SUPERDENSITY AND SUPER-MICRO-UNIFORMITY
IN NON-INTEGRABLE FLAT SYSTEMS

J. BECK AND W.W.L. CHEN

ABSTRACT. We show that on any non-integrable finite polysquare translation
surface, superdensity, an optimal form of time-quantitative density, leads to an
optimal form of time-quantitative uniformity that we call super-micro-uniformity.

1. INTRODUCTION

Consider a half-infinite geodesic on a finite polysquare translation surface. It
is trivial that uniformity always implies density, and that the converse is false.
However, while density does not in general imply uniformity, we demonstrate here
an interesting case when some form of time-quantitative density implies some form
of time-quantitative uniformity.

The purpose of the present paper is to show how superdensity, an optimal form of
time-quantitative density, implies an optimal form of time-quantitative uniformity
that we call super-micro-uniformity. Here super refers to optimality and micro refers
to microscopic scale.

To illustrate the latter, consider the irrational rotation sequence

{ga}, ¢=1,2,3,..., (1.1)

of fractional parts of g in the interval [0,1), where « is irrational. Let I C [0,1)
be an arbitrary subinterval of length 1/2n, and consider the first n elements of the
sequence (1.1). Then the expected number of elements of this n-element set in [
is clearly 1/2, corresponding to n times the length of I. On the other hand, the
visiting number V,,(I) of I, the actual number of elements in I coming from this
n-element set is clearly an integer, and so must differ from the expected number by
at least 1/2. We refer to this as the trivial error. Indeed, we have same phenomenon
if the length of I is C'/n, where 2C' is an odd integer. Here the error is at least 1/2,
and the expected number C' is in the constant range.

Given the first n elements of the infinite sequence (1.1), intervals of length C'/n
represent test sets in the microscopic scale. Here C' > 0 is a fixed constant, and n may
tend to infinity. The trivial error argument above implies that in the microscopic
scale of C'/n, we cannot expect perfect local uniformity in the sense that the ratio of
the error term and the expected number tends to zero as C' is fixed and n tends to
infinity. To put it slightly differently, to have perfect local uniformity, it is necessary
to have C'= C(n) — oo as n — oc.

It turns out that this necessary condition is sufficient to establish perfect local
uniformity if « is badly approximable. This perfect local uniformity is what we
call super-micro-uniformity. It has the intuitive meaning that the orbit exhibits
uniformity already in the shortest possible subintervals. We have the following
result on super-micro-uniformity of the irrational rotation sequence generated by a
badly approximable .
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Theorem A. Let o be a badly approximable real number. For any subinterval
I C0,1), let

Voll)={g=1,...,n:{qa} € I}

denote the visiting number of I with respect to the first n terms of the sequence (1.1).
Then for every sufficiently large integer n and every real number € > 0, there exists
a finite threshold C. = C.(«) satisfying 1 < C. < n such that for any subinterval I
with length |I| > C./n, the inequality

V(1) — n|I|| < enll]| (1.2)
holds.

The proof of this result is a fairly routine exercise using continued fractions, so
Theorem A is very possibly folklore. However, as we shall establish a more general
result, we briefly outline the ideas here.

First of all, we recall that the convergents py/qx of a give excellent rational ap-
proximation, in the sense that

1
a— Pkl < ,
dk qr9k+1
so that
1
’qa_% < d g_a qzlavqk
qk qkqk+1 qk+1

Hence any segment of g, consecutive terms of the sequence (1.1) is very uniformly
distributed in the interval [0,1).

To take advantage of this, it makes sense to look at the Ostrowski decomposition
of integers, using the denominators of the convergents. For every integer N, we can
write

N = Z bkq1m
=0

where m is the unique integer satisfying ¢,, < N < ¢,,41, and the digits by, by, . .., by,
satisfy

bOG{O,l,...,al—l},
b € {0,1,...; a1}, k=1,...,m,
bk_1:Oifbk:ak+1, kzl,...,m.

where aq, ..., a,4+1 are continued fraction digits of a.

Theorem A follows on combining these two ideas in a suitable way.

From the discrete super-micro-uniformity given by (1.2), it is easy to deduce that
every half-infinite geodesic, i.e. torus line, of badly approximable slope « is super-
micro-uniform in the unit torus [0, 1)2.

Note that geodesics on the unit torus [0, 1)? is the simplest integrable system. If
we consider geodesic flow on an arbitrary finite polysquare translation surface, then
it is typically non-integrable.

Theorem 1. Let P be a polysquare translation surface with b atomic squares, and let
a be a badly approzimable real number. Let L, (t), t > 0, be a half-infinite geodesic
with slope o, equipped with the usual arc-length parametrization. For any positive
integer n, let X, denote the set of the first n intersection points of La(t), t = 0, with
the vertical edges of P, and for any subinterval I of any vertical edge of P, let

Vo) = I N A,
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denote the visiting number of I with respect to X,,. Then for every sufficiently large
integer n and every real number € > 0, there exists a finite threshold C. = C.(P; «)
satisfying 1 < C. < n such that for any subinterval I of any vertical edge of P with
length |I| > Ce/n, the inequality

I I
-2 < 2

holds. In other words, we have super-micro-uniformity.

