|

)
⩽ |I0 ∩ Xn|

(
|I0,1|+ |I0,2|

|I0|
− c1ε

4

)
, (2.27)

noting that (2.14) implies |I0(0)|/|I0| ⩾ c1. There are two possibilities, either

min{|I0,1|, |I0,2|}
|I0|

<
c1ε

8
, (2.28)

or xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
min{|I0,1|, |I0,2|}

|I0|
⩾

c1ε

8
. (2.29)

If (2.28) holds, then we may assume without loss of generality that

|I0,1| ⩾ |I0,2|, so that
|I0,2|
|I0|

<
c1ε

8
,

and so it follows from (2.27) that

|I0,1 ∩ Xn| ⩽ |I0 ∩ Xn|
(
|I0,1|
|I0|

− c1ε

8

)
. (2.30)

On the other hand, if (2.29) holds, then since it follows from (2.27) that

|I0,1 ∩ Xn|+ |I0,2 ∩ Xn| ⩽ |I0 ∩ Xn|
(
|I0,1|
|I0|

− c1ε

8

)
+ |I0 ∩ Xn|

(
|I0,2|
|I0|

− c1ε

8

)
,

we may assume without loss of generality that (2.30) holds again. Note now that
(2.30) leads to the inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0,1| ⩾
c1ε

8
|I0|,

as well as the inequality

|I0,1 ∩ Xn|
|I0,1|

⩽
|I0 ∩ Xn|

|I0|

(
1− c1ε

8

|I0|
|I0,1|

)
⩽

(
1− c1ε

8

) |I0 ∩ Xn|
|I0|

. (2.31)

Thus the switch from I0 to I0,1 leads to density decrease by a factor of 1− c1ε/8.
The ratio |I0|/|I0,1| is not necessarily an integer. To overcome this issue, we shall

replace I0,1 by a suitable subinterval at the expense of part of the density decrease.
We shall use the following almost trivial observation a number of times.

Lemma 3. Suppose that I is a finite interval of real numbers, Y ⊂ I is a finite
subset with m elements, and z is a real number satisfying 0 < z ⩽ |I|.

(i) Then there exists a subinterval I ′ ⊂ I of length |I ′| = z such that

|I ′ ∩ Y| ⩽ m
z

|I| − z
.

(ii) Suppose further that there exists an integer B ⩾ 1 such that every subinterval
I† ⊂ I satisfies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I† ∩ Y| ⩽ Bm
|I†|
|I|

+ 2. (2.32)

Then there exists a subinterval I ′′ ⊂ I of length |I ′′| = z such that

|I ′′ ∩ Y| ⩾ (m− 2)
z

|I|
−Bm

(
z

|I|

)2

.
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Proof. Write |I| = kz + w, where k ⩾ 1 is an integer and 0 ⩽ w < z. We partition
the interval I into a union

I = J0 ∪ J1 ∪ . . . ∪ Jk, |J0| = w, |J1| = . . . = |Jk| = z.

(i) Among the intervals J = J1, . . . , Jk, let I
′ be one for which |J ∩Y| is minimal.

Observing the inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

k =
|I| − w

z
>

|I| − z

z
,

we deduce that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I ′ ∩ Y| ⩽ |Y|
k

⩽ m
z

|I| − z
.

(ii) Among the intervals J = J1, . . . , Jk, let I
′′ be one for which |J∩Y| is maximal.

Applying (2.32) to the subinterval J0, we have

|J0 ∩ Y| < Bmz

|I|
+ 2.

Observing this and the inequality

k =
|I| − w

z
⩽

|I|
z
,

we deduce that

|I ′′ ∩ Y| ⩾ |Y| − |J0 ∩ Y|
k

⩾
z

|I|

(
m− Bmz

|I|
− 2

)
= (m− 2)

z

|I|
−Bm

(
z

|I|

)2

.

This completes the proof. □

Let h0 be the unique integer satisfying

h0 − 1 <
16|I0|
c1ε|I0,1|

⩽ h0, (2.33)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0|
h0

⩽
c1ε

16
|I0,1| ⩽ |I0,1|, (2.34)

provided that ε is sufficiently small.
We now apply Lemma 3(i) with I = I0,1, Y = I0,1 ∩ Xn and z = |I0|/h0. Then

there exists a subinterval I0(⋆) ⊂ I0,1 with |I0(⋆)| = z such that

|I0(⋆) ∩ Xn| ⩽ |I0,1 ∩ Xn|
z

|I0,1| − z
.

