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Abstract. The class of 2-dimensional non-integrable flat dynamical systems has
a rather extensive literature with many deep results, but the methods developed
for this type of problems, both the traditional approach via Teichmüller geometry
and our recent shortline-ancestor method, appear to be exclusively plane-specific.
Thus we know very little of any real significance concerning 3-dimensional systems.

Our purpose here is to describe some very limited extensions of uniformity in 2
dimensions to uniformity in 3 dimensions. We consider a 3-manifold which is the
cartesian product of the regular octagonal surface with the unit torus. This is a
restricted system, in the sense that one of the directions is integrable. However,
this restriction also allows us to make use of a transference theorem for arithmetic
progressions established earlier by Beck, Donders and Yang.

1. Introduction

For rational polygons where every angle is a rational multiple of π, we have the
following fundamental result of Kerckhoff, Masur and Smillie [4] in 1986.

Theorem A. Let P be a rational polygon. For almost every initial direction and
for every non-pathological starting point for this direction, the half-infinite billiard
orbit in P is uniformly distributed.

Given any initial direction, a point p0 ∈ P is called a pathological starting point
for this direction if the half-infinite billiard orbit starting from p0 and with this
direction hits a singularity of P . Otherwise the point p0 is called a non-pathological
starting point for this direction. It is easy to see that for any given direction, almost
every point in P is a non-pathological starting point.

The proof of Theorem A consists of essentially three steps. The first step is to
establish the ergodicity of the corresponding interval exchange transformation. The
second step is to use the well known Birkhoff ergodic theorem. The final step is to
extend ergodicity to unique ergodicity.

Our aim is to convert Theorem A to a result concerning equidistribution of 3-
dimensional billiard in some polyhedra. However, we need to restrict our discussion
to rational polygonal right prisms. A rational polygonal right prism is a region in
3-dimensional cartesian space of the form

M = P × I = {(x, y, z) ∈ R3 : (x, y) ∈ P and z ∈ I}, (1.1)

where P is a rational polygon and I = [0, z0] is an interval.
As the rational polygonal right prism M = P × I is integrable in the direction of

the interval I, our extension is somewhat limited.
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Theorem 1. Let M be a rational polygonal right prism of the form (1.1), where
P is a rational polygon and I = [0, z0] is an interval. For almost every pair of
initial direction and starting point, the half-infinite billiard orbit in M is uniformly
distributed.

For illustration, we consider a special case where P is a right triangle. It is well
known that the right triangle billiard with angle π/4 and the right triangle billiard
with angle π/6 are the only right triangle billiards that are integrable, exhibiting
stable and predictable behaviour. Perhaps the simplest non-integrable billiard is the
right triangle billiard with angle π/8. It is also well known that unfolding in the
spirit of König and Szücs [5] leads to a 16-fold covering of the triangle and shows
that this billiard is equivalent to geodesic flow on the regular octagon surface P
where parallel edges are identified in pairs. On the other hand, unfolding also leads
to a 2-fold covering of the interval I = [0, z0]. Thus billiard in the rational polygonal
right prism M = P × I, where P is the right triangle with angle π/8 and I = [0, z0],
is equivalent to geodesic flow in the translation 3-manifold M = P × I, where P is
the regular octagon translation surface and I = [0, 2z0], treated as a torus. Figure 1
illustrates that M = P × I gives a 32-fold covering of the rational polygonal right
prism M = P × I. It has 2 octagonal faces which are identified with each other, and
8 rectangular faces, with pairs of parallel ones identified with each other, analogous
to the edge identification of the regular octagon translation surface P .

x

y
z

Figure 1: the translation 3-manifold M = P × I

Theorem 2. Let M = P × I be a rational octagonal right prism translation 3-
manifold, where P is the regular octagon translation surface and I = [0, 2z0], treated
as a torus. For almost every pair of direction and starting point, the half-infinite
geodesic in M is uniformly distributed.
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2. Proof of Theorem 2

Suppose that a half-infinite geodesic

LS0,v(t) = (s1 + v1t, s2 + v2t, s3 + v3t), t ⩾ 0,

inM has a non-pathological starting point LS0,v(0) = S0 = (s1, s2, s3), and direction
given by the unit vector

v = (v1, v2, v3) ∈ R3, where v21 + v22 + v23 = 1,

with arc-length parametrization. The coordinates (s1 + v1t, s2 + v2t) are modulo P
and the coordinate s3 + v3t is modulo I.