The remainder of the paper is devoted to proving this result.

Needless to say, super-micro-uniformity implies traditional Weyl type uniformity
with respect to all Jordan measurable test sets.

We require a superdensity result in our earlier papers [1, 2]. Let P be a polysquare
translation surface with b atomic squares, and let o be a badly approximable real
number. Then there exists a finite superdensity threshold ¢y = ¢o(P; «) such that
for every integer m > 1, any geodesic segment of slope a and length com gets
(1/m)-close to every point of P.

2. ITERATION PROCESS: STEP 0

Let C be a constant satisfying 1 < C' < n. Let Z,(P; C) denote the collection of
all subintervals I of any vertical edge of P with length |I| = C'/n, and let Iy, I; €
Z,(P; C) be subintervals satisfying

Vo(lp) = min |[INA,| and V()= max |[INA,]
I1€Z,(P;C) I€Z,(P;C)

so that Iy and I; have respectively the smallest and largest visiting numbers with
respect to A, among all the subintervals I under consideration. It is clear that

C
|Ip N AX,| < > < LN A, (2.1)

Let the real number ¢ satisfy 0 < ¢ < 1/2. We have two cases:

Case A. We have

|Io N A,

—>1—c. 2.2

IGEA © (2:2)
Case B. We have

|Io N X,

— < 1—c. 2.3

IGEA c (23)

We shall postpone the analysis of Case A to Section 6.

To complete the proof of Theorem 1, we shall show that Case B, where (2.3) holds,
is not possible. Indeed, we shall show that (2.3) leads to a contradiction. The proof
is rather long, and involves a complicated iteration process, with two possibilities
at each step. We shall derive the necessary contradiction by showing that at some
stage of this process, neither possibility is valid.

We need the following number theoretic technical result.

Lemma 1. Suppose that qi is the denominator of a convergent of o, and that 1
is an interval of real numbers with length |I| < 1/2qx. Then at most one of the
translated intervals

I+qoa, qg=1,...,q, (2.4)

contains an integer.
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Proof. Consider the g points {ga}, ¢ = 1,...,qe. It follows from a special case of
the famous 3-distance theorem [3, 4] that the distance between two neighbouring
points of this finite collection of numbers is at least

1 1
— >
Qk + Q-1 2qx

This implies that if |I| < 1/2qy, then the g translated intervals (2.4) are pairwise
disjoint modulo 1, so that at most one contains an integer. O

lgk—1cd]| >

We also need the following counting result.

Lemma 2. Let a be a badly approximable number, and let A be an upper bound on
the continued fraction digits of . Consider a set

Y ={{B+qa}:q=1,...,m} C[0,1),
where m is a positive integer, € R is arbitrary and the interval I* C [0,1). Then
I N Y| <2(A+ D)ym|I*| + 2. (2.5)
Proof. Suppose that
Qk—1 <M < gy, (2.6)

where ¢x_1 and g, are the denominators of successive convergents of a. We expand
the set ), to the set

qu :{{6+qa} q = 177%} - [0’]-)’

which has good distribution properties in [0, 1). Clearly

(1O Y| < TNV, (2.7)
so we need to find an upper bound for the right hand side. Using a special case of
the 3-distance theorem, we know that the distance between neighbouring points of
the set ), is equal to

lgu—1cl or [lgrral| + [lara]] < 2[[gr-1c]. (2.8)

Thus a generous upper bound is given by

1N V| < 2qi| 1]+ 2, (2.9)

where the first factor 2 covers for the different lengths (2.8) of the gaps between
neighbouring points of ), , and the second factor 2 covers for any error arising from
the two endpoints of the interval /*. The estimate (2.5) now follows on combining

(2.6), (2.7), (2.9) and the trivial estimate qx < (A + 1)qx_1. O
Let g, be the smallest convergent denominator such that
6
(14 a2)2 > % (2.10)
Then
< 6con
qk—l ~ C(]_ + 0[2)1/2’
and so
6(A+1
G < (A4 g, < ST Dan (2.11)

O+ a2
where A is an upper bound on the continued fraction digits of . We divide the
interval Iy into subintervals J of common length

1 Ccl+a®)'?2 C

< = (2.12)

J=—x )
131 2q; 12¢con = 3n
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provided that

211/2
o> LH)” (2.13)
4
and ignore the short remainder.

There is no problem with satisfying the requirement (2.13), as we simply increase
the superdensity threshold constant cq if necessary. The inequalities in (2.12) and
(2.13) are vital, since otherwise the intervals J would be too long to be subintervals
of [0.