Combining this with the estimate (2.31), we deduce that

|I0(⋆) ∩ Xn|
|I0(⋆)|

⩽
|I0,1 ∩ Xn|

|I0,1|
|I0,1|

|I0,1| − z
⩽

(
1− c1ε

8

) |I0 ∩ Xn|
|I0|

|I0,1|
|I0,1| − z

. (2.35)

Note from (2.34) that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0,1|
|I0,1| − z

⩽
(
1− c1ε

16

)−1

.

Combining this with (2.35), we deduce that

|I0(⋆) ∩ Xn|
|I0(⋆)|

⩽
(
1− c1ε

8

)(
1− c1ε

16

)−1 |I0 ∩ Xn|
|I0|

⩽
(
1− c1ε

16

) |I0 ∩ Xn|
|I0|

. (2.36)

Thus the switch from I0 to I0(⋆) leads to density decrease by a factor of 1− c1ε/16,
with the added benefit that the ratio |I0|/|I0(⋆)| is an integer h0.
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To obtain a subinterval of I1 of the same length as I0(⋆), we next divide I1 into
h0 equal parts, and denote by I1(⋆) one of these subintervals with the maximum
intersection with the set Xn. Then

|I1(⋆) ∩ Xn|
|I1(⋆)|

⩾
|I1 ∩ Xn|

|I1|
. (2.37)

Note that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1(⋆)| = |I0(⋆)| =
C1

n
, C1 =

C

h0

, h0 < c2, (2.38)

where the constant c2 = c2(ε) > 0 is independent of n and C.

2.2. Case 2: density increase. Suppose that the inequality (2.17) holds. There
are at most two subintervals I1,1, I1,2 ⊂ I1 such that

I1 = I1(0) ∪ I1,1 ∪ I1,2. (2.39)

Removing the interval I1(0) and combining (2.17) and (2.39), we obtain

|I1,1 ∩ Xn|+ |I1,2 ∩ Xn| = |I1 ∩ Xn| − |I1(0) ∩ Xn|

> |I1 ∩ Xn|
(
1−

(
1− ε

2

) |I1(0)|
|I1|

)
⩾ |I1 ∩ Xn|

(
|I1,1|+ |I1,2|

|I1|
+

c1ε

2

)
, (2.40)

noting that (2.14) implies |I1(0)|/|I1| ⩾ c1. There are two possibilities, either

min{|I1,1|, |I1,2|}
|I1|

<
c1ε

10(A+ 1)b
, (2.41)

or xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

min{|I1,1|, |I1,2|}
|I1|

⩾
c1ε

10(A+ 1)b
. (2.42)

If (2.41) holds, then we may assume without loss of generality that

|I1,1| ⩾ |I1,2|, so that
|I1,1|
|I1|

⩾
1

3
and

|I1,2|
|I1|

<
c1ε

10(A+ 1)b
. (2.43)

Combining (2.1), (2.5) and (2.43), we obtain

|I1,2 ∩ Xn| ⩽ 2(A+ 1)n|I1,2|+ 2 ⩽
c1ε

5b
n|I1|+ 2 ⩽

c1ε

4b
n|I1| ⩽

c1ε

4
|I1 ∩ Xn|,

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

2 ⩽
c1ε

20b
n|I1| =

c1εC

20b
, or C ⩾

40b

c1ε
. (2.44)

Substituting this into (2.40), we deduce that

|I1,1 ∩ Xn| ⩾ |I1 ∩ Xn|
(
|I1,1|
|I1|

+
c1ε

4

)
. (2.45)

On the other hand, if (2.42) holds, then since it follows from (2.40) that

|I1,1 ∩ Xn|+ |I1,2 ∩ Xn| ⩾ |I1 ∩ Xn|
(
|I1,1|
|I1|

+
c1ε

4

)
+ |I1 ∩ Xn|

(
|I1,2|
|I1|

+
c1ε

4

)
,

we may assume without loss of generality that (2.45) holds again. Note now that

|I1,1| ⩾
c1ε

10(A+ 1)b
|I1|, (2.46)

