BILLIARDS IN POLYHEDRA: A METHOD
TO CONVERT 2-DIMENSIONAL UNIFORMITY
TO 3-DIMENSIONAL UNIFORMITY

J. BECK, W.W.L. CHEN, AND Y. YANG

ABSTRACT. The class of 2-dimensional non-integrable flat dynamical systems has
a rather extensive literature with many deep results, but the methods developed
for this type of problems, both the traditional approach via Teichmiiller geometry
and our recent shortline-ancestor method, appear to be exclusively plane-specific.
Thus we know very little of any real significance concerning 3-dimensional systems.

Our purpose here is to describe some very limited extensions of uniformity in 2
dimensions to uniformity in 3 dimensions. We consider a 3-manifold which is the
cartesian product of the regular octagonal surface with the unit torus. This is a
restricted system, in the sense that one of the directions is integrable. However,
this restriction also allows us to make use of a transference theorem for arithmetic
progressions established earlier by Beck, Donders and Yang.

1. INTRODUCTION

For rational polygons where every angle is a rational multiple of 7, we have the
following fundamental result of Kerckhoff, Masur and Smillie [4] in 1986.

Theorem A. Let P be a rational polygon. For almost every initial direction and
for every non-pathological starting point for this direction, the half-infinite billiard
orbit in P is uniformly distributed.

Given any initial direction, a point py € P is called a pathological starting point
for this direction if the half-infinite billiard orbit starting from py and with this
direction hits a singularity of P. Otherwise the point py is called a non-pathological
starting point for this direction. It is easy to see that for any given direction, almost
every point in P is a non-pathological starting point.

The proof of Theorem A consists of essentially three steps. The first step is to
establish the ergodicity of the corresponding interval exchange transformation. The
second step is to use the well known Birkhoff ergodic theorem. The final step is to
extend ergodicity to unique ergodicity.

Our aim is to convert Theorem A to a result concerning equidistribution of 3-
dimensional billiard in some polyhedra. However, we need to restrict our discussion
to rational polygonal right prisms. A rational polygonal right prism is a region in
3-dimensional cartesian space of the form

M=PxI={(zyz)€cR: (s,y)cPandzel}, (L1)

where P is a rational polygon and I = [0, zo| is an interval.
As the rational polygonal right prism M = P x [ is integrable in the direction of
the interval I, our extension is somewhat limited.

2010 Mathematics Subject Classification. 11K38, 37E35.
Key words and phrases. geodesics, billiards, uniformity.



2 BECK, CHEN, AND YANG

Theorem 1. Let M be a rational polygonal right prism of the form (1.1), where
P is a rational polygon and I = [0, z] is an interval. For almost every pair of
wiatial direction and starting point, the half-infinite billiard orbit in M is uniformly
distributed.

For illustration, we consider a special case where P is a right triangle. It is well
known that the right triangle billiard with angle 7/4 and the right triangle billiard
with angle 7/6 are the only right triangle billiards that are integrable, exhibiting
stable and predictable behaviour. Perhaps the simplest non-integrable billiard is the
right triangle billiard with angle 7/8. It is also well known that unfolding in the
spirit of Konig and Sziics [5] leads to a 16-fold covering of the triangle and shows
that this billiard is equivalent to geodesic flow on the regular octagon surface P
where parallel edges are identified in pairs. On the other hand, unfolding also leads
to a 2-fold covering of the interval I = [0, zp]. Thus billiard in the rational polygonal
right prism M = P x I, where P is the right triangle with angle 7 /8 and I = [0, 2],
is equivalent to geodesic flow in the translation 3-manifold M =P x Z, where P is
the regular octagon translation surface and Z = [0, 2z¢], treated as a torus. Figure 1
illustrates that M = P x T gives a 32-fold covering of the rational polygonal right
prism M = P x I. It has 2 octagonal faces which are identified with each other, and
8 rectangular faces, with pairs of parallel ones identified with each other, analogous
to the edge identification of the regular octagon translation surface P.