Superdensity implies that a geodesic segment with slope a and length 6¢yn/C
visits the middle third of I;, and ensures also that a geodesic flow with slope o and
length 6¢on/C sweeps any subinterval J, in view of (2.12), to a union of subintervals
in I; but not necessarily in the middle third of ;. Combining this with Lemma 1
and (2.10), we see that a geodesic flow with slope a and length 6¢on/C sweeps each
J with at most one splitting to a union of at most two subintervals in I;. Denote by
1,(0) the longest subinterval in I; arising as part of an image of the geodesic flow in
this process, and let I5(0) denote the pre-image of I1(0) in /y. Then

C I 1 _ C(l+a?)l?
— =2 > ] =17 > —>———"72 =[], 2.14
where
B B (1+0z2)1/2
o =ale) = 24(A 1 Doy’

Note that the number of vertical edges hit by the geodesic flow with slope a from
I5(0) to I;(0) is bounded above by (2.11), and the length of the flow is bounded by

6(A+1
(14 a?)V? < % (2.15)
We have two cases:
Case 1. We have
—_— > - ) — 2.16
1,(0)] 2) T h| (2.16)
Case 2. We have
I X LNX
|1:(0)| 2 |1

Before we study these cases in detail, we first give some heuristics to explain
the underlying ideas. If Case 1 holds, then we show that the subinterval I4(0) C Iy
exhibits a surplus density of points of A}, compared to I,. Removing this subinterval,
the remaining part of I then exhibits a deficit density of points of X, compared
to Iyp. If Case 2 holds, then the subinterval I;(0) C I; exhibits a deficit density
of points of &), compared to I;. Removing this subinterval, the remaining part of
I; then exhibits a surplus density of points of X,, compared to I;. Thus we either
obtain a subinterval of I that exhibits deficit density of points of &}, compared to Iy,
or obtain a subinterval of I; that exhibits surplus density of points of &), compared
to I;. We then repeat the analysis on intervals of length equal to the length of this
subinterval, and this sets up an iteration process. We then show that if Case B
holds, then this iteration has to terminate after a finite number of steps, and this
gives the necessary contradiction.
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2.1. Case 1: density decrease. Suppose that the inequality (2.16) holds. To find
a lower bound to |I5(0) N A,,|, we consider the transportation process as the geodesic
flow with slope o moves the interval I(0) to the interval ;(0). Let

X, ={z1,..., 2.},

and let n* denote the number of times that this finite transportation process from
Iy(0) to I;(0) intersects a vertical edge of P, so that I; is the n*-th vertical edge
in this process. Suppose that j = 1,...,n and the point z; € I;(0), contributing a
count of 1 to |[I;(0) N &,|. Then provided that j —n* > 0, the point z;_,- € Iy(0),
contributing a count of 1 to [I(0)NA,|. On the other hand, if j < n*, then while the
point z; € I;(0) contributes a count of 1 to |I;(0) N A&,|, there is no corresponding
contribution to [/y(0) N X,|. In other words,

|1,(0) N &, — [1o(0) N A| < |11(0) N A,

: (2.18)

where X« is the collection of the first n* intersection points in X},. Since geodesic
flow on P modulo 1 is geodesic flow on the unit torus, and the slope « is badly
approximable with continued fraction digit upper bound A, it follows from Lemma 2
that

|I;(0) N X | < 2(A+ 1)n*|1,(0)] + 2. (2.19)
On the other hand, we have
6(A+ 1)con
f gy < —m T 2.9
PSS G ) (220)
Combining (2.18)—(2.20), we deduce that
12(A+1)%con
Note that (2.16) gives
LN&A,
I1,(0) N X, > (1 . %) |11(0)|% (2.22)
1

Combining (2.21) and (2.22) and noting that |, N &,| > C/b, |I|] = C/n and
|1o(0)] = |11(0)|, we obtain the inequality

3 LN&A,
L0 a1 (1) I (2.23)
4 |11
provided that
12(A+1)2%con _ e|[[1NA,| € |1, N A,
<= d 2<-Lh(0)|—F—,
0(1 + a2)1/2 8 |[1| an 8| 0( >| ’[1’
and these are guaranteed if we ensure that
96(A + 1)2cob 16b
o B+ Dab g o5 1600 (2.24)

e(1+a?)l/? c1e

the latter inequality in view of (2.14). Combining (2.3) and (2.23) now leads to the
inequality