provided that ϵ is sufficiently small, and (2.45) leads to the inequality

|I1,1 ∩ Xn|
|I1,1|

⩾
|I1 ∩ Xn|

|I1|

(
1 +

c1ε

4

|I1|
|I1,1|

)
⩾

(
1 +

c1ε

4

) |I1 ∩ Xn|
|I1|

. (2.47)
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Thus the switch from I1 to I1,1 leads to density increase by a factor 1 + c1ε/4.
The ratio |I1|/|I1,1| is not necessarily an integer. To overcome this issue, we shall

replace I1,1 by a suitable subinterval at the expense of part of the density increase.
Let h0 be the unique integer satisfying

h0 − 1 <
48(A+ 1)b|I1|

c1ε|I1,1|
⩽ h0, (2.48)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1|
h0

⩽
c1ε

48(A+ 1)b
|I1,1| ⩽ |I1,1|, (2.49)

provided that ϵ is sufficiently small.
We now apply Lemma 3(ii) with I = I1,1, Y = I1,1 ∩ Xn and z = |I1|/h0. Note

that in view of (2.5), for every subinterval I† ⊂ I1,1, we have

|I† ∩ Y| = |I† ∩ Xn| ⩽ 2(A+ 1)n|I†|+ 2. (2.50)

On the other hand, it follows from (2.1), (2.47) and |I1| = C/n that

|I1,1 ∩ Xn|
|I1,1|

⩾
|I1 ∩ Xn|

|I1|
⩾

n

b
. (2.51)

Combining (2.50) and (2.51), we have

|I† ∩ Y| ⩽ 2(A+ 1)b|I1,1 ∩ Xn|
|I†|
|I1,1|

+ 2,

so that Lemma 3(ii) is valid with the constant B = 2(A+ 1)b. It follows that there
exists a subinterval I1(⋆) ⊂ I1,1 with |I1(⋆)| = z such that

|I1(⋆) ∩ Xn| ⩾ (|I1,1 ∩ Xn| − 2)
z

|I1,1|
− 2(A+ 1)b|I1,1 ∩ Xn|

(
z

|I1,1|

)2

.

Combining this with (2.49), we have

|I1(⋆) ∩ Xn|
|I1(⋆)|

⩾
|I1,1 ∩ Xn|

|I1,1|

(
1− 2

|I1,1 ∩ Xn|
− 2(A+ 1)b

h0

|I1|
|I1,1|

)
⩾

|I1,1 ∩ Xn|
|I1,1|

(
1− 2

|I1,1 ∩ Xn|
− c1ε

24

)
. (2.52)

Next, combining (2.46) and (2.51), and recalling that |I1| = C/n, we obtain

|I1,1 ∩ Xn| ⩾
c1Cε

10(A+ 1)b2
.

We want the bound xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2

|I1,1 ∩ Xn|
⩽

c1ε

24
, (2.53)

and this can be guaranteed if we ensure that

C ⩾
480(A+ 1)b2

(c1ε)2
. (2.54)

Combining (2.52) and (2.53), we now obtain

|I1(⋆) ∩ Xn|
|I1(⋆)|

⩾
|I1,1 ∩ Xn|

|I1,1|

(
1− c1ε

12

)
.

Combining this with (2.47), we deduce that

|I1(⋆) ∩ Xn|
|I1(⋆)|

⩾
(
1 +

c1ε

4

)(
1− c1ε

12

) |I1 ∩ Xn|
|I1|

⩾
(
1 +

c1ε

12

) |I1 ∩ Xn|
|I1|

, (2.55)
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provided that ϵ is sufficiently small. Thus the switch from I1 to I1(⋆) leads to density
increase by a factor 1 + c1ε/12, with the added benefit that the ratio |I1|/|I1(⋆)| is
an integer h0.

To obtain a subinterval of I0 of the same length as I1(⋆), we next divide I0 into
h0 equal parts, and denote by I0(⋆) one of these subintervals with the minimum
intersection with the set Xn. Then

|I0(⋆) ∩ Xn|
|I0(⋆)|

⩽
|I0 ∩ Xn|

|I0|
. (2.56)

Note that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I0(⋆)| = |I1(⋆)| =
C1

n
, C1 =

C

h0

, h0 < c2, (2.57)

where the constant c2 = c2(ε) > 0 is independent of n and C.

3. Iteration process: step 1

The reader may have observed that we have used the inequality (2.3), which
corresponds to Case B, in the argument in Case 1 in the previous section, but not
in Case 2. We now discuss the iterative process that arises from Case B.