Figure 1: the translation 3-manifold M =P x 7T

Theorem 2. Let M = P x I be a rational octagonal right prism translation 3-
manifold, where P is the reqular octagon translation surface and I = [0, 2z, treated
as a torus. For almost every pair of direction and starting point, the half-infinite
geodesic in M is uniformly distributed.
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2. PROOF OF THEOREM 2

Suppose that a half-infinite geodesic
Ls,v(t) = (s1 + vit, s + vat, 53+ v3t), =0,
in M has a non-pathological starting point Lg, +(0) = Sy = (s1, s2, s3), and direction
given by the unit vector
v = (v1,v9,v3) € R®,  where 7 +v3 +v; =1,

with arc-length parametrization. The coordinates (s; + v1t, $3 + vot) are modulo P
and the coordinate s3 + vst is modulo 7.

We may assume without loss of generality that v3 > 0. Then the geodesic Lg, v(1),
t > 0, hits the octagon face of M for the very first time at time ¢t = ¢y, where
s3 + vstg = 22zp, so that tg = (229 — s3)/v3. Indeed, the geodesic hits the octagon
face of M for the (k + 1)-th time at time ¢ = t;, where

i 2]{320 + (220 — 83)
= v

. —kO+ )N k=01,23,..., (2.1)

with parameters

9:% and A=

U3 U3

220 — S3

This gives rise to an arithmetic progression
A<O+A<20+- A <30+ A< ...,

with common gap € between consecutive terms.
We need the following result on arithmetic progressions; see [1, Theorem 2.2.2].

Lemma 2.1 (transference theorem for arithmetic progressions). Let S C R be a
measurable set. For every { € 7, there exists a constant c1(¢) > 0, dependent only
on {, such that for almost every pair 6, \ satisfying 2 < 0 < 27 and 0 < X < 6,
the inequality

Z 1-— %meas(S N1[0,n))| < e1(€)n®*(logn)*/?

k>0
kO+AESN[0,n)

holds for every sufficiently large positive integer n.
We have following immediate consequence.

Lemma 2.2. Suppose that the set S C R is measurable. Suppose further that S
has asymptotic density d = d(S) € [0,1], so that there exists a monotonic sequence
g(n) =¢e(S;n) — 0 as n — oo such that

1

—meas(SN[0,n]) —d(S)| <e(n), n=12,3,....

n
For every { € 7, there exists a constant c3(¢) > 0, dependent only on ¢, such that
for almost every pair 0, \ satisfying 2° < 0 < 271 and 0 < X\ < 0, the inequality

1/2

% Y 1-d(S) < e(n) + e (018"

nl/4
k>0
KO+ AESN[0,n)]

(2.2)

holds for every sufficiently large positive integer n.
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Meanwhile, every point in M is of the form (x,y, ), where (z,y) € P and z € Z.
We consider the projection

o M—=P:(x,y,2) = (x,y). (2.3)

Then the image of the geodesic Lg, (t), t > 0, under this projection is a half-infinite
geodesic

Hsow(t) = (s1+vit, s3 +wat), ¢ 20, (2.4)

on the regular octagon translation surface P. Clearly the key parameters s3 and vs,
particularly concerning the hitting times given in (2.1), are lost under this projection
(2.3). However, we know the arithmetic progression (2.1) of the time instances when
the geodesic Lg, +(t), t > 0, hits the octagon face of M. This gives rise to an infinite
sequence of points Hg,v(tx), ¥ = 0,1,2,3,..., on P. For any Sy and v, if we can
show that this sequence of points is uniformly distributed on P, then the half-infinite
geodesic Lg, v(t), t > 0, is uniformly distributed in M.