We may assume without loss of generality that v3 > 0. Then the geodesic LS0,v(t),
t ⩾ 0, hits the octagon face of M for the very first time at time t = t0, where
s3 + v3t0 = 2z0, so that t0 = (2z0 − s3)/v3. Indeed, the geodesic hits the octagon
face of M for the (k + 1)-th time at time t = tk, where

tk =
2kz0 + (2z0 − s3)

v3
= kθ + λ, k = 0, 1, 2, 3, . . . , (2.1)

with parameters xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

θ =
2z0
v3

and λ =
2z0 − s3

v3
.

This gives rise to an arithmetic progression

λ < θ + λ < 2θ + λ < 3θ + λ < . . . ,

with common gap θ between consecutive terms.
We need the following result on arithmetic progressions; see [1, Theorem 2.2.2].

Lemma 2.1 (transference theorem for arithmetic progressions). Let S ⊂ R be a
measurable set. For every ℓ ∈ Z, there exists a constant c1(ℓ) > 0, dependent only
on ℓ, such that for almost every pair θ, λ satisfying 2ℓ ⩽ θ < 2ℓ+1 and 0 ⩽ λ < θ,
the inequality ∣∣∣∣∣∣∣∣

∑
k⩾0

kθ+λ∈S∩[0,n]

1− 1

θ
meas(S ∩ [0, n])

∣∣∣∣∣∣∣∣ ⩽ c1(ℓ)n
3/4(log n)1/2

holds for every sufficiently large positive integer n.

We have following immediate consequence.

Lemma 2.2. Suppose that the set S ⊂ R is measurable. Suppose further that S
has asymptotic density d = d(S) ∈ [0, 1], so that there exists a monotonic sequence
ε(n) = ε(S;n) → 0 as n → ∞ such that∣∣∣∣ 1n meas(S ∩ [0, n])− d(S)

∣∣∣∣ < ε(n), n = 1, 2, 3, . . . .

For every ℓ ∈ Z, there exists a constant c2(ℓ) > 0, dependent only on ℓ, such that
for almost every pair θ, λ satisfying 2ℓ ⩽ θ < 2ℓ+1 and 0 ⩽ λ < θ, the inequality∣∣∣∣∣∣∣∣

θ

n

∑
k⩾0

kθ+λ∈S∩[0,n]

1− d(S)

∣∣∣∣∣∣∣∣ ⩽ ε(n) + c2(ℓ)
(log n)1/2

n1/4
(2.2)

holds for every sufficiently large positive integer n.
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Meanwhile, every point in M is of the form (x, y, z), where (x, y) ∈ P and z ∈ I.
We consider the projection

ϕ : M → P : (x, y, z) 7→ (x, y). (2.3)

Then the image of the geodesic LS0,v(t), t ⩾ 0, under this projection is a half-infinite
geodesic xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

HS0,v(t) = (s1 + v1t, s2 + v2t), t ⩾ 0, (2.4)

on the regular octagon translation surface P . Clearly the key parameters s3 and v3,
particularly concerning the hitting times given in (2.1), are lost under this projection
(2.3). However, we know the arithmetic progression (2.1) of the time instances when
the geodesic LS0,v(t), t ⩾ 0, hits the octagon face of M. This gives rise to an infinite
sequence of points HS0,v(tk), k = 0, 1, 2, 3, . . . , on P . For any S0 and v, if we can
show that this sequence of points is uniformly distributed on P , then the half-infinite
geodesic LS0,v(t), t ⩾ 0, is uniformly distributed in M.