Let In(P ;C1) denote the collection of any subinterval I of any vertical edge of P
with length |I| = C1/n, and let I

(1)
0 , I

(1)
1 ∈ In(P ;C1) be subintervals satisfying

Vn(I
(1)
0 ) = min

I∈In(P;C1)
|I ∩ Xn| and Vn(I

(1)
1 ) = max

I∈In(P;C1)
|I ∩ Xn|,

so that I
(1)
0 and I

(1)
1 have respectively the smallest and largest visiting numbers with

respect to Xn among all the subintervals I under consideration. It is clear that

|I(1)0 ∩ Xn| ⩽
C1

b
⩽ |I(1)1 ∩ Xn|.

Furthermore, it either, in Case 1, follows from (2.36)–(2.38) that

|I(1)0 ∩ Xn|
|I(1)0 |

⩽
|I0(⋆) ∩ Xn|

|I0(⋆)|
⩽

(
1− c1ε

16

) |I0 ∩ Xn|
|I0|

(3.1)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 ∩ Xn|
|I(1)1 |

⩾
|I1(⋆) ∩ Xn|

|I1(⋆)|
⩾

|I1 ∩ Xn|
|I1|

, (3.2)

or, in Case 2, follows from (2.55)–(2.57) that

|I(1)0 ∩ Xn|
|I(1)0 |

⩽
|I0(⋆) ∩ Xn|

|I0(⋆)|
⩽

|I0 ∩ Xn|
|I0|

(3.3)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 ∩ Xn|
|I(1)1 |

⩾
|I1(⋆) ∩ Xn|

|I1(⋆)|
⩾

(
1 +

c1ε

12

) |I1 ∩ Xn|
|I1|

. (3.4)

We now concentrate on Case B, so that the inequality (2.3) holds. Combining
this with (3.1) and (3.2), or with (3.3) and (3.4), we obtain

|I(1)0 ∩ Xn|
|I(1)1 ∩ Xn|

< 1− ε. (3.5)

Remark. Note that (3.5) is the analog of (2.3) and Case B in Step 0. It follows that
if Case B in Step 0 holds, then there is no analog of Case A in Step 1.
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Repeating the argument in Step 0 between (2.10) and (2.15) with I0, I1, C replaced

by I
(1)
0 , I

(1)
1 , C1 respectively, we obtain subintervals I

(1)
0 (0) ⊂ I

(1)
0 and I

(1)
1 (0) ⊂ I

(1)
1

such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C1

3n
=

|I(1)0 |
3

⩾ |I(1)0 (0)| = |I(1)1 (0)| ⩾ c1|I(1)0 |, (3.6)

the analog of (2.14).
We have two cases:

Case 1. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 (0) ∩ Xn|
|I(1)1 (0)|

⩾
(
1− ε

2

) |I(1)1 ∩ Xn|
|I(1)1 |

. (3.7)

Case 2. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 (0) ∩ Xn|
|I(1)1 (0)|

<
(
1− ε

2

) |I(1)1 ∩ Xn|
|I(1)1 |

. (3.8)

3.1. Case 1: density decrease. Suppose that the inequality (3.7) holds. Then an
argument analogous to that in Step 0 between (2.21) and (2.23) now leads to the
inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)0 (0) ∩ Xn| ⩾
(
1− 3ε

4

)
|I(1)0 (0)| |I

(1)
1 ∩ Xn|
|I(1)1 |

, (3.9)

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C1 ⩾
96(A+ 1)2c0b

ε(1 + α2)1/2
and C1 ⩾

16b

c1ε
. (3.10)

Corresponding to (2.26), there are at most two subintervals I
(1)
0,1 , I

(1)
0,2 ⊂ I

(1)
0 such

that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I
(1)
0 = I

(1)
0 (0) ∪ I

(1)
0,1 ∪ I

(1)
0,2 .

An argument analogous to that in Step 0 between (2.26) and (2.31) then shows that,
without loss of generality, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)0,1 | ⩾
c1ε

8
|I(1)0 |,

as well as xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)0,1 ∩ Xn|
|I(1)0,1 |

⩽
(
1− c1ε

8

) |I(1)0 ∩ Xn|
|I(1)0 |

.