Consider a typical half-infinite geodesic Hy (7), 7 > 0, on P, with direction given
by the unit vector w = (wy, ws) € R Suppose that this geodesic is the image on
P of Lg,+(t), t > 0, under the projection (2.3). Then

Ho(r) = (51 + wnr 5o+ war), 730, @5)
In view of the different parametrizations of (2.4) and (2.5), we have
Hsyv(t) = Hw(7) if and only if 7 = (v} 4 v3)V%t.

Corresponding to the arithmetic progression ¢, k = 0,1,2,3,..., of hitting times
given by (2.1) is the arithmetic progression

(v? 4+ v3)V2(2kzy — 53)
Vs

7 = (02 +02)V2y, = =kO0+ )\ k=0,1,23,...,

with parameters

_ 220(v? + v2)1/2 and X — (229 — s83)(v? + v2)'/?
U3 U3 '

7

(2.6)

By the geodesic analogue of Theorem A, for almost every direction w and for
every non-pathological starting point for this direction, the geodesic Hy(7), 7 > 0,
is uniformly distributed on P. Let RP denote an arbitrary polygon on P where all
the vertices have rational coordinates, and let the measurable set

S =S(Hw;RP)={7 >0: Hyw(7) € RP} (2.7)

denote the set of time instances when this geodesic visits RP. The uniformity of the
geodesic then implies that S has asymptotic density

area(RP)
area(P)

The uniformly distributed geodesic Hyw (7), 7 > 0, is clearly the image on P under
the projection (2.3) of infinitely many different geodesics Lg, v (), ¢ > 0, in the 3-
manifold M, as there are only two requirements, namely H (0) = (s1, s2) concerning
the starting point, where Sy = (s1, S92, $3), and wyvy = wyvy concerning equality of
the relevant directions. Applying Lemma 2.2, we see that for every ¢ € Z and for
almost every pair 6, A of the form (2.6) satisfying 2/ < # < 21 and 0 < A\ < 0,
the inequality (2.2) with S given by (2.7) holds for every sufficiently large positive
integer n.

d=d(S) = e [0,1].
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This means that for almost every pair of starting point Sy and unit direction
vector v, the infinite sequence

Lsyv(te), k=0,1,2,3,..., (2.8)

of points, where the sequence t,, k£ = 0,1,2,3,..., of time instances is given by
(2.1), is uniformly distributed on P relative to the single test set RP.

The set of all polygons RP on P where all the vertices have rational coordinates
is countable. On the other hand, a countable union of sets of measure zero has
measure zero. It follows that for almost every pair of starting point Sy and unit
direction vector v, the infinite sequence (2.8) of points is uniformly distributed on
‘P relative to every polygon RP on P where all the vertices have rational coordinates.
This guarantees uniformity in general, in the classical Weyl sense, and completes
the proof of Theorem 2.

Remark. Theorem 1 is a result on time-qualitative uniformity, and does not say any-
thing about the speed of convergence to uniform distribution, as a key ingredient
of the proof is the geodesic analogue of Theorem A which is also time-qualitative
in nature. There are instances, however, when we can establish time-quantitative
results. This happens, for example, when it is possible to establish time-quantitative
uniform distribution results for some geodesics on the underlying rational polygonal
translation surface P. We can establish such extensions of the geodesic analogue of
Theorem A in [1, 2] for the L-surface and in [3] for finite polysquare translation sur-
faces and for regular polygonal translation surfaces. These in turn lead to extensions
of various analogues of Theorem 2, and hence also Theorem 1, to time-quantitative
results.

3. PROOF OF LEMMA 2.1

Throughout the proof, the set S C R is measurable.
Let a non-negative integer ¢ be chosen and fixed.
Consider an infinite sequence Ny, Ny, N3, ... of positive integers satisfying

1< N <Ny <N3y<...<Nj,<...,
and another infinite sequence My, My, Ms, ... of positive integers satistying
1< M,<N,, h=12,3,...,
both to be specified later in terms of the parameter h and the chosen integer ¢. For

every positive integer h, let S(h) C [0, 1] denote the contraction of SN [0, N;] to the
unit interval, so that

x € S(h) if and only if Nz € SN0, Ny]. (3.1)