3e _ IoNnX,
m@m&»(vuﬁu—awmwu——i
4 | 1|
IyNA,
> <1+ 5) (o) Je 0 Anl (2.25)
4 | 1o

provided that (2.24) holds.
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There are at most two subintervals Iy 1, lo2 C Iy such that
Io = 1p(0) U Ipq U Ipo. (2.26)
Removing the interval I5(0) and combining (2.25) and (2.26), we obtain
[Io1 N XL + o2 N AL = 1o N XL| — |16(0) N A,

e\ [o(0)] [loa| + [Too]| e
< |lhNAX, 1—(1 —) <|oNX,| | ———————— ), (2.27
nal (1= (14 5) B0 < jron g (Pl Eboel - 93 o

noting that (2.14) implies |1(0)|/|Io| = ¢1. There are two possibilities, either

minf[loq|, [lop|} e

, 2.8
Zo S (22%)
or
mll’l{’[() 1|,’[02‘} Cc1€
: : = —. 2.29
Lo 8 (2:29)
If (2.28) holds, then we may assume without loss of generality that
|]0 2| 1€
In1| = |1o2], that —— < —,
[£o,1| = [Lo2], so tha TARREC
and so it follows from (2.27) that
I
[ o1 N Xy | < Lo N A& (| ol _ %> - (2.30)
o] 8

On the other hand, if (2.29) holds, then since it follows from (2.27) that

o1 N X,| + [Ton N X,| < |To N X, ('IO—” - @) + 1IN A, <|]°’2| = E) ,
o] 8 L] 8
we may assume without loss of generality that (2.30) holds again. Note now that
(2.30) leads to the inequality
[Toal > |10,
as well as the inequality

[Io1 N X, < 1IN A, (1_16 | 1o] > < (1_ g) 1o N Xl
[ o] [ Lo| 8 [o1] 8 [ o

Thus the switch from I, to Iy, leads to density decrease by a factor of 1 — ¢1¢/8.
The ratio |y|/|Zo1] is not necessarily an integer. To overcome this issue, we shall

replace Iy ; by a suitable subinterval at the expense of part of the density decrease.
We shall use the following almost trivial observation a number of times.

(2.31)

Lemma 3. Suppose that I is a finite interval of real numbers, Y C I is a finite
subset with m elements, and z is a real number satisfying 0 < z < |I].
(i) Then there ezists a subinterval I' C I of length |I'| = z such that
I'ny|<m——m:.
[Ny ™,
(ii) Suppose further that there exists an integer B > 1 such that every subinterval
I C I satisfies
. |71]
1" Y| < Bml—]| +2. (2.32)
Then there ezists a subinterval 1" C I of length |I"| = z such that

2

z z
I"AY| > (m—2)= — Bm (—> .
|| 1]
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Proof. Write |I| = kz + w, where k > 1 is an integer and 0 < w < z. We partition
the interval I into a union
I:J()UJlUUJk, |J0|:U}, ‘Jﬂ::‘Jk‘:Z

(i) Among the intervals J = Jy, ..., J, let I’ be one for which |J N Y| is minimal.
Observing the inequality

LM 1

)

z z
we deduce that
Vi z
M« ‘
e S
(ii) Among the intervals J = Ji, ..., Jy, let I” be one for which |JNY|is maximal.
Applying (2.32) to the subinterval Jy, we have

1I'n)y| <

B
|Joﬂy|<%+2.

Observing this and the inequality

we deduce that

. — |JoN z Bmz z 2\’
poyys IZBOY = (B e (2

This completes the proof. 0

Let hg be the unique integer satisfying
16| 10|

ho — 1< < hy, 2.33

0 Cl€|_[0’1| 0 ( )
so that

I 1€

ol < 910 < Il (2.34)

provided that ¢ is sufficiently small.
We now apply Lemma 3(i) with I = Iy, Y = lp1 N X, and z = |Iy|/hg. Then
there exists a subinterval Iy(x) C Iy; with |Io(*)| = z such that

z
1 NAX,| < |1 NX,)|—.
[ 1o (%) | <| 0,1 ||]0,1| _

Combining this with the estimate (2.31), we deduce that

[ 1o (%)] loal  [Loa] — = 8 [lol  oa| — 2
Note from (2.34) that
|IO,1| < (1_E>_1_
|IO,1’ — Z 16
Combining this with (2.35), we deduce that
-1
|Io(*) N Ay < <1 B %> (1 B E) |Io N A, < < B %> |1o N A, (2.36)

Thus the switch from Iy to Io(x) leads to density decrease by a factor of 1 — ¢;e/16,
with the added benefit that the ratio |Io|/|Io(*)| is an integer hy.
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To obtain a subinterval of I; of the same length as [y(%), we next divide I; into
ho equal parts, and denote by I;(x) one of these subintervals with the maximum
intersection with the set X,,. Then

L) N X _ [0
)l T

(2.37)
Note that

4 C

] = _I = — = —

|1 ()| = [To(x)] ot Cy I

where the constant c¢o = co(e) > 0 is independent of n and C.

ho < Ca, (238)

2.2. Case 2: density increase. Suppose that the inequality (2.17) holds. There
are at most two subintervals I ;, I; 2 C I; such that

