SUPER-FAST SPREADING OF
BILLIARD ORBITS IN RATIONAL POLYGONS
AND GEODESICS ON TRANSLATION SURFACES

J. BECK AND W.W.L. CHEN

ABSTRACT. In this paper, we show that billiard orbits in rational polygons and
geodesics on translation surfaces exhibit super-fast spreading, an optimal time-
quantitative majority property about the corresponding linear flow that implies
uniformity in almost every direction.

1. INTRODUCTION

A polygon is said to be rational if every angle is a rational multiple of 7. It is
well known, via the concept of unfolding introduced by Koénig and Sziics [4] in 1913
for the unit square and extended by Fox and Kershner [1] in 1936, that billiard in a
rational polygon is equivalent to 1-direction geodesic flow on a translation surface.
Here a translation surface is constructed from a finite collection of polygons on the
plane, together with appropriate pairings of sides of equal length and direction,
i.e. angle in the interval [0, 27), identified via translation. Geodesic flow on such a
surface is therefore 1-direction linear flow.

The first pioneering result on 1-direction geodesic flow on translation surfaces is
due to Katok and Zemlyakov [2] in 1975, and concerns density.

Theorem A. Let P be a translation surface. Then, apart from a countable set
of directions, any 1-direction geodesic is dense on P unless it hits a vertex of P
and becomes undefined. Furthermore, every exceptional direction is represented by
a saddle connection of P.

Here, a saddle connection is a finite 1-direction geodesic segment that joins two
vertices, not necessarily distinct, of the defining polygons of the translation surface.

The second pioneering result, due to Kerckhoff, Masur and Smillie [3] in 1986,
concerns the stronger property of uniformity.

Theorem B. Let P be a translation surface. Then, for almost every direction, any
1-direction geodesic is uniformly distributed on P unless it hits a vertex of P and
becomes undefined.

Unfortunately, these two extremely interesting and important results seem to have
the same limitation, in that they do not give any information on the time scale on
the convergence to density and uniformity. To address this limitation, Vorobets [§]
has in 1997 established a time-quantitative version of Theorem B, using new ideas.
Here, uniformity is tested with respect to large sets, and the explicit error term
given is rather weak.

In this paper, we use a method completely different from that of Vorobets. Given
an arbitrary translation surface, for the majority of directions, we can establish
an optimal form of time-quantitative uniformity for the geodesics. It is in fact an
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optimal form of local uniformity, which nevertheless implies global uniformity, and
we refer to it as super-fast spreading of the geodesic flow.

To give an illustration of some optimal local properties concerning the distribution
of geodesics, we turn to geodesic flow on the unit torus [0, 1)%. This is an integrable
dynamical system, and the unit torus is the simplest translation surface. It has
a basically complete time-quantitative theory, due to the classical work of Weyl,
Hardy, Littlewood, Ostrowski, Khinchin and others.

Let L,(t), t > 0, be a half-infinite geodesic with direction (1, ) on the unit torus
[0,1)2, with the usual arc-length parametrization.

(i) The geodesic L,(t), t > 0, is superdense on the unit torus [0,1)? if and only
if o is a badly approximable number. Here superdensity means that there exists a
constant C; = Cy(a) > 0 such that for every positive integer N, the finite geodesic
segment L,(t), 0 <t < C1N, gets (1/N)-close to every point of [0,1).

(ii) The geodesic L,(t), t > 0, is super-micro-uniform on the unit torus [0, 1)? if
and only if « is a badly approximable number. Here super-micro-uniformity means
that for every € > 0, there exists a constant Cy = Cy(a;e) > 0 such that for every
positive integer N and every aligned square () of side length 1/N,

U290 o<t < N Lot € ) < LEDC
N N
Note that since every large square can be decomposed into small squares, it follows
that super-micro-uniformity implies uniformity in the sense of Weyl.

(iii) Geodesic flow on the unit torus [0,1)? exhibits super-fast spreading. Given
any € > 0, there exists an explicitly computable constant C3 = Cj3(¢) such that
for every positive integer N, there exists a set of directions I'(N;e) C [0, 27) with
measure A(I'(N;e)) > (1 — )27 such that for any direction # € I'(N;¢e) and any
square @ of side length 1/N on [0,1)?, any geodesic segment Ly(t), 0 < t < C3N,
with direction 6 and length C3N, satisfies

%A{KKCSN:EAQEQ}K%'

Note first of all that super-fast spreading is a majority property about geodesic
flow, and not about any geodesic with any given direction, so it is quite different
from superdensity and super-micro-uniformity. On the other hand, if ¢ > 0, then
intuitively e-uniformity tends to uniformity, and the exceptional set of angles tends
to measure zero. Indeed, super-fast spreading of geodesic flow on the unit torus
[0,1)% implies uniformity in almost every direction.

We define super-fast spreading on an arbitrary translation surface P of area 1 in
an analogous way. Given any € > 0, there exists an explicitly computable constant
C3 = C3(P; ¢) such that for every positive integer N, there exists a set of directions
[(P;N;e) C [0,27) with measure A(I'(P; N;¢)) > (1 — ¢)2m such that for any
direction 6 € I'(P; N;¢) and any square @ of side length 1/N on P, any geodesic
segment Ly(t), 0 <t < C3N, with direction 6 and length C5N, satisfies

(1_—]\?)@’<|{0<t<031\7:£9(75)€@}|<%'

Here we assume that the half-infinite geodesic Ly(t), ¢ > 0, does not hit a vertex
of P.

The main result of this paper is the following.

Theorem 1. Let P be an arbitrary translation surface of area 1. Then geodesic flow
on P exhibits super-fast spreading.
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Super-fast spreading of billiard flow in a rational polygon can be defined in an
analogous way. It then follows as a straightforward consequence of Theorem 1 that
billiard flow in an arbitrary rational polygon exhibits super-fast spreading.

2. GEODESICS ON A TRANSLATION SURFACE

If we consider geodesic flow on the unit torus [0, 1)?, it is clear that rational slopes
lead to periodic orbits. Thus directions in [0, 27) leading to rational slopes are the
periodic directions. Such directions can be characterized by line segments on the
plane that join two lattice points, so the growth rate of the number of periodic orbits
is essentially a lattice point counting problem.

On a general translation surface, we have the additional problem of singularities,
giving rise to saddle connections that join vertices of the defining polygons of the
translation surface. As a polygon does not in general tile the plane, counting the
number of periodic directions and saddle connections is much more complicated.
However, we have the following deep result of Masur [5, 6, 7] on the quadratic
growth rate of periodic directions and saddle connections.

For any translation surface P and any real number T' > 0, let N7 (P;T) denote
the set of directions ¢ such that there is a closed geodesic in direction ¢ on P with
arc length not exceeding 7', and let N3(P;T') denote the set of directions ¢ such that
there is a saddle connection on P in direction ¢ and arc length not exceeding T'.

Lemma 2.1. For any translation surface P and any real number T' > 0, we have
INL(P;T)| < INo(P;T)| < C*T?, (2.1)
where the constant C* = C*(P) is independent of T

As a consequence of lattice point counting in the special case of the unit torus,
the quadratic upper bound in (2.1) is best possible.

We remark that Masur has also established a corresponding quadratic lower
bound. However, the proof of Masur is ineffective and establishes the existence
of the constant factors only. More recently, Vorobets [8] has obtained both bounds
with effective constant factors.

For any translation surface P and any real number T' > 0, let N7 (P;T) denote
the set of directions ¢ such that there is a closed geodesic in direction ¢ on P with
arc length greater than 7'/2 and not exceeding T, and let N (P;T) denote the set
of directions ¢ such that there is a saddle connection on P in direction ¢ and arc
length greater than 7'/2 and not exceeding T'. Clearly

max{ N} (P;T)|, N5 (P; T)|} < [N2(P;T)| < C* T2 (2.2)
A translation surface P is a finite set
P={P1,..., P} (2.3)

of defining polygon faces on the plane, equipped with boundary identification of
pairs of parallel edges of equal length, leading to a compact, oriented and connected
surface.

A half-infinite geodesic Ly(t), t > 0, with direction # on P can be viewed as an
indexed collection of infinitely many parallel line segments inside the underlying
bounded region of P. Using repeated translations of the faces of P, we can visualize
this half-infinite geodesic on P as a half-infinite straight line Ly(t), ¢ > 0, on the
plane with a rather straightforward procedure which we illustrate in Figure 1.
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Suppose that the half-infinite geodesic Ly(t), t = 0, on P starts at a point S inside
a polygon face Py of the collection (2.3) and has direction 6. Let
Po = P() (Pg; S )

denote a copy of P, on the plane, taking care to distinguish between the polygon
face P, of the translation surface P and the polygon Py(Py; S) on the plane.