An argument analogous to that in Step 0 between (2.33) and (2.36) then leads to

the existence of a subinterval I
(1)
0 (⋆) ⊂ I

(1)
0 satisfying |I(1)0 |/|I(1)0 (⋆)| = h1, where h1

is the unique integer satisfying

h1 − 1 <
16|I(1)0 |
c1ε|I(1)0,1 |

⩽ h1,

such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)0 (⋆) ∩ Xn|
|I(1)0 (⋆)|

⩽
(
1− c1ε

16

) |I(1)0 ∩ Xn|
|I(1)0 |

. (3.11)
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To obtain a subinterval of I
(1)
1 of the same length as I

(1)
0 (⋆), we next divide I

(1)
1 into

h1 equal parts, and denote by I
(1)
1 (⋆) one of these subintervals with the maximum

intersection with the set Xn. Then

|I(1)1 (⋆) ∩ Xn|
|I(1)1 (⋆)|

⩾
|I(1)1 ∩ Xn|

|I(1)1 |
.

Note that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 (⋆)| = |I(1)0 (⋆)| = C2

n
, C2 =

C1

h1

, h1 < c2, (3.12)

where the constant c2 = c2(ε) > 0 is as in Step 0.

3.2. Case 2: density increase. Suppose that the inequality (3.8) holds. Then

corresponding to (2.39), there are at most two subintervals I
(1)
1,1 , I

(1)
1,2 ⊂ I

(1)
1 such that

I
(1)
1 = I

(1)
1 (0) ∪ I

(1)
1,1 ∪ I

(1)
1,2 . (3.13)

An argument analogous to that in Step 0 between (2.39) and (2.47) then shows that,
without loss of generality, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1,1 | ⩾
c1ε

10(A+ 1)b
|I(1)1 |,

as well as xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1,1 ∩ Xn|
|I(1)1,1 |

⩾
(
1 +

c1ε

4

) |I(1)1 ∩ Xn|
|I(1)1 |

.

An argument analogous to that in Step 0 between (2.48) and (2.55) then leads to

the existence of a subinterval I
(1)
1 (⋆) ⊂ I

(1)
1 satisfying |I(1)1 |/|I(1)1 (⋆)| = h1, where h1

is the unique integer satisfying

h1 − 1 <
48(A+ 1)b|I(1)1 |

c1ε|I(1)1,1 |
⩽ h1,

such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)1 (⋆) ∩ Xn|
|I(1)1 (⋆)|

⩾
(
1 +

c1ε

12

) |I(1)1 ∩ Xn|
|I(1)1 |

,

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C1 ⩾
40b

c1ε
and C1 ⩾

480(A+ 1)b2

(c1ε)2
. (3.14)

To obtain a subinterval of I
(1)
0 of the same length as I

(1)
1 (⋆), we next divide I

(1)
0 into

h1 equal parts, and denote by I
(1)
0 (⋆) one of these subintervals with the minimum

intersection with the set Xn. Then

|I(1)0 (⋆) ∩ Xn|
|I(1)0 (⋆)|

⩽
|I(1)0 ∩ Xn|

|I(1)0 |
.

Note that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(1)0 (⋆)| = |I(1)1 (⋆)| = C2

n
, C2 =

C1

h1

, h1 < c2, (3.15)

where the constant c2 = c2(ε) > 0 is as in Step 0.
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4. Iteration process: general step

Let In(P ;Ci) denote the collection of any subinterval I of any vertical edge of P
with length |I| = Ci/n, and let I

(i)
0 , I

(i)
1 ∈ In(P ;Ci) be subintervals satisfying

Vn(I
(i)
0 ) = min

I∈In(P;Ci)
|I ∩ Xn| and Vn(I

(i)
1 ) = max

I∈In(P;Ci)
|I ∩ Xn|,

so that I
(i)
0 and I

(i)
1 have respectively the smallest and largest visiting numbers with

respect to Xn among all the subintervals I under consideration. It is clear that

|I(i)0 ∩ Xn| ⩽
Ci

b
⩽ |I(i)1 ∩ Xn|.