I = L(0) UL, U, (2.39)
Removing the interval [;(0) and combining (2.17) and (2.39), we obtain
[LaNX |+ [N X =L N, — |L(0) N A,

e\ [11(0)] [Lia| + |112] | ae
> |LN&, 1—(1——) > LN, (Bl TRl as) g 4

noting that (2.14) implies |11(0)|/|I1| = ¢1. There are two possibilities, either

mln{|[1,1‘, ’[172‘} 1€ ’ (241)
A 10(A + 1)b
or
min{|]1’1|,|]172|} > c1€ . (242>
A 10(A+ 1)b
If (2.41) holds, then we may assume without loss of generality that
1111 112 1€
11| = |I15], so that — > — and < ) 2.43
a2 1Dl L] = 3 L]~ 10(A+1)b (2.43)
Combining (2.1), (2.5) and (2.43), we obtain
€ €
Lo N X < 2(A + Dnllis| +2 < 5bnym +2< jbnul\ < Ci!h N X,
provided that
C1€ C1€C 40b
2< — = — cC>—. 2.44
200" 1 =205 e (2:44)
Substituting this into (2.40), we deduce that
I
1111 N X,| > | N X, (l L1 +E). (2.45)
L] 4

On the other hand, if (2.42) holds, then since it follows from (2.40) that

I I
111 N X + T2 N X 2 |1 N A (‘ L1l +E) LN A, (‘ 12| +%) :

|11 |11]
we may assume without loss of generality that (2.45) holds again. Note now that
Cc1€

Ly > ———|1], 2.46
il 10(A+1)b| 3 (2.46)

provided that e is sufficiently small, and (2.45) leads to the inequality
|11 N A, > |1, N A, (1 cie | 1] > > (1 E) |1, N A, (2.47)

[£1,1] |11 R 4 | 11]
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Thus the switch from I; to I;; leads to density increase by a factor 1 + ¢1e/4.
The ratio |1]/|/11] is not necessarily an integer. To overcome this issue, we shall
replace I; ; by a suitable subinterval at the expense of part of the density increase.
Let hg be the unique integer satisfying

48(A + 1)b| 1|

ho— 1< < ho, 2.48
0 C1€|[171| 0 ( )
so that
|Il| C1€
Pl " 1< 1L, 2.49
< il < Il (2.49)

provided that € is sufficiently small.
We now apply Lemma 3(ii) with [ = I, Y = 11 N X, and z = |I|/hy. Note
that in view of (2.5), for every subinterval IT C I} ;, we have
ITNY|=I"NX,| <2(A+ D)n|IT| + 2. (2.50)
On the other hand, it follows from (2.1), (2.47) and |I;| = C'/n that
‘Il,l N Xn‘ 2 ‘[1 N Xn’ 2 Q
114 |11 b
Combining (2.50) and (2.51), we have

(2.51)

|17]
[ 111

so that Lemma 3(ii) is valid with the constant B = 2(A + 1)b. It follows that there
exists a subinterval [ (x) C Iy ; with |[;(x)| = 2z such that

TN Y] < 2(A+ )bl N A,

+ 2,

2
|11(*)an|>(|11,1m2(n|—Q)L—z(A+1)b|11,an|( c ) .
|Il,1| |Il,1|

Combining this with (2.49), we have
L) T | |10 N A ho |11

SHandlf 2 e (2.52)
~ Ll \LiNnX,] 24)° '

Next, combining (2.46) and (2.51), and recalling that |/;| = C//n, we obtain

0108
LLNA,>—
1 | 10(A + 1)b2

We want the bound
2 c1€
T S 5
\LiNA,|l ~ 24
and this can be guaranteed if we ensure that
480(A + 1)v?
(c12)?
Combining (2.52) and (2.53), we now obtain
|1, (%) N A&y < |11 N A, ( B £>
(Ll 7 [yl 12/
Combining this with (2.47), we deduce that
|11 (%) 4 12 |14 | 12 |1

(2.53)

¢ = (2.54)

(2.55)
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provided that € is sufficiently small. Thus the switch from I to I; (%) leads to density
increase by a factor 1+ ¢;£/12, with the added benefit that the ratio |I;|/|I1(%)] is
an integer hyg.

To obtain a subinterval of I, of the same length as I (%), we next divide I, into
ho equal parts, and denote by I(x) one of these subintervals with the minimum
intersection with the set X,,. Then

1) N X| _ [Io 0 %,
[Zo(*)]| | 1o]

(2.56)

Note that
C C
()| = [L(x)] ==, Ci=-, hy<c, (2.57)
n ho

where the constant ¢; = co(e) > 0 is independent of n and C.

3. ITERATION PROCESS: STEP 1

The reader may have observed that we have used the inequality (2.3), which
corresponds to Case B, in the argument in Case 1 in the previous section, but not
in Case 2. We now discuss the iterative process that arises from Case B.

Let Z,,(P; Cy) denote the collection of any subinterval I of any vertical edge of P

with length |I| = Cy/n, and let Iél), 11(1) € Z,,(P; C1) be subintervals satisfying
V,(I"Y= min [INX,) and V,(I")= max [INAX,
I1€Z,(P;Ch) I1€Z,(P;Ch)
so that [él) and [ 1(1) have respectively the smallest and largest visiting numbers with
respect to &), among all the subintervals I under consideration. It is clear that
C
IV N, < 71 < IV na,.