Since the characteristic function

if S(h
Xson (%) = { 0 ifeg s§h31

defined over [0, 1] and extended periodically over the whole real line with period 1,
is measurable, we can consider its Fourier series

Xs (@) =D a;e™, (3.2)
JEL
with Fourier coefficients a;, j € Z. In particular,
apg = Al(S(h))
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Remark. For a measurable set S(h), the infinite Fourier series (3.2) may diverge at
some points. However, Lemma 2.1 is a measure theoretic statement which ignores
sets of measure zero. So it suffices to have pointwise convergence almost everywhere.
Fourier analysis provides at least two options to settle this issue. We can use the
very deep Carleson theorem. Alternatively, we can use the much simpler Lebesgue
theorem with Cesaro summability.

The Parseval formula gives
> ol = (St <1
so that
D il = M(S(h) = A(S(R) = M(S(R))(1 = M(S(h))) < 1. (3.3)
JEZ\{0}

Lemma 2.1 for the chosen value ¢ concerns the arithmetic progression k6 + n,
k > 0, where 2 < 6 < 2! and 0 < n < . The contraction (3.1) leads to a new
arithmetic progression ka + 3, k > 0, where 2°/N;, < a < 27! /N, and 0 < 3 < a.
For any a € [2°/N,,, 271 /N,), let K (a) be the unique integer satisfying

(K(a) = 1)a <1< K(a)a. (3.4)
Using the Fourier series (3.2), we have
K(a)-1 K(a)-1
sy (ko + B) = K(a)M(S(h) = Y a; Y emiketd) (3.5)
k=0 jeZ\{0} k=0

for every a and (3 satisfying 2//N,, < a < 241 /Nj, and 0 < 8 < .
To study (3.5), we consider the integral

2

241N, p201 /My, K(a)—1 -
J(a; Np; M) = / / ; Z e2mitkat) | 4y da. (3.6)
2€/N}L 28 I/Mh EZ\{O} k=0

To obtain a bound on this integral, we observe that for v € [—2/"1 /M, 21 /M,],
the inequality 2(1 — |y|Mj,/2) > 1 holds. It then follows that

J(a;Nh;Mh) < 2J*(a; Nh;Mh), (37)
where for integers NV and M satisfying 1 < M < N,
J*(a; N; M)
2

K(a)-1
g M
2 : e27r1](ka+’y) (1 _ |72|£ ) d"}/dOé (38)

20/N  J—20/M EZ\{O} =0

2Z+1/ 2£/M

At the end of this section, we establish the following bound for this integral.
Lemma 3.1. For any sequence a satisfying (3.3), the inequality
J*(a; N; M) < 2671, (3.9)

holds uniformly for integers M and N satisfying 1 < M < N, where K(«) is the
integer defined by (3.4) for every o € [2¢/N,2°1/N).
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Combining (3.6), (3.7) and (3.9), we deduce that
J(a; Ny; M) < 26712, (3.10)

The inequality (3.10) is a quadratic average result, from which we can derive infor-
mation concerning the majority of pairs

2[ 25+1 2271 2671
—_— — _ . 3.11
e |l ) < o] (3.11)
Let

22 2f+1 2671 2Z71

—_— ——, ——1| :(3.12) hold
Nh7 Nh>x|: Mhth:| ( ) ° S}

denote the collection of pairs («, ) satisfying (3.11) such that

B M) = { () € |

K(a)-1
ST oa Y k| > (AN, M) Y2 log(1 + ). (3.12)
JEZ\{0} k=0

Then it follows from (3.10) that

2€+12
Ao (B(Np; My)) < , 3.13
BN M) S G A oL+ ) (3.13)
where Ay denotes 2-dimensional Lebesgue measure.
Next, note that as we move from (3.5) to (3.6), we replace the parameter 3 over a
short interval [0, a) by a parameter v € [—2¢71/M,, 2°=1/M,] over a longer interval.
For any pair