Furthermore, we either, in Case 1 in the previous step and analogous to (3.1) and
(3.2), have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)0 ∩ Xn|
|I(i)0 |

⩽
(
1− c1ε

16

) |I(i−1)
0 ∩ Xn|
|I(i−1)

0 |
(4.1)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 ∩ Xn|
|I(i)1 |

⩾
|I(i−1)

1 ∩ Xn|
|I(i−1)

1 |
, (4.2)

or, in Case 2 in the previous step and analogous to (3.3) and (3.4), have

|I(i)0 ∩ Xn|
|I(i)0 |

⩽
|I(i−1)

0 ∩ Xn|
|I(i−1)

0 |
(4.3)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 ∩ Xn|
|I(i)1 |

⩾
(
1 +

c1ε

12

) |I(i−1)
1 ∩ Xn|
|I(i−1)

1 |
. (4.4)

Combining the estimate xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i−1)
0 ∩ Xn|

|I(i−1)
1 ∩ Xn|

< 1− ε

from the previous step with (4.1) and (4.2), or with (4.3) and (4.4), we obtain

|I(i)0 ∩ Xn|
|I(i)1 ∩ Xn|

< 1− ε,

the analog of (2.3) and (3.5).
On the other hand, iterating (4.1)–(4.4) carefully, we obtain

|I(i)0 ∩ Xn|
|I(i)0 |

⩽
(
1− c1ε

16

)i1 |I0 ∩ Xn|
|I0|

(4.5)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 ∩ Xn|
|I(i)1 |

⩾
(
1 +

c1ε

12

)i2 |I1 ∩ Xn|
|I1|

, (4.6)

where i1 and i2 denote respectively the number of times Case 1 and Case 2 are valid
in the previous i = i1+ i2 steps. Combining (2.1), (4.5) and (4.6), and recalling that

|I0| = |I1| and |I(i)0 | = |I(i)1 |, we obtain the inequality

|I(i)0 ∩ Xn| ⩽
(
1− c1ε

16

)i1
|I(i)1 ∩ Xn|. (4.7)
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Repeating the argument in Step 0 between (2.10) and (2.15) with I0, I1, C replaced

by I
(i)
0 , I

(i)
1 , Ci respectively, we obtain subintervals I

(1)
0 (0) ⊂ I

(1)
0 and I

(1)
1 (0) ⊂ I

(1)
1

such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ci

3n
=

|I(i)0 |
3

⩾ |I(i)0 (0)| = |I(i)1 (0)| ⩾ c1|I(i)0 |, (4.8)

the analog of (2.14) and (3.6), where the constant c1 = c1(P ;α) in (4.8) is exactly
the same as before.

We have two cases:

Case 1. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 (0) ∩ Xn|
|I(i)1 (0)|

⩾
(
1− ε

2

) |I(i)1 ∩ Xn|
|I(i)1 |

. (4.9)

Case 2. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 (0) ∩ Xn|
|I(i)1 (0)|

<
(
1− ε

2

) |I(i)1 ∩ Xn|
|I(i)1 |

. (4.10)

4.1. Case 1: density decrease. Suppose that the inequality (4.9) holds. Then
an argument analogous to that in Step 0 between (2.21) and (2.36) and that in

Step 1 between (3.9) and (3.11) leads to the existence of a subinterval I
(i)
0 (⋆) ⊂ I

(i)
0

satisfying |I(i)0 |/|I(i)0 (⋆)| = hi, where hi is an integer and

|I(i)0 (⋆) ∩ Xn|
|I(i)0 (⋆)|

⩽
(
1− c1ε

16

) |I(i)0 ∩ Xn|
|I(i)0 |

.

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ci ⩾
96(A+ 1)2c0b

ε(1 + α2)1/2
and Ci ⩾

16b

c1ε
, (4.11)

To obtain a subinterval of I
(i)
1 of the same length as I

(i)
0 (⋆), we next divide I

(i)
1 into

hi equal parts, and denote by I
(i)
1 (⋆) one of these subintervals with the maximum

intersection with the set Xn. Then

|I(i)1 (⋆) ∩ Xn|
|I(i)1 (⋆)|

⩾
|I(i)1 ∩ Xn|

|I(i)1 |
.

We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)1 (⋆)| = |I(i)0 (⋆)| = Ci+1

n
, Ci+1 =

Ci

hi

, hi < c2, (4.12)

where the constant c2 = c2(ε) > 0 is as in Step 0.