P3(Py; S;0)

Figure 1: converting a 1-direction geodesic on a translation surface
into a straight line on the plane

Let ¢; > 0 be minimal such that L£y(¢1) intersects a boundary edge of P,, and let
S1 = Lg(t1). This boundary edge of Py is identified with a parallel edge of a polygon
face Py, of the collection (2.3), not necessarily distinct from P,. Let

P = P1(7De;539)

denote a copy of Py, on the plane, placed such that it is joined to Py = Py(Py; S)
along the two edges corresponding to the two identified edges of P, and Py,, taking
care to distinguish between the polygon face P, of the translation surface P and
the polygon P; = P;(P; S;0) on the plane.

Next, let to > t; be minimal such that Ly(t2) intersects a boundary edge of Py,,
and let Sy = Ly(t2). This boundary edge of Py, is identified with a parallel edge of
a polygon face Py, of the collection (2.3), not necessarily distinct from P, . Let

P, = P2(7D£;S§@)

denote a copy of Py, on the plane, placed such that it is joined to P, = Py(Py; S;0)
along the two edges corresponding to the two identified edges of Py, and Py,, taking
care to distinguish between the polygon face P,, of the translation surface P and
the polygon P, = P,(Py; S;0) on the plane.

Next, let t3 > to be minimal such that L£y(t3) intersects a boundary edge of Py,,
and let S5 = Ly(t3). This boundary edge of Py, is identified with a parallel edge of
a polygon face Py, of the collection (2.3), not necessarily distinct from Py,. Let

Py = P3(Py; S; 0)

denote a copy of Py, on the plane, placed such that it is joined to Py = Pa(Py; S;0)
along the two edges corresponding to the two identified edges of Py, and Py, taking
care to distinguish between the polygon face P, of the translation surface P and
the polygon P3 = P3(Py; S;0) on the plane.

And so on. We thus have a sequence

POZPO(PZ;S)7 -PZ:PZ(P€7579>7 7::172737

of polygons on the plane, glued together along a half-infinite straight line Lgy(t),
t > 0, of direction # and starting from the point Ly(0) = S. We may call this
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the associated half-line of the geodesic Ly(t), ¢ > 0. Furthermore, we call the line
segments S;S;11, 1 = 1,2,3, ..., the linear extensions of the half-infinite straight line
Lo(t), t > 0.

Our plan is to define an interval exchange transformation to describe the effect
of the geodesic flow on the edges of the defining polygon faces in (2.3). However,
before we do that, we need to first address a technical nuisance. Suppose that Ey
and E;» are two edges of the defining polygon faces of P in (2.3), and that the image
of a subinterval J;; C E; under geodesic flow in direction 6 on the first edge F;» that
the flow encounters is a subinterval J;» C E;». If the edges E; and E;» happen to
be parallel to each other, then the lengths of the subintervals J;; and J;» are equal.
However, this is not generally the case if E; and E;» are not parallel to each other,
as can be seen easily in Figure 2. On the other hand, if we take a direction H which
is perpendicular to the flow, then the images of J; and J;» under perpendicular
projection on lines in this direction now have the same length. In Figure 2, we have
taken care to project the edges F; and E;» on distinct lines H; and H;», both of
which are in the direction H perpendicular to the flow.

Ty
AR
Ho(J) Ho(Jp)  \ B

Figure 2: a line perpendicular to the flow

Let Ei,..., E, denote the edges of P, where b = b(P), and where each pair of
identified edges is counted only once. Let Hy,..., H, denote distinct parallel lines
in the direction H perpendicular to the direction € of the flow.

For each edge F;, i = 1,...,b, let H;(E;) denote the image of the perpendicular
projection of F; on H;. For convenience, we refer to this as the H-image of the
edge E;, and may abuse notation by writing H for H;. Clearly the images H;(E;),
t=1,...,b are pairwise disjoint.

We shall avoid small neighborhoods of directions ¢ on P with saddle connections,
and these include the directions of all the edges of P. Thus we can ensure that

The projection of the distinct edges of P to distinct lines in the direction H now
gives rise to mappings

¢1E1—>H1(E1), ’L.:]_,...,b,

which are bijective if we ignore the endpoints of the edges and their images.
Consider geodesic flow in a direction 6 which is bounded away from the directions
of the edges of P. The union of the H-images is given by

H() = HQ(P79) = Hl(El) Uu...u Hb(Eb),
and the sum of the lengths of the H-images is given by
CcCl = 61(73,9) = ‘H1<E1)’ + ...+ |Hb(Eb)’
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Thus we can assume that Hy = [0, 1), and identify the H-images
H,(E;), i=1,...,b,
with b pairwise disjoint subintervals
H{C[0,1), [Hi|=c'|Hi(E;)], i=1,....b,
if we ignore the vertices of P and their projection images. Furthermore, if
E=E(P)=FU...UE,

denotes the union of the edges of P, then, somewhat abusing notation, we arrive
eventually at a mapping
€ —10,1),

which is bijective if we ignore the vertices of P and their projection images. It is
clear that the restriction ¢|p, = ¢;, i = 1,...,b. Note that ¢ gives a one-to-one
correspondence between the points on the edges of P and points on the unit interval
[0,1), apart from the finitely many singularities arising from the vertices of P.

We comment here that the constant ¢; = ¢;(P;0) may differ from one direction
0 to another. However, there exist constants c; = co(P) > 0 and ¢35 = c3(P) > 0,
depending only on P, such that

CQ(P) < Cl(,P; 9) < Cg(P), 0 e [0, 271') (24)

For instance, we can take ¢y = c2(P) to be the diameter of a circle lying within P,
and take c3 = c3(P) to be the sum of the lengths of the edges of the defining polygons
of P.

Let ¢y > 1 be an as yet unspecified constant. For any real number n and integer
m satisfying 1 < m < n, consider a bad direction

¢ € N (P;2™) UN;(P;2™),

and consider a short interval

f¢(n;m;60)=[¢>— S — } (2.5)

Co2n+m’ Co2n+m

Write
Q(n;co) = U U I,(n;m;co). (2.6)
1<m<n peN; (P;2m)UNG (P;2m)
Clearly it follows from (2.2) that

AQ(n;c)) < ) > \Ly(n: m; o)
1<m<n geNT (P;2m)UNG (P;2m)

2 8C*
*y2m
< ) 202 poTeri (2.7)

Co

1<m<n

Suppose that QQoRy is a subinterval of an edge E;, of P. The geodesic flow in
the direction # either moves QyRy to a subinterval (1R, of the first edge E;, of
P that the flow encounters, or there is splitting in the sense that the image is on
two or more edges and includes a vertex of P. Suppose that the former holds. The
geodesic flow in the direction 6 then either moves Q1 R; to a subinterval Qs Ry of the
first edge E;, of P that the flow encounters, or there is splitting in the sense that
the image is on two or more edges and includes a vertex of P. Suppose again that
the former holds. The geodesic flow in the direction 6 then either moves Q)3 Rs to
a subinterval ()3R3 of the first edge E;, of P that the flow encounters, or there is
splitting in the sense that the image is on two or more edges and includes a vertex



SUPER-FAST SPREADING 7

of P. And so on. Suppose now that the flow in the direction # moves Qo Ry in this
way free of splitting in w consecutive forward extensions to a subinterval @, R, of
an edge F;, of P, and that there is splitting in the next extension forward, hitting
a vertex V] of P. Figure 3 shows the analogous version of this on the plane.

I /
E; . E; |,

Figure 3: transportation process: forward-backward extensions

On the other hand, the geodesic flow in the direction opposite to € either moves
Qo Ry to a subinterval Q1 R_; of the first edge F;_, of P that the flow encounters,
or there is splitting in the sense that the image is on two or more edges and includes
a vertex of P. Suppose that the former holds. The geodesic flow in the direction
opposite to # then either moves ()_1R_; to a subinterval ()_sR_5 of the first edge
E; , of P that the flow encounters, or there is splitting in the sense that the image
is on two or more edges and includes a vertex of P. And so on. Suppose now that
the flow in the direction opposite to 8 moves )y Ry in this way free of splitting in
u consecutive backward extensions to a subinterval @_,R_, of an edge E;_, of P,
and that there is splitting in the next extension backward, hitting a vertex Vj of P.
Again Figure 3 shows the analogous version of this on the plane.

Clearly the finite geodesic segment 5V} is a saddle connection of P. It is easier to
visualize this finite geodesic segment if we consider an infinite geodesic Ly(t), t € R,
on the surface P with £4(0) = (). This corresponds to a straight line Ly(t), t € R,
on the plane, and the saddle connection V,jV; corresponds to a straight line segment
VyV/ on the plane, with length |V VY| satisfying

ca(u+w) > [VgWil, (2.8)

where ¢y = ¢4(P) is an appropriate constant. For instance, we can take c4(P) to be
twice the maximum of the diameters of the defining polygon faces of P in (2.3).