Furthermore, it either, in Case 1, follows from (2.36)—(2.38) that

llo(l)m)c’n\ o [ Io(x) N A, o ( B E) |Io N A,

< 3.1
0] 7o) i6) " 1h 31)
and
1
15V N X L) N X LN A (32)
17| [11(»)] L]
or, in Case 2, follows from (2.55)—(2.57) that
(1)
I,/ NA, I N X, IyN A,
11V [ 1o(%)] | Lol
and
(1)
|5 r3?€7~L| LTI ( g) [0 & | (3.4)
11| |11 (%) 12/ |L

We now concentrate on Case B, so that the inequality (2.3) holds. Combining
this with (3.1) and (3.2), or with (3.3) and (3.4), we obtain

1150 N A,
11D N A,

Remark. Note that (3.5) is the analog of (2.3) and Case B in Step 0. It follows that
if Case B in Step 0 holds, then there is no analog of Case A in Step 1.

— €. (3.5)
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Repeating the argument in Step 0 between (2.10) and (2.15) with Iy, I, C replaced
by Iél), 1Y ¢y respectively, we obtain subintervals Iél)(O) C Iél) and IV(0) c 1Y
such that

G _ Ik

1 1 1
5 =g 2 L =1170)] > all”], (3.6)

the analog of (2.14).
We have two cases:

Case 1. We have
1 1
|ﬁ%ﬂmu>@_$u9mn

(3.7)
1110(0))] 2/ 1

Case 2. We have
|#mwmm<@_qu9m&y (38)
1119(0)] 2/ 1)

3.1. Case 1: density decrease. Suppose that the inequality (3.7) holds. Then an
argument analogous to that in Step 0 between (2.21) and (2.23) now leads to the
inequality

3e IRAEA
|I[§1)(()) N X > (1 - Z) I(()l)(o)|_1|[(1)| ’ (3.9)
1
provided that
96(A + 1)2cob 16b
Cl 2 m and Cl 2 Cl_g (310)

Corresponding to (2.26), there are at most two subintervals [[5711), Ié}z) C Iél) such

that
1 1 1 1
I = 1P (0) U I} U Iy,

An argument analogous to that in Step 0 between (2.26) and (2.31) then shows that,
without loss of generality,

as well as
I N x| < (1 B E) IV N x|
11531 S/
An argument analogous to that in Step 0 between (2.33) and (2.36) then leads to

the existence of a subinterval I(()l)(*) C I[()l) satisfying |I[()1)\/][(gl) (x)| = h1, where hy

is the unique integer satisfying
161"

hi —1
crel 1Y)

X /1,
such that

(1) (1)
b Gnb] _acylh O] (3.11)

1 1
1159 ()] 167 |1V
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To obtain a subinterval of I fl) of the same length as ](gl) (%), we next divide [ 1(1) into

hi equal parts, and denote by Ifl)(*) one of these subintervals with the maximum
intersection with the set X,,. Then

RO A
T

Note that
C C
R =100 =2 Co=22 < (3.12)
1

where the constant c; = co(e) > 0 is as in Step 0.

3.2. Case 2: density increase. Suppose that the inequality (3.8) holds Then
corresponding to (2.39), there are at most two subintervals I {11) A 1(2) C I ) such that

iV =1"oyurlurl. (3.13)
An argument analogous to that in Step 0 between (2.39) and (2.47) then shows that,

without loss of generality,

1 1
|]()| |]()|

_@Tﬁ
as well as
Y m)(|><1 E) 17 NX|
I R
An argument analogous to that in Step 0 between (2.48) and (2.55) then leads to

the existence of a subinterval Il(l)(*) c IV satisfying |Il(1)\/][1(1)(*)\ = hy, where hy
is the unique integer satisfying
48(A + 1)b| 1Y)

hi—1< 1
aell

such that

Y

1 1
MRﬂmm>@+ﬂunmm
113V ()| 127 Y
provided that

400 480( A + 1)b?
Cl>£ and C1>M.

- Bk (3.14)

To obtain a subinterval of Iél) of the same length as 1 fl) (%), we next divide Iél) into

hy equal parts, and denote by ]él)(*) one of these subintervals with the minimum
intersection with the set &,,. Then

V() N &, 1Y N A,
1 == 1
1150 ()] 15|

Note that
Cy Cy

L@ =00 =28 Co= 3t <e (3.15)
n hl

where the constant c; = co(g) > 0 is as in Step 0.
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4. ITERATION PROCESS: GENERAL STEP

Let Z,,(P; C;) denote the collection of any subinterval I of any vertical edge of P
with length |I| = C;/n, and let I, I{") € Z,,(P; C;) be subintervals satisfying

V,(I"Y= min [INX,| and V()= max |INX,
I€Z,(P;Cy) I€Z,(P;Cy)

so that [éi) and [ 1(i) have respectively the smallest and largest visiting numbers with
respect to A&, among all the subintervals I under consideration. It is clear that

I N &, < = < |1 na,.