4.2. Case 2: density increase. Suppose that the inequality (4.10) holds. Then
an argument analogous to that in Step 0 between (2.39) and (2.55) and that in

Step 1 between (3.13) and (3.14) leads to the existence of a subinterval I
(i)
1 (⋆) ⊂ I

(i)
1

satisfying |I(i)1 |/|I(i)1 (⋆)| = hi, where hi is an integer and

|I(i)1 (⋆) ∩ Xn|
|I(i)1 (⋆)|

⩾
(
1 +

c1ε

12

) |I(i)1 ∩ Xn|
|I(i)1 |

,

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ci ⩾
40b

c1ε
and Ci ⩾

480(A+ 1)b2

(c1ε)2
. (4.13)
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To obtain a subinterval of I
(i)
0 of the same length as I

(i)
1 (⋆), we next divide I

(i)
0 into

hi equal parts, and denote by I
(i)
0 (⋆) one of these subintervals with the minimum

intersection with the set Xn. Then

|I(i)0 (⋆) ∩ Xn|
|I(i)0 (⋆)|

⩽
|I(i)0 ∩ Xn|

|I(i)0 |
.

We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I(i)0 (⋆)| = |I(i)1 (⋆)| = Ci+1

n
, Ci+1 =

Ci

hi

, hi < c2, (4.14)

where the constant c2 = c2(ε) > 0 is as in Step 0.

5. Iteration process: deriving a contradiction

We now attempt to derive the necessary contradiction.
Suppose first that Case 1 holds in Step i.
Corresponding to (2.23) and (3.9), we have the inequality

|I(i)0 (0) ∩ Xn| ⩾
(
1− 3ε

4

)
|I(i)0 (0)| |I

(i)
1 ∩ Xn|
|I(i)1 |

, (5.1)

provided that (4.11) holds.

Clearly I
(i)
0 (0) ⊂ I

(i)
0 , so it follows from (4.7) that

|I(i)0 (0) ∩ Xn| ⩽
(
1− c1ε

16

)i1
|I(i)1 ∩ Xn|. (5.2)

On the other hand, combining (4.8) with (5.1) leads to the inequality

|I(i)0 (0) ∩ Xn| ⩾ c1

(
1− 3ε

4

)
|I(i)1 ∩ Xn|. (5.3)

Clearly (5.2) and (5.3) contradict each other if(
1− c1ε

16

)i1
<

c1
2
,

noting that 0 < ε < 1/2. This gives an upper bound c3 = c3(ε) to i1, the number of
times that Case 1 holds among the first i steps.

Suppose next that Case 2 holds in Step i.
Combining (2.1) and (4.6), and noting that |I1| = C/n, we have

|I(i)1 ∩ Xn| ⩾
(
1 +

c1ε

12

)i2 n

b
|I(i)1 |. (5.4)

On the other hand, it follows from (2.19) that

|I(i)1 ∩ Xn| ⩽ 2(A+ 1)n|I(i)1 |+ 2. (5.5)

Clearly (5.4) and (5.5) contradict each other if(
1 +

c1ε

12

)i2
> 4(A+ 1)b,

provided that Ci ⩾ 1. This gives an upper bound c4 = c4(ε) to i2, the number of
times that Case 2 holds among the first i steps.

If i > c3+ c4, then neither Case 1 nor Case 2 in Step i can be valid. To show that
Case B is impossible, it remains to analyze the various constants in our argument.

Recall that the constants c0 = c0(P ;α) and c1 = c1(P ;α) depend only on P
and α, and are independent of n, C and ε, while the constant A depends only on α,
and the constant b depends only on P . It remains to study the various constants C
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and Ci. They are governed by the inequalities (2.24), (2.38), (2.44), (2.54), (2.57),
(3.10), (3.12), (3.14), (3.15) and (4.11)–(4.14). Thus we need

Ci =
C

h0h1, . . . , hi−1

⩾ max

{
96(A+ 1)2c0b

ε(1 + α2)1/2
,
40b

c1ε
,
480(A+ 1)b2

(c1ε)2
, 1

}
, (5.6)

and hi < c2 = c2(ε).
The iteration process must stop after at most c5 = c5(ε) = c3(ε) + c4(ε) steps. It

follows that (5.6) is satisfied provided that C is chosen sufficiently large in terms of
P , α and ε.
For convenience, let C∗ be sufficiently large so that (5.6) is satisfied for every real

number C satisfying xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C ⩾ C∗.

6. Proof of Theorem 1

We have already shown that Case B leads to a contradiction. To complete the
proof of Theorem 1, it remains to investigate Case A, when the inequality (2.2)
holds. We have the following almost trivial observation.