Lemma 2.2. Suppose that Qo Ry is a subinterval of an edge E;, of P, and consider
the following transportation process. The geodesic flow in the direction 6 moves
QoRoy free of splitting in w consecutive forward extensions to a subinterval @, R,
of an edge E;, of P, and there is splitting in the next extension forward, hitling a
vertex V1 of P. The geodesic flow in the direction opposite to 8 moves Qo Ry free of
splitting in u consecutive backward extensions to a subinterval Q_,R_, of an edge
E; ., of P, and there is splitting in the next extension backward, hitting a vertex Vj
of P.

Suppose that co > 4 is an as yet unspecified constant and 0 & Q(ng; co), where the
real number ng s fived. Suppose further that

1
] < [H(QoRo)| < Zan”

where |H(QoRo)| = |Hi,(QoRy)| is the length of the H-image of the subinterval
Q()Ro. Then

(2.9)

u—+w > 52",
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where ¢5 = ¢5(P) > 0 is a constant.
Proof. Let m be the unique integer satisfying the inequalities
Mt < |VyVy| < 2™ (2.10)

It is clear from Figure 3 that the dashed line segment V{jV/, corresponding to the
saddle connection V4V; on P, lies within a strip in direction € on the plane with
width |H(QoRo)|, and the direction ¢ = ¢(VjV]) of VjV] satisfies

- | H(QoRo)| 2[H(QoRo)|
_ )| < )L hat (g — 6] < S0l 2.11
Combining (2.9)—(2.11), we conclude that
4
0

On the other hand, it follows from (2.10) that ¢ € N5 (P;2™). Since 6 & Q(ng; o),
it follows from (2.5) and (2.6) that

¢ — 0] > (2.13)

002n0+m'
However, combining (2.12) and (2.13) leads to the inequality ¢y < 4, contradicting
our assumption that ¢y > 4. Note now that (2.5) and (2.6) are based on the
assumption that m < ng, so we must have m > ngy. Combining this fact with (2.8)
and (2.10) now leads to the desired conclusion. O

The transportation process that we have described gives rise to subintervals Q; R;
on the edges F;, , where —u < j < w. These intervals may overlap, meaning that
there may exist ji, j2 satisfying —u < ji < j» < w such that E;;, = E; and the
intervals Q;, R;, and @, R;, intersect. The next lemma shows that this overlapping
is limited in the quantitative sense that the union of the intervals Q,; R;, —u < j < w,
is still large.

Lemma 2.3. Suppose that QoRy is a subinterval of an edge E;, of P, and consider
the following transportation process. The geodesic flow in the direction 6 moves
QoRoy free of splitting in w consecutive forward extensions to a subinterval (R,
of an edge E;, of P, and there is splitting in the next extension forward, hitting a
vertex Vi of P. The geodesic flow in the direction opposite to 6 moves Qo Ry free of
splitting in u consecutive backward extensions to a subinterval QQ_,R_, of an edge
E;_, of P, and there is splitting in the next extension backward, hitting a vertex Vj
of P.

Suppose that co = 4 is an as yet unspecified constant and 0 & Q(ng; ¢o), where the
real number ng is fized. Suppose further that the inequalities (2.9) hold. Then there
exists an integer constant cg = cg(P) such that cg < c5 and for any subset

Jc{jeZ:—u<j<w}
of cs2™ consecutive integers, the intervals Q;R;, j € J, are pairwise disjoint.
Proof. Suppose that there exist j;, jo satisfying
—u<J1 <J2 S W,

such that E;, = E;, and the intervals );, Rj, and ();, R;, intersect. Without loss
of generality, assume that Q);, € Q;, R;,, so that );,Q;, C @;, Rj,. Then it follows
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from (2.9) that

1H(Q5,Q0)] < H(Qs5)| = [H(QuFo)| < (214
0

Furthermore, Q;, € Q;, R;, implies that there is another point Q7 € Q) R} in the
analogous version of the transportation process on the plane, as shown in Figure 4.

> 0
R/—u R;& R}z R;u
) 4
v Qhap==—e__
QL. @}, Qj, Q.

Figure 4: overlapping edges
Let m be the unique integer satisfying the inequalities

27 < Q5 Q0,1 < 2™ (2.15)
It is clear from Figure 4 that the dashed line segment Q) Q7,, corresponding to
a periodic geodesic on P that goes through the point @);,, lies within a strip in
direction # on the plane with width |H(Q; @Q;,)|, and the direction ¢ = ¢(Q’,Q7,)
of Q,Q7, satisfies

H(Qs Q) 2H(Q5, Q)|

sin(¢ — 0)| < , sothat |¢p—0]< 2.16
S A S AN
Combining (2.14)-(2.16), we conclude that
4
(2.17)

19 =61 < Zonerm-

On the other hand, it follows from (2.15) that ¢ € N7 (P;2™). Since 6 &€ Q(no; co),
it follows from (2.5) and (2.6) that

o — 0] > (2.18)

Co 2not+m ’

However, combining (2.17) and (2.18) leads to the inequality ¢y < 4, contradicting
our assumption that ¢y > 4. Note now that (2.5) and (2.6) are based on the
assumption that m < ng, so we must have m > ng. Combining this fact with (2.15)
now leads to

|Q, Q5| > 2t (2.19)
Clearly
|Q;2Q;(2‘ < C7(P)|j1 - j2|7 (220)

where ¢;(P) is an upper bound on the diameters of the defining polygons of P.
Combining (2.19) and (2.20), we conclude that |j; — ja| > ¢62™ for some constant
cg = c6(P), and leads to the desired conclusion. O
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3. PARTITIONS, BALANCE AND ANTI-CROWDEDNESS

Let M > 1 be an integer, and consider a set
X ={x,...,zm} C[0,1).
Suppose that § € (0,1) is arbitrarily small and fixed, and that z > 2 is an integer.

For every integer s € {1,...,z}, consider the subinterval
s—1 s
I(s) = ,— ] Cl0,1).
0= ) <o

Note that I(1)U...UI(z) =1[0,1) is a pairwise disjoint union. We say that the set
X is (§; z)-balanced if
oM M oM

——<|s)NX|-—<—, s=1,...,z
z z z

Here the term M/z = |[0,1) N X|/z is the expectation of |I(s) N X].
Suppose that the integer s; € {1,..., 2} is fixed. For every integer s € {1,..., z},
consider the subinterval

I(sr,5) = =14 [5 ! i) C Is).

z 22 722

Note that I(sy,1)U...UI(s1,2) = I(s1) is a pairwise disjoint union. We say that
the set X is (J; z)-balanced relative to I(sy) if

SM I(s)NX| oM
— L < (s1,5) N X — 1) 0]
Z

. 2 s=1,...,z2.

Here the term |1(s1) NX|/z is the expectation of |I(s1, s) N X| relative to |I(s;)NX]|.
Suppose next that A > 1, and that the integers sq,...,s, € {1,..., 2} are fixed.
Consider the interval

s1—1 Sp—1— 1 sp,—1 sy
I(s1,...,8,) = P T +[ o ’E)'
For every integer s € {1,..., z}, consider the subinterval
s1—1 sp— 1 s—1 s
I(s1,...,8n,8) = . +...+ o +{Zh+1’zh+1)C[(Sl""’sh)'

Note that I(sy,...,sp, 1)U...UI(s1,...,84,2) =1(s1,...,5) is a pairwise disjoint
union. We say that the set X' is (9; z)-balanced relative to I(sy,...,s,) if
M [ I(s1,...,sn)NX| M
zh+1<\1’(51,...7sh,s)ﬂé\f|— . <
Here the term |I(sy,...,s,)NX|/z is the expectation of |I(sy,. .., s, s)NX| relative
to [I(s1,...,sn) NX|.

Suppose that the integer p > 1 satisfies 2P < M;. Write

s=1,...,z.

z z 10,1) N x| |?
So(X;p) = Zl 1 1I(s1,...,5,) NX| - (3.1)
S1= Sp=
Gl z 11(s1) N X||?
Si(Xip)=> .. ) E(s1,0ee0p) N X = =251 (3.2)
s1=1 sp=1
z z 11(s1,50) N X||?
S(Xip) = ... (1, sp) N X = =2, (3.3)
s1=1 sp=1
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and, in general, for any non-negative integer h < p, write

I(s1,...,8 X
Z Z 11( n) N X

zp—h
s1=1 sp=1

|181,..., ﬂX‘

We state two very simple technical lemmas without proof.