Furthermore, we either, in Case 1 in the previous step and analogous to (3.1) and
(3.2), have

i i—1
)N Xl _ ¢, _acy I VN "
(@) 16 (i-1) (4.1)
115" 1o |
and
1N, VN,
TN (42)
L] 1L
or, in Case 2 in the previous step and analogous to (3.3) and (3.4), have
i i—1
AR AR AR L3
(1) = (i—1) ( : )
1| 1o
and
I N &, cey |17V N
S (1 gy) ey (44)
L] 1L
Combining the estimate
L Vna,
|(()il)—‘ <l-—¢
LT N A
from the previous step with (4.1) and (4.2), or with (4.3) and (4.4), we obtain
—’[éf) N <l-c¢
1N, |
the analog of (2.3) and (3.5).
On the other hand, iterating (4.1)—(4.4) carefully, we obtain
’[(Z)ﬂXn’ c1€ i1 |Ioan|
o S < B 1_6> I (45)
1o | ol
and
119 N &, creNiz |1 N X,
w2 ( E) Ly (46)
T |14]

where i, and 75 denote respectively the number of times Case 1 and Case 2 are valid
in the previous i = i1 +1 steps. Combining (2.1), (4.5) and (4.6), and recalling that
|Io| = |I1| and |I((]Z)| = |11, we obtain the inequality

_as

190 x, <(
< (12

)“ 119N &), (4.7)



SUPERDENSITY AND SUPER-MICRO-UNIFORMITY 15

Repeating the argument in Step 0 between (2.10) and (2.15) with Iy, Il, C’ replaced
by Iéi),ll(i),C'i respectively, we obtain subintervals ]él)(()) C I and 1'V(0) c 1V
such that

Ci |1
3n 3
the analog of (2.14) and (3.6), where the constant ¢; = ¢1(P;«) in (4.8) is exactly

the same as before.
We have two cases:

Case 1. We have

> 1(0)] = [12(0)] = e[ 1), (4.8)

190)n &, 1N x,
[1;7(0)] 27"
Case 2. We have
190N x, 1N x
% <(1-9) g (4.10)
11,7 (0)] 2

Iy

4.1. Case 1: density decrease. Suppose that the inequality (4.9) holds. Then
an argument analogous to that in Step 0 between (2.21) and (2.36) and that in
Step 1 between (3.9) and (3.11) leads to the existence of a subinterval I$” (x) c I{”

satisfying |Iéi)\ / |Iéi) (x)| = h;, where h; is an integer and
11 () N X, | . (1 015> I N[

17 ()] 167 1]
provided that
96(A + 1)2001) 16b

To obtain a subinterval of I}’ @ of the same length as I (@ )( *), we next divide I fi) into

h; equal parts, and denote by I ( ) one of these subintervals with the maximum
intersection with the set X,,. Then

L0 N [0 A
1117 (%) 1117

We have

i i C; C;
@) =170 = ==, Cya=7" hi<e, (4.12)

7

where the constant co = co(e) > 0 is as in Step 0.

4.2. Case 2: density increase. Suppose that the inequality (4.10) holds. Then
an argument analogous to that in Step 0 between (2.39) and (2.55) and that in

Step 1 between (3.13) and (3.14) leads to the existence of a subinterval 19 (x) C 19
satisfying |I§i)\/|ffi) (x)| = h;, where h; is an integer and
|Il(2)(*) N X, < <1 N cls> 119 N &,
[17() 1271
provided that
40b 480(A + 1)b?

Ciz— and C;>

. EOE (4.13)
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To obtain a subinterval of Iéi) of the same length as [ {i) (%), we next divide ]éi) into

h; equal parts, and denote by Iéi) (x) one of these subintervals with the minimum
intersection with the set X,,. Then

100 N | _ 11570 )|
1157 (%) 1157

We have

1] = 1 (#)] = ==, Cia =

%, h; < Ca, (414)

where the constant c; = co(g) > 0 is as in Step 0.