A
there are at least N, /2M), values of v € [—2¢71 /M, 21 /M,] where {v/a}a = B.
For each of these values of v, consider the two arithmetic progressions

(@, B) € [QZ 2“1) « [0, ), (3.14)

ka+~, k=0,1,2,3,..., K(a) =1, (3.15)
and
ka+ B, k=0,1,2,3,...,K(a) — 1. (3.16)
Since
72[%}()#6,

the arithmetic progression (3.15) is obtained by simply advancing the arithmetic
progression (3.16) by [y/a] terms. More precisely, the arithmetic progression (3.15)
is given by

— 2] X a x x _
ka+ 8, k= u , [&] 4, m 12, u 43, u Y K(a)—1.  (3.17)
Lemma 3.2. If a pair (o, 5) such that (3.14) holds satisfies the inequality
K(a)—-1 IN
> ay Yo ekt 5 Tk (AN M) log(1+ h), (3.18)
. My,
JEZN{0} k=0
then each pair (o, ) such that (3.11) and {v/a}a = B hold satisfies the inequality
(3.12).
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Proof. 1t clearly suffices to prove that

K(a)-1 K(a)—1 o\
Z a; Z e2mij(katf) _ Z a; Z e2mij(katy) < Mh' (319>
JEZ\{0} k=0 Fez\{0} k=0 h
Since
<o
(67 2Mh

it follows from (3.16) and (3.17) that those terms that belong to one of the arithmetic
progressions (3.15) or (3.16) but not both then form two arithmetic progressions of
the form

ka+p, k=0,1,2,3,..., K —1,
where K < N,/2M),. Hence

E eQmj(k:a—l—ﬂ E 6271'1] ka+)

is the sum of two sums of the form
K-1

Z e27‘(‘1j (ka+p) 7

k=0

where K < N, /2M),. Now for each of the two sums, we have

K-1 K-1
§ ajE :eQmJ(ka—l—p) _ E : E : aje2mj(ka+p)

JEZN{0} k=0 k=0 jez\{0}

K-1
- 27ij (ka+
— E:aje Jkate) _ g0
0

k=0 \j€EZ

=

<

~

(]

| Xsmy (kv + p) — A1 (Sh)|

N o
=~ L

<

This clearly leads to (3.19) and completes the proof. O
Let

2€ 2€+1

A(Ny; My,) = {(a,ﬁ) € {Fhﬁ] x [0, @) : (3.18) holds}.

Then the above argument leads to the inequality

o
2Mh

Combining (3.13) and (3.20), we obtain the upper bound

2€+13

hNZlog?(1+ h)’

Ao (A(Np; My)) <
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Combining this with (3.5), it is not difficult to see that apart from a set of measure
Ao (A(Ny; My)), every pair (a, 3) such that (3.14) holds satisfies the inequality

K(a)—1

Z Xs(h)(/{?Oé + ﬂ) - K(Oé)/\l(S(h)) < QV]\ZL + (hNth)1/2 10g<1 + h)

Next, note that the two expressions

K(a)—-1

S 1S and Y xsw(ka+8) — K(a)h(S(h)
k>0 k=0

ka+BeS(h)

differ by at most 2, due to the possibility that (K («a)—1)a+/ > 1 and the difference
|K(a) —1/a| < 1, in view of (3.4). It follows that on reversing the contraction, we
see that apart from a set of measure at most

2€+13

hlog(1 + h)’

every pair (6,7n) such that 2¢ < 6 < 2! and n € [0, 0) satisfies the inequality

1 2N,
>ooi- (S N[0.N,])| < Vh + (N, M) ?1og(1 4+ k) + 2. (3.21)
h
k9+neks>r?[o,zvh]

Lemma 3.3 (Borel-Cantelli lemma). Let (X, %, ) be a measure space, and suppose
that En,, h =1,2,3,..., is a sequence of Y-measurable sets. If

ZM(Eh) < o0,
h=1
then
h=1i=h
Since

1
hlog*(1+ h)

< 00,

M8

>
Il

1

we conclude that for almost every pair (6, 7) such that 2¢ < 6 < 27! and n € [0, 6),
the inequality (3.21) holds for all sufficiently large positive integers h.