Lemma 3.1. Suppose that V is a finite set, and that

A= Za(v)

vey

where a is a real valued function on V. Then

D

vey

CLV

< la(v)

vey

Lemma 3.2. Suppose that V and W are finite sets, and that

B:ZB(V) and B(v vaw

vey wew

where b is a real valued function on'V x W. Suppose further that

EZZWVW Wﬁw

2

vey wew
and
BW) [’
T = Z Z ' vV, W) |W|
veyV wew
Then

2

To-Ti= o
|W vey
Applying Lemma 3.1, we have

Z Zu S1,...,5,) N X2

s1=1 sp=1
Next, note that
M=0,1)NX|= Z|131 N

s1=1

Applying Lemma 3.2 with

v=25, W= (sg,...,8), V={1,...,2}, W={l,... 2!

on the sums Sy(&X'; p) and S1(X;p), we deduce that

)

So(X:p) — SlXp——Z|IslﬂX| [0.1) A x|

s1=1

Next, we can write

Xp)ZZS1(X;p;31) and Sy (X;p) = ZSQXpasl

s1=1 s1=1

11

(3.4)
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where
(X I( )N X [1(51)
p,81 Zl Z_l‘ S1y--+5 S | p—1
and
[1(s1,52)
So(X;p;s1) = Zl Zl|fsl,..., ») N X| — 2
52 Sp=

Applying Lemma 3.2 with
V=28, wW=(s3...,8), V={1,...,2}, W={l,... 2}
on the sums S;(X; p; s1) and So(X; p; s1), we deduce that

[£(s1) i

S1(X;p;s1) = Sa(X;ps 51) ——Z -

so=1

Combining this with (3.7), we deduce that

LYY

s1=1s2=1

|I S1, 59 ﬂX|

S( ) SQX]? |I<‘51,82 ﬂX| |( )

In general, for any non-negative integer h < p, we can write

:Z,,,Zsh(él’;p;sl,...,sh) (3.9)

s1=1 sp=1
and
Sh+1 X p Z ZS;H_l X yPyS1,.-.,S ), (310)
S1= 1 Sh=— 1
where
: : |I(s1,...,5h)
Su(Xipist,osn) = > oY |(s1,..., ) NX| - -
sp+1=1 sp=1 =
and
z z |](81,.. 3h+1)
Shi1(X5p;81,...,8) = Z Z [I(s1,...,8,) NX]| — po

sha=1  sp=1
Applying Lemma 3.2 with
V=581, W= (Sni2,..,5), V={1,...,2}, W={l,... 2"
on the sums Sy (X;p; s1,...,s,) and Sp1(X;p;s1, ..., s,), we deduce that
Sp(X5p; 81,y Sh) — Shae1 (X5 p;s1,. .., Sh)

z

1
==Y

Spy1=1

Combining this with (3.9) and (3.10), we deduce that
Sn(X;p) = Sha1(X;p)

1 z z
aE==D DY

51:1 5h+1:1

I(s1,...,s
|I(31,...7Sh+1)ﬂ.)(|_| (1 h)

I(s1,...,s
|I(81,...,Sh+1)ﬂX|_’ (1 h)

> 0. (3.11)



SUPER-FAST SPREADING 13

Consider two real numbers A > 2 and M; satisfying 1 < M; < M. We say that
the set X is (A; M;)-anti-crowded if for every subinterval I C [0,1) satisfying the
restriction |I| > M ', the number of elements of X in I satisfies

[INX| < AMII.
Note that |I(sy,...,s,)| =277 > M. If X is (A; M;)-anti-crowded, then
AM
[ (s1,...,8,) NX| < et
and it follows from (3.5) that
A2 M
So(X;p) < . (3.12)
zp
Note that
p—1
So(X3p) = So(X;p) = Sp(Xip) = D _(Sh(X;p) = Snar(X;p)), (3.13)
h=0

a sum of non-negative terms, in view of (3.6), (3.8) and (3.11).

For any set X C [0,1) of M elements and any real number 7, let X + 7 denote
the translated copy of X modulo the torus [0, 1). Corresponding to (3.1)—(3.4), for
any non-negative integer h < p, write

Su(X; 75 p)
_ - - ’[(317"-7Sh)m(‘)(+7—)| ’
_;...;|I(Sl,...,sp)ﬂ(?(+7)|— g
: : ((I(s1,...,sp) —T)NX||°
=D U5ty 8) —T)NX| - = (3.14)
s1=1 sp=1

Corresponding to (3.12) and (3.13), we have the following integral version.
Lemma 3.3. Suppose that X C [0,1) is a set of M elements. Then

1 z=h
/ SO(X;T;p)dT:zh/ So(X;7;p)dr, h=0,1,...,p, (3.15)
0 0
and
1 1
| sarinyar = [ (s@irip) - 8,047 dr
0 0
p—1 »—h
Y[ S - Si@mp)an (310
h=0 0
where
0

Furthermore, if X is (A; My)-anti-crowded, where A > 2 and 1 < My < M, then

zp

1 A2 M2
/ So(X;7;p)dr < . (3.18)
0
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Proof. Note from (3.14) that

s =YY o

s1=1 sp=1

0,1) N x|

81,..., )—T)m.)(’— p

*

Let the non-integer h = 0,1,...,p be fixed. For any fixed choice of (s7,...,s;) of
the parameters (sg,...,s,), the collection

* * % * —h o h
I((81,- 3 ShsShats- - 8y) —az™ ", a=0,1,...,2" =1,
is a permutation of the collection
* * _
T((S1,- -3 8h Shytr -5 8p)y  Sly--s8p=1,...,2

This implies that the the function Sy(X'; 7;p) is periodic in 7 with period 2", and
the identity (3.15) follows immediately.

Next, the first equality in (3.16) is a consequence of the simple observation that
Sp(X;7;p) = 0. On the other hand, it is easy to check, corresponding to (3.11),
that for every h=0,1,...,p — 1,

Sp(X;75p) — Spia (X573 p)

1 4 4
=D

81:1 5h+1:1

> 0. (3.19)

The inequality (3.17) follows immediately. Arguing as before, we observe that the
function Sy (X;7;p) — Shi1(X;7;p) is periodic in 7 with period 27", so that

’([(Sla"'ash)_7—>mx| ’
zZ

‘[(Sla"'ash+1)_7)mx|_

—h

1 z
/ (Sh(X;73p) = Spa (X m5p)) dr = Zh/ (Sh(X;7:p) — Spa (X573 p)) AT
0 0

The second equality in (3.16) follows.
Finally, note that for every 7 € [0,1), we have |[I(sy,...,s,) — 7| = 277 > M; "

If X is (A; M;)-anti-crowded, then

AM

|(L(s1,...,8,) —T)NX| < g

(3.20)

On the other hand, corresponding to (3.5), we have

So(X;7;p) < Z Z| (81,-.+,8,) —T) N X% (3.21)

s1=1 sp=1

The assertion (3.18) now follows on combining (3.20) and (3.21). O

4. STARTING THE PROOF OF SUPER-FAST SPREADING

Suppose that a direction € is bounded away from the directions of the edges of the
translation surface P. Recall from Section 2 that perpendicular projection of the
edges of P to lines perpendicular to the direction # of the flow leads to a mapping

€ —10,1)

that essentially gives a one-to-one correspondence between the points on the edges
of P and points on the unit interval [0, 1), apart from the finitely many singularities
arising from the vertices of P. There are some restrictions on €, which we shall
recall when appropriate.
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With the help of this mapping, the interval exchange transformation generated
by geodesic flow on P in the direction # can be represented in the form
Ty :[0,1) — [0,1).

We have the following flow diagram, where the image of a subinterval J; C Ej
under geodesic flow in the direction # on the first edge F;» that the flow encounters
is a subinterval J;» C E;n.

geodesic flow

EDEy D Jy — - Jyn C By CE
in direction 6
¢i’ By — Hi’ 1%// B — Hi//
Ty :[0,1) — [0,1
0,1) > Hy(Ji) — U s UDR Hy(Jy) C [0,1)

Clearly Tp preserves 1-dimensional Lebesgue measure.
Let the integer N > 1 be fixed, and consider the finite geodesic segment Ly(t),
0 <t < (3N, on the translation surface P. Let

O<ti <ta<... <ty (41)

denote the time instances when this finite geodesic segment intersects an edge of P.
Formally, we have

Lo(t;)e &, j=1,...,M, (4.2)
and these points are projected to points
x; =Y(Ly(t;)) €10,1), j=1,...,M, (4.3)
giving rise to a set
X =A{zy,...,xp} C[0,1). (4.4)
Using the interval exchange transformation, we see that
X={Tjx,:j=0,1,...,.M —1}. (4.5)

Thus (4.1)-(4.5) together contain all the information on the intersection points of
the geodesic segment L£(t), 0 <t < C3N, with the edges of P.