Lemma 4. Suppose that J is a subinterval of any vertical edge of P with length
|J | ⩾ 3C/n, where C is an integer satisfying C∗ ⩽ C < n. If (2.2) holds, then

(1− ε)

(
|J |
|I1|

− 3

)
|I1 ∩ Xn| ⩽ |J ∩ Xn| ⩽

(
|J |
|I1|

+ 3

)
|I1 ∩ Xn|. (6.1)

Proof. Let k = [n/C] denote the integer part of n/C. Then we can split any vertical
edge of P into a union of k special subintervals of length C/n and an extra short
interval with length w satisfying 0 ⩽ w < C/n at the top end of the vertical edge.
Consider the unique integer ℓ0 that satisfies the inequalities

ℓ0 ⩽
|J |
C/n

=
|J |
|I1|

< ℓ0 + 1. (6.2)

Then J contains at least ℓ0−2 of these special subintervals of length C/n. Combining
this observation with (2.2) and the second inequality in (6.2) leads to the lower bound

|J ∩ Xn| ⩾ (ℓ0 − 2)|I0 ∩ Xn| >
(
|J |
|I1|

− 3

)
(1− ε)|I1 ∩ Xn|.

On the other hand, J is covered by ℓ0 + 2 special subintervals of length C/n and
the extra short subinterval of length w which is contained in a subinterval of the
vertical edge of length C/n. Combining this observation with the first inequality in
(6.2) leads to the upper bound

|J ∩ Xn| ⩽ (ℓ0 + 3)|I1 ∩ Xn| ⩽
(
|J |
|I1|

+ 3

)
|I1 ∩ Xn|.

This completes the proof. □

Let Cε = 3C∗/ε. Let J be an interval on a vertical edge of P satisfying

|J | ⩾ Cε

n
=

3C∗

εn
.

Then |J | = L /εn for some positive real number L ∈ R. Clearly there exists an
integer C ⩾ C∗ such that 3(C − 1) < L ⩽ 3C, so that

|J | = 3C

ε∗n
=

3|I1|
ε∗

(6.3)
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for some ε∗ satisfying xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ε ⩽ ε∗ ⩽ 2ε. (6.4)

Making use of (6.3), we see that∣∣∣∣Vn(J)−
n|J |
b

∣∣∣∣ = ∣∣∣∣|J ∩ Xn| −
n

b

3|I1|
ε∗

∣∣∣∣
⩽

∣∣∣∣|J ∩ Xn| −
3

ε∗
|I1 ∩ Xn|

∣∣∣∣+ 3|I1|
ε∗

(
|I1 ∩ Xn|

|I1|
− n

b

)
. (6.5)

With |J | = 3|I1|/ε∗ in (6.1), we have

3(1− ε∗)2

ε∗
|I1 ∩ Xn| ⩽ |J ∩ Xn| ⩽

3(1 + ε∗)

ε∗
|I1 ∩ Xn|,

and this implies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∣∣∣∣|J ∩ Xn| −
3

ε∗
|I1 ∩ Xn|

∣∣∣∣ ⩽ 6|I1 ∩ Xn|. (6.6)

On the other hand, it is clear from (2.1) and (2.2) that

|I1 ∩ Xn|
|I1|

⩾
n

b
⩾

|I0 ∩ Xn|
|I0|

⩾ (1− ε∗)
|I1 ∩ Xn|

|I1|
. (6.7)

It then follows from (6.7) that

|I1 ∩ Xn|
|I1|

− n

b
⩽

|I1 ∩ Xn|
|I1|

− |I0 ∩ Xn|
|I0|

⩽
|I1 ∩ Xn|

|I1|
− (1− ε∗)

|I1 ∩ Xn|
|I1|

,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

3|I1|
ε∗

(
|I1 ∩ Xn|

|I1|
− n

b

)
⩽ 3|I1 ∩ Xn|. (6.8)

It also follows from (6.7) that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1 ∩ Xn| ⩽
|I1|

1− ε∗
n

b
. (6.9)

Substituting (6.6), (6.8) and (6.9) into (6.5), we conclude that∣∣∣∣Vn(J)−
n|J |
b

∣∣∣∣ ⩽ 3ε∗

1− ε∗
n|J |
b

⩽
6ε

1− 2ε

n|J |
b

, (6.10)

in view of (6.4). Naturally, we may assume that ε < 1/2. Since n and J are arbitrary,
the inequality (6.10) proves super-micro-uniformity with 6ε(1− 2ε)−1 instead of ε.
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