Finally, we specify the integers N, and M), in terms of the parameter h > 1 and
the chosen integer ¢. Choosing them to satisfy

N, < 24(h*log?(1+h)) < Ny +1 and M, = 2‘h (3.22)

ensures that the two dominant terms on the right hand side of (3.21) have the same
order of magnitude in terms of h. For an arbitrary sufficiently integer n, we choose
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h to satisfy N, < n < Npy1. Then it follows from (3.21) and (3.22) that

Y- %)\1(8 A [0,n])

k>0
k0+neSn[o,n]
Nppi — Ny 2N
< LT L 2R L (RN M) P log(1 4 h) + 2
0 M,
2/((h 4 1)*log*(2 + h) — h*log®(1+ h
< Zlh+ 1 log +9) 8 (LA | (91 9ty h3log2(1 + h) + 3

< 23R310g% (1 4+ h) + Oy(h3log(1 4+ h)) < ¢ (0)n**(logn)*/?,

provided that n, and hence also h, is sufficiently large.
This completes the proof of Lemma 2.1.

Proof of Lemma 3.1. For any fixed § € (0,1/2), we define the roof function Rj :
R — R by writing

[, if || > 0,
Rs(z) = { 1—(|z|/8), if0< |z| <.

For every integer j € Z, we consider the integral

1/2 -
1(0;7) = / Rs(x)e?™" du. (3.23)
—1/2
Then
. . 2
1(5;0) =0 and I(5;j) =26 (Smg(s) . jezZ\ {0} (3.24)
T

For any integers ji,j2 € Z \ {0} and positive integer N, let

2Z+1/N K(a)fl K(a)fl

%(jl;Jz%N)Z/ aj, Y ermike | fGo N ek | dg
2¢/N k=0 P
20+1 /N e2mijiK(a)a _ 1 e—2mijK(a)a _ q

— /QZ/N <ajlm> <aj2 P — >da, (3.25)

so that
B (j1; J2; N)|
1 20+ /N e?ﬂ’iﬁK(a)a 1 2 egﬂ.ijQK(a)a 1 2
S 5/2@/]\, UG~ mne—1 | T|% mma 7 | |9 (3.26)

Then it follows from (3.8), (3.23) with 6 = 2¢/M and j = j; — j, and from (3.25)
that

2t . o
J*(a;N;M): E E I(M;jl_h) %(jl;j%N)'
J1EZ\{0} j2€Z\{0}

We write
J*(a; Ny M) = Ji(a; N; M) + J3(a; N; M), (3.27)
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where J}(a; N; M) contains all the diagonal terms in J*(a; N; M) with j; = j2, while
J3(a; N; M) contains all the off-diagonal terms in J*(a; N; M) with j; # j,. Noting
that 1(2°/M;0) = 2¢/M, we see that

* 2€ .
Ji(a; Ny M) = MZ la;*E(j; N), (3.28)
jez\{0}
where
26+ /N eQwin(a)a_l 2
E(j;N) = — | da. 3.29
R (3.29)
Meanwhile, noting (3.24) we see that
. sin(j; — jo)2°M~ o
BN =2y S (WP v e
m(j1 — j2)2¢ M~
J1€Z\{O}J2€Z\{0}
J17#72
Combining (3.26) and (3.30), we deduce that
. 2 sinwC2M-N\? L
| J5(a; N M)| < i Z > (W) |a;|"E(j; N). (3.31)
jez\{0} ¢€Z\{0}

It then follows from (3.27), (3.28) and (3.31) that

. 2¢ sinm(2¢M~ ,
Nl <3 (1 ¥ (A ) S [0 PEGN).  (332)
¢eZ\{0} JEZ\{0}
Next, note that