5. ITERATION PROCESS: DERIVING A CONTRADICTION

We now attempt to derive the necessary contradiction.
Suppose first that Case 1 holds in Step .
Corresponding to (2.23) and (3.9), we have the inequality

i 3¢\ ) 1P N A,
10 ) > (1= 22 10 o0l (51)
4 5]
provided that (4.11) holds.
Clearly ]él)(O) C Iél), so it follows from (4.7) that
1PN < (1-52) 11 N, (5.2)

On the other hand, combining (4.8) with (5.1) leads to the inequality
|ﬁ%ﬂmm>q0-§)ﬁmx¢ (5.3)

Clearly (5.2) and (5.3) contradict each other if

1€ i1 C1
1 —) il
( 6) =72

noting that 0 < e < 1/2. This gives an upper bound c¢3 = c3(¢) to i1, the number of
times that Case 1 holds among the first ¢ steps.
Suppose next that Case 2 holds in Step 1.
Combining (2.1) and (4.6), and noting that |I;| = C/n, we have
1€

i 2N, @
100X > (1+ 20)" 2] (5.4)

On the other hand, it follows from (2.19) that
I N, <204+ D)n)IP | + 2. (5.5)
Clearly (5.4) and (5.5) contradict each other if

(1+ %) > 4(A + 1)b,

provided that C; > 1. This gives an upper bound ¢4 = ¢4(€) to iy, the number of
times that Case 2 holds among the first ¢ steps.
If i > c3+ ¢4, then neither Case 1 nor Case 2 in Step ¢ can be valid. To show that
Case B is impossible, it remains to analyze the various constants in our argument.
Recall that the constants ¢y = ¢y(P;a) and ¢; = ¢1(P;«) depend only on P
and «, and are independent of n, C' and e, while the constant A depends only on «,
and the constant b depends only on P. It remains to study the various constants C'
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and C;. They are governed by the inequalities (2.24), (2.38), (2.44), (2.54), (2.57),
(3.10), (3.12), (3.14), (3.15) and (4.11)—(4.14). Thus we need

C 96(A + 1)%cob 40 480(A + 1)b°
hohy, ... hiy e(14a2)l/2 7 ¢ie (c1€)?

and h; < co = ca(e).

The iteration process must stop after at most c5 = ¢5(¢) = ¢3(e) + cq(e) steps. It
follows that (5.6) is satisfied provided that C' is chosen sufficiently large in terms of
P,a and e.

For convenience, let C* be sufficiently large so that (5.6) is satisfied for every real
number C' satisfying

(5.6)

c=>C.

6. PROOF OF THEOREM 1

We have already shown that Case B leads to a contradiction. To complete the
proof of Theorem 1, it remains to investigate Case A, when the inequality (2.2)
holds. We have the following almost trivial observation.

Lemma 4. Suppose that J is a subinterval of any vertical edge of P with length
|J| = 3C/n, where C is an integer satisfying C* < C < n. If (2.2) holds, then
(1—¢) ﬂ— |LNX,| <|JNAX,| < |—J’
1N X, < | < +3 )| NA, (6.1)
|11 |11
Proof. Let k = [n/C] denote the integer part of n/C. Then we can split any vertical
edge of P into a union of k special subintervals of length C'/n and an extra short
interval with length w satisfying 0 < w < C'/n at the top end of the vertical edge.
Consider the unique integer ¢, that satisfies the inequalities

L
C/n 11

Then J contains at least £y—2 of these special subintervals of length C'/n. Combining
this observation with (2.2) and the second inequality in (6.2) leads to the lower bound

1l
| 11]

On the other hand, J is covered by ¢y + 2 special subintervals of length C'/n and
the extra short subinterval of length w which is contained in a subinterval of the

vertical edge of length C'/n. Combining this observation with the first inequality in
(6.2) leads to the upper bound

ly < <ly+1. (6.2)

|JNX,| = (6o —2)| 1o N A,| > ( >(1—5)][1ﬂXn\.

|JNX,| < (bo+3)| 1 NA, < (% + 3) |1y N A,
This completes the proof. 0
Let C. = 3C*/e. Let J be an interval on a vertical edge of P satisfying
gz &3
n en

Then |J| = £ /en for some positive real number £ € R. Clearly there exists an
integer C' > C* such that 3(C' — 1) < .Z < 3C, so that

3C - 3|]1|
e*n e&*

/] = (6.3)
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for some €* satisfying

€< e < 2. (6.4)
Making use of (6.3), we see that

Vn(J)—#‘ - ‘|Jﬂ)€n| —%@
With |J| = 3|I1|/¢* in (6.1), we have
Mo <rna < 5 a0
and this implies
umxny—;ulmxn| < 6L N, (6.6)

On the other hand, it is clear from (2.1) and (2.2) that

|]1ﬂXn| n |]0ﬂXn| |Il ﬂXn|
— 22— > (1 =€) 6.7
AT I T oD
It then follows from (6.7) that
|11 ] b |11 | Lo |11 11|
so that
—— ) <3 NA, 6.8
(P -5) <ainn (6.

It also follows from (6.7) that
|| n

< —. .
L&) < =53 (6.9)
Substituting (6.6), (6.8) and (6.9) into (6.5), we conclude that
n|J| 3e* nl|J]| 6e  nlJ|
(J) b ‘ 1—e* b 1—-2 b (6.10)

in view of (6.4). Naturally, we may assume that ¢ < 1/2. Since n and J are arbitrary,
the inequality (6.10) proves super-micro-uniformity with 6s(1 — 2¢)~! instead of .
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