Lemma 4.1. Suppose that ¢co > 4 and 0 & Q(ng; cy), where ng is a fized integer.
Suppose further that the subinterval I C [0,1) is the H-image of part of an edge of
P and satisfies
’[’ > ;
~ 2y 2notl’
Then for every integer M > max{2c3cy, cg}2™, where the constant cg = cg(P) is
given in Lemma 2.3, we have

(4.6)

[INX|  4cic
<
M|]| Cg

Proof. We shall first establish the result when the condition (4.6) is replaced by the
more restrictive condition

(4.7)

Lyt
c3c2motl cEey2mo’

Suppose that I = ¥(QyRy), where the interval QyRy lies on some edge E;, of P.
Then the inequalities (4.8) imply the inequalities (2.9), and so the hypotheses of
Lemmas 2.2 and 2.3 are satisfied. Consider now the transportation process described

(4.8)
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in Lemmas 2.2 and 2.3. In the terminology of Lemma 2.2, we have u+w > ¢52™. In
the terminology of Lemma 2.3, there exists a subset J of ¢42"° consecutive integers
such that 0 € J and the intervals

Qj Rja ] € \7 5
are pairwise disjoint. This means that
Uz
jeJ
is a disjoint union, and so

(U Tgl> m)(| =D |TInx|=>"|[InT,7x|. (4.9)

VISV JjeT JjeTJ

M >

We now attempt to replace each summand |1 N T, X| by |1 N X|.
Consider the set

X7 =] 1,7
j*eJ
Since the sets T, Gj I, j € J, are pairwise disjoint, it follows that the sets
Xj={reX(J):zeTil}, jeJ,
are pairwise disjoint. We have X = {xy,...,zy}, and we can write
TQ_JX = {Z’l_]', . ,JZM_]'}.

Suppose first that j is positive. Then on replacing |I N Tefj X| by |[I N X|, we gain
the contribution from the points

] N (X] N {xM—j+17 . ,JIM}),
and lose the contribution from the points
In (-)C'] N {xl—j; cen ,JZO}).

Thus the cumulative gain from those positive j € J comes from a subset of

In {foj(+>+17 s ,LUM},
while the cumulative loss from those positive 7 € J comes from a subset of
[ ﬂ {$17](+), PPN ’:CO},
where j(*) = max{j:j € J} > 0. It follows that
SN x| > (10 x| - . (4.10)
JjeT JjeT
>0 3>0

Suppose next that j is negative. Then on replacing |I N7, e_j X| by |I N X|, we gain
the contribution from the points

IN(X Nn{zy,...,z_;}),
and lose the contribution from the points
INn(XNn{xmsr, -, xm—s}).
Thus the cumulative gain from those negative j € J comes from a subset of

In {931, . ,:L’_j(f)},
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and the cumulative loss from those negative j € J comes from a subset of
In {xM-l-l? s 7$M7j(—)}7
where j(7) = max{j : j € J} < 0. It follows that
DINT7x| =D (10 x|+ 50
JjeJ JjeJ
j<0 <0
Combining (4.10) and (4.11), we conclude that
SMNINT7x| =D (10X = (7 =) =D 1In x| - e2m.
JjET JjeTJ JjeJ
It now follows from (4.8), (4.9) and (4.12) that

| oM
M| T nx| > e2meM|I] - e2m > 026 ———
jeg ‘ot
where
_ N
- M1
If
O 4ccy
Cg ’

then (4.13) and the inequality M > 2™ lead to the absurdity
M > 2M — cg2™ > M.

17

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Thus (4.15) cannot hold, and the desired inequality (4.7) now follows from this and

(4.14).

Consider now the general case where the interval I satisfies the condition (4.6).

Let 1 be the unique integer satisfying

1

L
<|I‘<W

cic 2motl =
Then we can write the interval I as a pairwise disjoint union
I'=LU...Ul,

where
1 1 1
L|=...=|l,41]|=—-——= and ——— < -
dl = 2y 2motl cEey2mot H 2y 2mo
Applying the special case to each of I, ..., I,, we conclude that

ILNX| 4
<
M Cg

|]Z|7 7::17'"7#’

so that

INX] KILNX| 4k, & 4cke;
— = < Ii| = I,
D T 2l ===

i=1 i=1

and so (4.7) follows again.
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We have therefore shown that if the integer M > max{2c2c;, c6}2™, then the set
X given by (4.4) is (A, M;)-anti-crowded, where
4cte;

A= and M; = 208012”0.

Ce
We shall assume that the parameter z in Section 3 is an integer power of 2, so
that there exists a positive integer z; such that

z =27, (4.16)
For any fixed N > 1, not necessarily an integer, write
N = 9™ = (2a)m/21 = /a1, (4.17)

Furthermore, for computational simplicity, it is convenient to assume that Nc3c; is
a power of z with integer exponent, so that

Ncie) = 2™/5 ke, = 2m/=te (4.18)

where ny/z; + ¢* is an integer.
Counsider the sets

Q°ny +iz1500) = [0,2m) \ Q(ny +iz15¢9), ©=0,1,...,k, (4.19)
where k is a constant to be specified later. It then follows from (2.7) that
8C*
AQ(ny +iz1;¢0)) = 2m — , 1=0,1,... k, (4.20)

Co
where )\ denotes 1-dimensional Lebesgue measure.
For any n € (0, 1), consider the set

Q% (n) = {0 € [0,27) : (4.22) and (4.23) hold}, (4.21)
where
0 e Qc(nl + kZl, Co) (422)
and
Hi=0,1,...,k—2:0€Q%ny +iz;c0)}| = nk. (4.23)

Thus Q% (n) is the set of values 6 € [0, 27) that are contained in Q°(ny + kz1;¢o) as
well as at least nk of the other sets in (4.19).
To estimate the Lebesgue measure of Q% (n), we have the following result.

Lemma 4.2. Consider Uy, ..., U, C [0,27) such that N(U;) > 2r —0,i=1,...,k,
where A denotes 1-dimensional Lebesque measure and § € (0,2w) is arbitrary. For
any n € (0,1), consider the set

Un) ={ze0,2m): {i=1,....k: 2 € U}| > nk}
of values x € [0,27) that are contained in at least nk of the sets Uy, ..., Uy. Then
AUM)) =27 — 6 — 27, (4.24)
Proof. For any z € [0, 27), let

k
M(z)=> 1=|{i=1,....k:z U}

Then we clearly have

/% M(z)de = ANU;) > k(2r - 6). (4.25)
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Let U(n) = [0,27) \ U(n) denote the complement of U(n). Then

2m
/ M(z)dx = / M(x)dz + M(z)dex, (4.26)
0 U(n) ue(n)
and
/ M(x)dz < 2mnk, (4.27)
ue(n)

so it follows on combining (4.25)-(4.27) that

M(z)dz > k(2r — § — 27n). (4.28)
U(n)
The assertion (4.24) now follows from (4.28) on observing that M (x) < k for every
z € [0,2m). O
Combining (4.20)—(4.23) and Lemma 4.2, we conclude that

,Mggoﬁ>>2w-§9L-%?-_2nn>(ﬂ-azw, (4.29)

Co 0

if we ensure that the conditions

16C* €
d . 4.30
— and =g (4.30)

are satisfied. We shall prove Theorem 1 with I'(P; N;¢) = Q% (n).
Note from (4.21) that for any 0 € Q5,(n), there exists a sequence 41, . .., i,, where

Co =

r>nk and 0<i<ip<...<i,.<k—2, (4.31)
such that
0 & Qny +irz15¢0), t=1,...,m (4.32)
Accordingly, write
N, = gutien — gmfakie g g
Let . n
p=— 4 +i+1< =+ +k
Z1 Z1
Then

M, = 263012”1+k21 > gm/ateth 5 op

Recall from Section 3 that the set X is (0; z)-balanced relative to a special interval
I(s1,...,sp) of length z=" if

M [ I(s1,...,sn)NX|] oM
—ZhH<\I(31,...,sh,5)ﬂX|— . <zh+1’ s=1,...,z.
We are interested in the cases when h is of the form ny/z; +c¢*+i;, t =1,...,r, for

which (4.32) holds. We distinguish two cases.

Case 1. There exists a subset 7; C {1,...,r} with cardinality |71| > r/2 > nk/2
such that for every integer h of the form

h:%+c*+it, teT, (4.33)
1

for which (4.32) holds, there exists at least one integer sequence

(s1,...,80) € {1,...,2}"
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of length h such that the interval I(sy,...,sp) does not contain any singularity of
the mapping ¢ : £ — [0,1) arising from the vertices of P, and the set X' is not
(0; z)-balanced relative to I(si,...,sp).

Case 2. There exists a subset 7o C {1,...,r} with cardinality |73 > r/2 > nk/2
such that for every integer h of the form

h:%w*ﬂ't, teTs (4.34)
1

for which (4.32) holds, and for every integer sequence

(51,...,8n) €{1,...,2}"

of length h such that the interval I(sy, ..., s;,) does not contain any singularity of the
mapping ¢ : £ — [0, 1) arising from the vertices of P, the set X is (9; z)-balanced
relative to I(sy,...,sp).