2! ¢2'M 2! ?
i+ Y (SH;ZQ@Ml) 1 IDDEEEDY ( )

¢ez\{o} ICl<ny/2f I¢I>M/2¢

2t (2M 2M? [~ dx
<— |5 +1+ =55 — | <6 :
M < 2¢ L w24t /M/Qz xz) 6 (3:33)

To complete the proof of Lemma 3.1, in view of (3.3), (3.32) and (3.33), it suffices
to show that for every j € Z \ {0} and integer N > 1, we have

E(j; N) < 28, (3.34)
Consider first small values of j, where 1 < | j| N/2%2. Suppose first that j > 0.
Since a € [2¢/N,2¢F1/N), it follows that 0 < ja < 1/2, so that e*™/° is a point on

the upper half circle of unit radius. On the other hand, (3.4) implies the inequality
0 < jK(a)a—j < ja. Hence e?™iK(@)a = g2mi(iK(e)a=j) jg 3 point on the circular arc
of the upper half circle of unit radius joining the points 1 and e*™/*. As shown in
Figure 4.1, we clearly have |[e?™ /K@ _ 1] < |e?mie _ 1],

eZwi_jK((x)a

eZm]a

Figure 2: justifying the inequality (3.35)
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Meanwhile, replacing j by —j preserves this inequality. It follows that for every

integer j satisfying 1 < |j| < N/2°2 we have
eQTl’in(O()O( -1 ‘ ot
W‘ <1 and so E(],N) < N (335)

Next, for any fixed integer j satisfying |j| > N/22) we use the inequalities
eQﬂ'in(a)oz _

1 1 1
Tl < mind K(a), — b <mind N, —— \ 3.36
T ) { ”Hmu} { HJaH} (3.36)

where ||z|| denotes the distance of a real number x from the nearest integer, and the
inequality K (a) < N follows from a € [2°/N, 21 /N) and (3.4).
Let r be the integer closest to ja. Then

1 T 1
jal| < —= ifand only if |a—-| < —,
ljoll < 5 e
so that
1 r 1 r 1
jo|| < = ifand only if « € (—,— — -+ — ) (3.37
el < jo LINTG LGN )

For this fixed integer j satisfying |j| > N/2/"2, there are at most

2€+2|j| 2€+5|j|
5 < 3.38
mox {5, 27 < 20 (3.38)
integers r such that
roo 1 or 1 2! 2“1>
- — - T = N|l=,— | #0. 3.39
<J JIN |J|N) {N N (339

On the other hand, suppose that n is a positive fixed integer satisfying 2" < N.
Then analogous to (3.37), we have

n—1 on
i < l7ell <N if and only if « € J(j; N;n), (3.40)
where
rooo20 o 2nt roo2nlogpoon
J(j; N;n Z{—_——. ST T T ] {-.*F T }» (3.41
R E RV TS Rt Vi Rl T Ry )
except when 2"/N > 1/2, in which case we have the modification
r 1 r 2nt roo2vtye 1
'Jj;N;n:{—‘——,,—,—,—} {—.-i-.—,—.—l-—.}- 3.42
( ) joo250 LIND L EINTG 2Ll 342

Similarly, for this fixed integer j satisfying |j| > N/22 and fixed positive integer
n satisfying 2" < N, there are at most (3.38) integers r such that

. 2@ 25+1
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Combining (3.29) and (3.36)—(3.43), we see that for any fixed integer j satisfying
l7] > N/2¢2, we have

20+l /N 1 2
E(j;N)é/ (min{N,,—}) da
2/N 7]

2£+5|j‘ 9 0 N 22€+5‘j| on 0 1
2 /+5
SN —— — + g ( ) <2 2+4HE_12—H ;

N [jIN =\ 27! N |7|N
2"<N
confirming the assertion (3.34) and completing the proof. 0J
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