Before we study the two cases separately, we first establish some estimates that
are common to both.

Let h be an value given by (4.33) or (4.34).

For any integer sequence (s1,...,s,) € {1,...,2}" and any integer s € {1,..., 2},
we need to consider the error

I(s)NX
1(s.5)n x| - L0
z
where s = (s1,...,5p).

Consider the pre-image of the interval I(s) under the mapping ¢ : € — [0,1). As
I(s) does not contain any singularity arising from the vertices of P, the pre-image
is an interval Qo Ry on some edge F;, of P, with H-length

h C1 c1 1

iz = — = — = .
1 an/zl‘i‘C*"v‘lt cgclznl/zl+1t 0327114‘3174 ’

in view of (4.16) and (4.18). Since (4.32) holds, we can consider the transportation
process described in Lemma 2.3 in the special case ng = nq + 2z14;. Then for any
subset J C{j € Z: —u < j < w} of ¢g2™T#1" consecutive integers, the intervals

on the edges of P are pairwise disjoint. Moving over from £ to the interval [0, 1),
we conclude that the subintervals

TjI(s), jEJ. (4.35)
are pairwise disjoint and of common length z~".

Lemma 4.3. Let J C{j € Z : —u < j < w} be a subset of cg2™ 1" consecutive

integers including 0. Then for any integer sequence s = (s1,...,s,) € {1,...,2}"
and any integer s € {1,...,z}, we have
D ITYI(s) N X| = [I(s) N X|| < 2¢62" 4, (4.36)
JjeJ
as well as
> T (s, 5) N X| = [I(s,8) N X|| < 2062751, (4.37)

JjET
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Proof. Write
Xt=x7(7)=JTx and X =x"(J)=()TJX.

JjeT Jj€ET

Clearly
X CXcCixt,

and '

X\ X7 < 2e62m 10 (4.38)
There are two possibilities.

If [TZ1(s) N X| > |I(s) N X[, then
ITJI(s) N XT| > |T]I(s)NX| > |I(s) N X
= |TJI(s)NTX| > |TJI(s) N X (4.39)

On the other hand, if |TJI(s) N X| < |I(s) N X[, then

Ty 1(s) VX~ < |TI(s) N X[ < [I(s) N X
= |TJI(s)NT)X| < |TJI(s) N X (4.40)
In either case, it follows from (4.39) and (4.40) that
| T31(s) N X| = |[I(s) N X|| < [TJI(s) N X*| —|T31(s) N x| (4.41)

Next, since the sets in (4.35) are pairwise disjoint, we have

ST(TIs) N Xt — [ TI(s) N X]) = D |T3I(s) N (X \ &)

JjeT JjeJ
(U TII( ) X\ ) <X\ (4.42)
JjeT
The estimate (4.36) now follows on combining (4.38), (4.41) and (4.42).
The estimate (4.37) can be established in a similar way. O

5. STUDYING CASE 1

In this section, we consider the situation when Case 1 holds.
Consider any value h given by (4.33). It follows from the hypotheses of this case
that there exist an integer sequence s = (sy,...,s,) € {1,...,2}" and an integer
s € {l,...,z} such that
[I(s) N X < oM

> .
P ~h+1

I(s,8) N X| — (5.1)

Using a routine averaging argument, it follows from (4.36) that there exists a
subset J; C J such that |J;| = 3¢62™ 7% /4 and the inequality
| T71(s) N X|—[I(s) N X|| < (5.2)

holds for every j € J;. Similarly, it follows from (4.37) that there exists a subset
Jo C J such that |Ja] = 3cg2™T#1% /4 and the inequality

HTg[(s,s)ﬂX\—][(S,S)HXH<8 (5.3)
holds for every j € J5. Now let J* = J1 N J>. Then clearly
c 2n1+21it
7| = = (5.4)

2
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Furthermore, the inequalities (5.2) and (5.3) both hold for every j € J*.
Combining (5.2) and (5.3), we see that the inequality

4 TVI(s)N X 8
|Tej[(s,s)ﬂ)€\—M +8+;

(s, ] - HE < Z

holds for every j € J*. Combining this with (5.1), we deduce that the inequality

: ITJI(s)NX|| _ M 8 _ 30M
|T0]I(S,S)ﬂ)(|— > >zh+1_8_;>4ZTH (55)
holds for every j € J*, provided that
SM > 642", (5.6)

Motivated by an average version of (3.19) where the parameter 7 runs over an
interval [0, z7"], we consider the following. Each of the disjoint intervals

TiI(s), jeJ,

is a subinterval of [0, 1) of length 2~". Hence there exist a unique integer sequence

sU) = (sgj), e sﬁj)) € {1,...,2z}" and a unique real number 7; € [0,27") such that
TiI(s) = I(sYV) — 7, (5.7)
T)I(s,s) = I(sY), s) —;,
so that
TII(s)NX = (I(sY) —7;) N A, (5.8)
TiI(s,s) N X = (I(sY,s) — ;)N X. (5.9)

Note that on the right hand sides of (5.8) and (5.9), there is a fixed shift ;. We
shall now replace it by a shift 7, and let 7 run over a short interval centered at 7;.
Recall that if

M > max{2cic;, cgy2m tFa1 (5.10)

then it follows from Lemma 4.1 that the M-element set X' C [0,1) is (A, M;)-anti-
crowded with
46(2)01 2 ni+kz1
A= - and My = 2cjc12 : (5.11)

so that for every subinterval I C [0, 1) satisfying the restriction |I| > M; ', we have
IINX| < AM|I|. (5.12)

Consider the two intervals Tj I(s) and I(s)) — 7, and suppose that they overlap.
In view of (5.7), their symmetric difference

TII(s) A (I(sY)) —7) =T, UT,
is a union of two intervals of length |7 — 7;|, and
|77 1(s) N X| = [(I(sY)) — 7) N X|| < max{|Z, N X|,|Z, N X|}. (5.13)
For the case |7 — 7;| > M ', it follows from (5.12) and (5.13) that
HTGjI(s) NX|—|(I(sY)—=7)N X|| < AM|7 — 7). (5.14)
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For the alternative case |t — 7;| < M; ', we may assume, without loss of generality,

that |7, NX| > |Z,N X/, and let T, be an interval such that [Zy| = M; ' and 7, C Z,.
Then it follows from this and (5.13) that
1T 1(s) N X| = |(I(sY) — 1) nX|| < |Ton &) (5.15)
Combining (5.12) and (5.15), we deduce that
IT71(s) N x| —|(I(sY)) — )N X|| < AMM. (5.16)
Finally it follows from (5.14) and (5.16) that
1T31(s) N X[ — [(I(sY)) — 7) N X|| < AM max{|r — 75|, M '} (5.17)
Suppose that
|7 — 7] émax{ﬁ,]\%} :ﬁ, (5.18)
under the extra restriction
My > 8AZM (5.19)
Then it follows from (5.17)—(5.19) that
17 1(s) N x| —[(I(sY)) — 1) nX|| < % (5.20)
and analogous argument gives
1T71(s,s) N &X|—|(I(s9),s) — )N X|| < oM (5.21)

assuming that the two intervals TJ I (s, s) and I(s"), s) —7 overlap. Combining (5.20)
and (5.21), we see that the inequality
ITJI(s) N X|

ITJI(s,s) N X|—
z

|(I(sY)) — 7 )Ny, SM
P 82h+1 + 82h+2

holds for every j € J*, assuming that (5.18) and (5.19) hold. This, together with

<Y, s) =) N x|~

(5.22)

(5.5), implies that the inequality
, (I(sY)) —7)nX|| _ 36M oM oM
‘y sV s) — 1) N X| — . > T T LA = g (5.23)
holds for every j € J*, assuming that (5.6) holds also.
For brevity, let
o

denote the upper bound in (5.18). We now return to the identity (3.19). Averaging
7 over the interval [0, z;), we obtain the lower bound

—h

zh/ (Sp(X;73p) — Shya (X573 p)) dr
0

/thlzZ/

JjeET* s=1
S 22N T |w (M \T  c0° M?
- 2201 | 32c2c; Azp Tl

Tjtw I(sD) — 7 N Xl
S(] )—T)mX|— |( (S ) T) ’ dr
V4

(5.25)

Zp—h—l
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in view of (4.18), (4.33), (5.4), (5.23) and (5.24).

Recall that we are considering Case 1 here. There exists a set 7; with cardinality
|T1| = nk/2 such that for each of the |7;| integers h of the form (4.33), we have an
estimate of the form (5.25). Combining (3.16), (3.18) and (5.25), we deduce that

1 p—1 2z~ M
PRITERS zp/ So(X;7;p)dr = szzh/ (S(X575p) = Shia (X5 75p)) d7
0 h=0 0

3772 3772
> 17| ce0° M 2771{065]\4’
32¢3c1Az T 64ckc Az

(5.26)

so that
64cici A%z
< —. 5.27
P (5.27)
Thus choosing k to be an integer greater than the right hand side of (5.27) then

ensures that Case 1 is impossible.

6. STUDYING CASE 2

In this section, we consider the situation when Case 2 holds.
Consider any value h given by (4.34). It follows from the hypotheses of this case
that for every integer sequence s = (s1,...,s,) € {1,...,2}" and every integer
se{l,...,z},
|I(s) N X| oM
Shl

(s, s) N X| — (6.1)

Let
I(s =1I(s),...,s,) and I(s")=1I(s],...,s})
be distinct singularity free intervals.

Recall from (4.16) that z = 2*', where z; is a positive integer. We may assume
that z; > 2, so that z is a multiple of 4. We can therefore divide the interval I(s’)
into 4 equal parts, and denote by I*(s’) the union of the two middle parts. Likewise
we can divide the interval I(s”) into 4 equal parts, and denote by I*(s”) the union
of the two middle parts.

Lemma 6.1. Let J C{j € Z: —u < j < w} be a subset of cg2™ 1% consecutive
integers including 0. Suppose that the inequality (6.1) holds for s',s" € {1,..., 2}"
and any s € {1,...,z}, and the inequality

6roM

~h

6 1)oM
<|I(S)YNX| = Is")NX| < %
z

(6.2)

holds for some integer r > 1. Then the set

W(s',s") = (U Tgf*(s')> N ( U Tgl*(s”)) (6.3)

JjET JjET
has 1-dimensional Lebesque measure
2662n1+zlit 22

AW(s',s")) < (z—4)(3r — 1)0M — 4(A+ &M

Proof. Suppose that for 5/, j” € J, the intersection
TV 1*(s") NTY I (s") # 0. (6.5)
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Then it is easy to see that

v -7/ ]_
NI] 1) T IE") > o (6.6)
z
Let
S ={se{l,... 2} : TV s) TS I(s)NTI I(s")},
S ={se{l,...,2} :TJI(s",s) N (T I(s") NTY 1(s")) # 0}.
It then follows from (6.6) that
~ -2 <8 < IS < IS+ 4. (6.7)
On the other hand,
g (Tg”l(s’, s) N X) cTIs)nTy' 18" nx C | (Tg”f(s”, s) N X) .
seS. seS!
Using this and the triangle inequality, we deduce that
3 (|1(s', $)NX| - ‘ 77 1(s, s) N x‘ —|I(s,s) N X|D
seS’
< |1 N1 15" N x‘
<Y (u(s”, s)N x|+ ‘ 7" I(s", 5) N x‘ —I(s",5) N X|D ,
seSY
and so
SIS s)n X = D I(s",s) N X
s€S’ ses!
<Y ] 17 1(s',s) N X‘ —I(s,5) N xy]
seS"
+3 ‘ 17" 1(s", 5) mx( (8", 8) ﬂX\‘. (6.8)
seS!
It clearly follows form (6.1) and the last inequality in (6.7) that
SIS, s)N X[ = > |I(s",s)N X
seS” seSYy
I(shnx| &M (s )NnXxX| oM
> (FELRA - S0 sy (20 2
I(shNnx| |[Is)NXx] 26M\ 4lI(s")NX| 46M
> jor) (MRS IR ) AT SR 6

Consider the last line in (6.9). For the first term, we apply the first inequality in
(6.7) to |S’ | and the first inequality in (6.2) to the first two terms inside the brackets.
For the second term, we apply (A; M;)-anti-crowdedness of X'. Then

2 (6r —2)0M  4(A+6M
Sl sy n x| = Y (" )N X > (5 - 2) o (610)
seS” seSY
Now let

J(,8") ={(j,j") € T x T : T I"(s) N T] I (s") # 0}.
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Combining (6.8) and (6.10), we have

Z ZHTJ ssﬂX‘ |]ssﬂX|‘

33" eTxT seS’

_ ZHTQJ[(s”,s)ﬂX‘—![(S",S)QXM

(73" €T *T s€5!!

—H(3r —1)0M —4(A+6)M P
> (Z )( T lh+1 ( ) |j(S,S >|

Finally, note that if (6.5) holds, then for any j € 7,
TV IS NTIA (") = 0, if j # 5",
TIT () NTY T (s") =0, if j # 5"

Combining this with the second inequality in Lemma 4.3, we conclude that

4662n1 +2z10¢ Zh+2
(z—=4)Br—1)0M —4(A+ M
The inequality (6.4) now follows on combining this with the trivial observation that

NI ) AT ) < 5

whenever (6.5) holds. O

T (s,8")] <

Recall that the mapping ¢ : € — [0,1) takes any edge E of P, apart possibly
from the two endpoints, to a subinterval ¢(F) of [0,1). We now consider the closed
interval ¢(E) C [0,1) comprising the interval 1)(E) together with its two endpoints,
and consider the set

IE)={I(s) CyY(E):se{l,....z}"}
of all special intervals of length 2=" in ¥ (FE).

Lemma 6.2. For any edge E of P, at least one of the following two possibilities
must hold:
(i) There exist two adjacent intervals I(s*), I(s**) € J(E) such that

. . 35M
[(s") N | = [I(s™) N X > :

(6.11)

(ii) There exists a constant cs = cg(P) > 0, depending at most on P, such that
for any two intervals I(s'), I[(s") € I(E),

CséM

11(s) N X[ = [I(s") N X|| < (6.12)
2h
Proof. Let I(s!W), I(s®),... I(s9) € J be a maximal chain of intervals such that
66 M
I(s)nX| - |[I(sP))nx| > S p=Loa-L (6.13)

If g =1, then (6.12) holds with cg = 6. Thus we assume that ¢ > 2.
We have the trivial bounds

A (O U Tgl*(sw))) > zq: > MM (s)) -7, (6.14)

p=1jeJ p=1 jeJ
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where J C {j € Z : —u < j < w} be a subset of ¢s2™ 1% consecutive integers as

in Lemma 6.1, and
T = Z Z )\ m) (Pz)))’ (6.15)

p1=1 p2=p1+1
using the notation in (6.3).

Assume that 5
2z —4)5 — 4(A+6) > 72 (6.16)

Then

(> — )(3r — 1)5M — A(A + )M > 20(> — )0M — 4r(A + )M > "OM=

(6.17)

Consider a summand in (6.15) with 1 < p; < py < ¢. It follows from (6.13) that

1(s)) 1 | — |(s) 1 2] > S = PO

Y

h
z
and so we can use Lemma 6.1 with » = ps — p;. Combining this with (6.17), we
conclude that

deg2mtainy INIS 1 4geg2M T z(1 4 log q)
T ——— - < . 6.18
oM Z r oM ( )
p=1 r=1
On the other hand, it is easy to see that
n1+21%
J T ) qcﬁ2
ZZ)\ (1) = =5 (6.19)
p=1 jeJ
Combining (6.14), (6.18) and (6.19), we obtain estimate
1 1 4z(1+1logq)\ "
<———|— - ——== . 6.20
1S coomain (2zh SM (6.20)

We shall show later that (6.20) implies ¢ < ¢9 for some constant cyg = co(P) > 0
which depends at most on P.
Suppose that neither assertion (i) not (ii) is valid. Then for any two adjacent
intervals I(s*), I(s**) € J(E),
3(5M

11(s") N X] — [1(s™) N X]| < (6.21)

Furthermore, there exist two intervals 1(s'), I(s”) € j(E) such that
Cg(SM

() x| = [I(s") nx|| >
Without loss of generality, suppose that |I(s") N X| > |1 (s” )N X|. Then the interval
[I(s") N X[, |1(s") N X|] has length

M
length(J1() 0 .11 1 [} > SO0,

and contains the subintervals
3p0 M 3(p—1)0M
A= (11 n e = 22 ) e - MDY (),
h

We now go from I(s’) to I(s”). More precisely, consider the collection
B(s',s") = {I(s) € I(E) : I(s) lies between I(s') and I(s”)}
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of special intervals of length =" that lie between I(s’) and I(s").

Note that each interval A, in (6.22) has length 36M/2". The condition (6.21) now
ensures that 4, must contain a term of the form [/ (s) N X| for some I(s) € B(s',s").
Suppose that

I(sW) N X| € Asy, p=1,..., [%] .

Then clearly
SM
() N x] - 1oy x> Oy [%8] 1
z

This contradicts the maximality of ¢ if we choose cg = 9(cg + 2).
The proof of the lemma is now complete, subject to verifying the condition (6.16)
and showing that (6.20) implies ¢ < ¢g for some constant ¢y = co(P;e) > 0. O

In view of Lemma 6.2, we have two subcases.

Case 2A. There exist an edge F of P and two adjacent intervals (s*), I(s**) € J(E)
such that the inequality (6.11) holds.

Case 2B. For every edge F of P and for any two intervals (s’), I(s") € J(E), the
inequality (6.12) holds.

Let us first investigate Case 2A. Assume, without loss of generality, that I(s*) is
the left neighbor of I(s*). Recall that each of

z

I(s) = JI(s",s) and I(s™) =] I(s™,s)

s=1

is a union of z subintervals of length 2~"~!. Consider the interval

I°=1I(s",2)U (O I(s**,s)) :

s=1

made up of the last subinterval in I(s*) and every subinterval apart from the last
in /(s*™). For convenience, write

I°(1) =I(s*,z) and I°(s)=1(s",s—1), s=2,...,z.

Lemma 6.3. There exists an integer s =1, ...,z such that
. |[I° N X| oM
|[I°(s) N X| — g (6.23)
Proof. Suppose that
. [I°Nnx| oM
[I°(1)NX|— sy
Then clearly (6.23) holds with s = 1. Thus we may assume that
. [I°nx| oM
[I°(1)NX| — . < T (6.24)

Suppose next that

(e} kk 5M
[I°NX| < |I(s )mX|+Z—h.

Combining this with (6.1) and (6.11), we deduce that
[I(s*)nX| oM _ |I(s™)NnX| 20M _ |[I°NX| oM
— > + >
z

|]O<1)mX’> Zh+1 = ~ Zh+1 = > Zh’+17
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contradicting (6.24). Thus we may assume that

oM
|IOﬂX| > |I(S**)QX|+Z—}Z (625)

It is not difficult to check that
I°NX|=I°)NX|+|I(s™)NX|—|I(s™,2)NX]|. (6.26)
Combining (6.25) and (6.26), and then applying (6.1), we deduce that

SM . PAX] I NX| 26M
7<’I (1)mX‘—‘I(S ,Z)ﬂ/l’]< > - > Zh+1.

so that

(z—=2)0M |I°nX| |I(s*)NX)|
< — .
Shtl > >
Finally, using (6.1) again and combining with (6.27), we conclude that
|I(s**)ﬂX|+5M °nXx|  (z2—3)dM
. .

~h+1 z ~h+1

(6.27)

[I°(2)NX| <

This gives (6.23) with s = 2, on noting that z > 4. O

Observe that (6.23) is the analog of (5.1) in Case 1. We can therefore repeat the
method of global spreading of the local imbalance via the flow in direction 6, and
obtain an analog of the estimate (5.25).

Recall that we are considering Case 2 here. There exists a set T, with cardinality
|72] = nk/2 such that for each of the |73| integers h of the form (4.34), we have
an estimate of the form (5.25). Analogs of the estimates (5.26) and (5.27) follow.
Choosing k sufficiently large as in Case 1 now ensures that Case 2A is impossible.
It remains to study Case 2B.

7. COMPLETING THE PROOF

Before we study Case 2B and deduce Theorem 1, we need to first analyze all the
constants and parameters that arise from the argument thus far.

First of all, to ensure that Cases 1 and 2A are impossible, we need to choose the
integer k to satisfy the inequality

64c3c Az

k
” ceno3

(7.1)

The constants cg, ¢, 3, C4, ¢5, g all depend at most on P. Here ¢, is required to
satisfy ¢y > 4 in the hypotheses of Lemmas 2.2 and 2.3, and must also satisfy the
first inequality in (4.30). Thus

16C™*
Co = max | 4, ,

e

where C* = C*(P) is the constant of Vorobets in Lemma 2.1. On the other hand,
9, C3, 4 satisfy (2.4) and (2.8), whereas cs, ¢ arise respectively from Lemmas 2.2
and 2.3. Meanwhile, the constant ¢; depends on the direction 6 as well, but has
lower and upper bounds ¢y and c3 respectively.

The constants cg and cg arise from Lemma 6.2 and its proof, with cg = 9(cg + 2).
We next show that the parameter ¢ in (6.20) satisfies ¢ < ¢o for some constant
cg = c9(P) > 0, subject to the extra condition

SM > 162" (1 + log q). (7.2)
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Indeed, combining (7.2) with (2.4), (4.18), (4.34) and (6.20), we deduce that

42" 4ct 4ct

062n1+21it Cg Cg

q<

a bound that depends at most on P.

As well as ensuring that (7.2) holds, we also need to make sure that the conditions
(5.10) and (5.11) concerning the parameters M and A are satisfied, as are the
conditions (5.6), (5.19) and (6.16) relating the parameters §, M, My, z, h and A.

Given € > 0, we choose 0 to satisfy

2

csd = 9(co +2)0 = % < Z, (7.4)
so that the exists some constant ¢19 = ¢10(P) > 0 such that
0= 01082. (75)
Next, the expression (5.11) for A and the inequality (7.3) for ¢o gives the bound
A g Co. (76)

Then the condition (6.16), which is equivalent to 36z > 8A + 244, is guaranteed if

the number z, which is an integer power of 2, is defined by
2en 11 3¢y
— >z>—>—+4+8 7.7
g2 g2 ) + (7.7)
where the constant ¢i; = ¢11(P) > 0 is sufficiently large to satisfy the condition
4
C11 2 ﬁ (78)
C10

Combining (4.16), (4.18), (4.31), (4.33), (5.11) and (7.5)—(7.8), we now obtain
8A 1 _ 4 Azt _ 4A 4A < 4egy <
IM, d2mtkz Szk=ie=1 = 52 T e
so that (5.19) is satisfied. Meanwhile, using (2.4), (4.30) and (7.6), we have
640(2)011437; 2566(2)0303611

~
cgnd> C6C3E?

Thus, taking the integer k to satisfy

2
k= [0—192} +1< %, where c¢12 = ¢19(P) = max{
£ €

256c3c3cicn

1} @)

ensures that (7.1) holds. It remains to ensure that (5.6), (5.10) and (7.2) are satisfied.
For (5.6) and (7.2), using (2.4), (4.18), (4.31), (4.33), (4.34) and (7.3), we see that

{ 642"t 162"1(1 + log q) } 642"t
max <

3
06610

5 J 4
< 64cicycg2mtalintl) < 64c2czcg2mth= _ 64cgcgcgNzk. (7.10)
01052 01062 01052
For (5.10), using (2.4), we see that
max{2cacy, cg}2" T < max{2cics, ¢} 2™ T = max{2cics, ¢} N 2" (7.11)

Finally, note that in view of (7.7) and (7.9), we have

9

2 2c12e”
< (%) . (7.12)
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Now let the constant C' = C(P,e) > 0 be an integer satisfying
640(2)0369 2 2011 21257
C= C(P, 8) = max {W, 2C0(33, Cg ? . (713)
Choosing M = CN, it then follows from (7.10)—(7.13) that (5.6), (5.10) and (7.2)
are satisfied. This completes the analysis of the constants and parameters in our
argument.

Completion of the proof of Theorem 1. We let I'(P; N; ¢) be the collection Q% (n) of
good directions defined in Section 4 by (4.16)—(4.23) and (4.30). In view of (4.29),
we have A(I'(P; N;e)) > (1 —¢€)2r. Our estimates thus far apply to all directions
6 € I'(P;N;e).

By choosing the constants and parameters appropriately, we have ensured that
Cases 1 and 2A are impossible. Recall that for Case 2B, in view of the choice (7.4),
for every edge of P and for any two intervals I(s'), I(s”) € J(E), the inequality
eM
420
holds for any of the special choices of integers h given by (4.34) with cardinality
| 72| = nk/2. Consider a particular choice h and keep it fixed. Then the inequality
(6.1) holds for every integer sequence s = (s1,...,s;) € {1,...,2}" and every integer
s € {1,...,z}. Note next from (7.5) and (7.7) that 0 is much smaller than ¢ and
z is much larger than 1/e. This allows us to spread the inequality (6.12) to other
intervals of length z~" within ¢ (E) beyond those special intervals in J(E), with a
slightly weaker inequality

() N = [(s") n x| <

eM

3zh’
where I’ and I” are intervals in ¢)(E) with length 2", obtained from the special
intervals in J(E) by shifts by integer multiples of 27",

The estimate (7.14) has the message that every edge E of P exhibits almost
uniform distribution of the hitting points with its own density. However, these edge-
dependent densities cannot be substantially different, as the geodesic flow goes from
one edge to the next, transporting the density from one to the next, and thus enforces
almost equality. Thus the finite number of edge-dependent densities turn out to be
almost the same, with € error. This completes the proof. 0

' X =17 N X]| < (7.14)
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