Consider a typical half-infinite geodesic Hw(τ), τ ⩾ 0, on P , with direction given
by the unit vector w = (w1, w2) ∈ R2. Suppose that this geodesic is the image on
P of LS0,v(t), t ⩾ 0, under the projection (2.3). Then

Hw(τ) = (s1 + w1τ, s2 + w2τ), τ ⩾ 0. (2.5)

In view of the different parametrizations of (2.4) and (2.5), we have

HS0,v(t) = Hw(τ) if and only if τ = (v21 + v22)
1/2t.

Corresponding to the arithmetic progression tk, k = 0, 1, 2, 3, . . . , of hitting times
given by (2.1) is the arithmetic progression

τk = (v21 + v22)
1/2tk =

(v21 + v22)
1/2(2kz0 − s3)

v3
= kθ + λ, k = 0, 1, 2, 3, . . . ,

with parameters xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

θ =
2z0(v

2
1 + v22)

1/2

v3
and λ =

(2z0 − s3)(v
2
1 + v22)

1/2

v3
. (2.6)

By the geodesic analogue of Theorem A, for almost every direction w and for
every non-pathological starting point for this direction, the geodesic Hw(τ), τ ⩾ 0,
is uniformly distributed on P . Let RP denote an arbitrary polygon on P where all
the vertices have rational coordinates, and let the measurable set

S = S(Hw; RP) = {τ ⩾ 0 : Hw(τ) ∈ RP} (2.7)

denote the set of time instances when this geodesic visits RP. The uniformity of the
geodesic then implies that S has asymptotic density

d = d(S) = area(RP)

area(P)
∈ [0, 1].

The uniformly distributed geodesic Hw(τ), τ ⩾ 0, is clearly the image on P under
the projection (2.3) of infinitely many different geodesics LS0,v(t), t ⩾ 0, in the 3-
manifoldM, as there are only two requirements, namelyHw(0) = (s1, s2) concerning
the starting point, where S0 = (s1, s2, s3), and w1v2 = w2v1 concerning equality of
the relevant directions. Applying Lemma 2.2, we see that for every ℓ ∈ Z and for
almost every pair θ, λ of the form (2.6) satisfying 2ℓ ⩽ θ < 2ℓ+1 and 0 ⩽ λ < θ,
the inequality (2.2) with S given by (2.7) holds for every sufficiently large positive
integer n.
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This means that for almost every pair of starting point S0 and unit direction
vector v, the infinite sequence

LS0;v(tk), k = 0, 1, 2, 3, . . . , (2.8)

of points, where the sequence tk, k = 0, 1, 2, 3, . . . , of time instances is given by
(2.1), is uniformly distributed on P relative to the single test set RP.

The set of all polygons RP on P where all the vertices have rational coordinates
is countable. On the other hand, a countable union of sets of measure zero has
measure zero. It follows that for almost every pair of starting point S0 and unit
direction vector v, the infinite sequence (2.8) of points is uniformly distributed on
P relative to every polygon RP on P where all the vertices have rational coordinates.
This guarantees uniformity in general, in the classical Weyl sense, and completes
the proof of Theorem 2.

Remark. Theorem 1 is a result on time-qualitative uniformity, and does not say any-
thing about the speed of convergence to uniform distribution, as a key ingredient
of the proof is the geodesic analogue of Theorem A which is also time-qualitative
in nature. There are instances, however, when we can establish time-quantitative
results. This happens, for example, when it is possible to establish time-quantitative
uniform distribution results for some geodesics on the underlying rational polygonal
translation surface P . We can establish such extensions of the geodesic analogue of
Theorem A in [1, 2] for the L-surface and in [3] for finite polysquare translation sur-
faces and for regular polygonal translation surfaces. These in turn lead to extensions
of various analogues of Theorem 2, and hence also Theorem 1, to time-quantitative
results.

3. Proof of Lemma 2.1

Throughout the proof, the set S ⊂ R is measurable.
Let a non-negative integer ℓ be chosen and fixed.
Consider an infinite sequence N1, N2, N3, . . . of positive integers satisfying

1 < N1 < N2 < N3 < . . . < Nh < . . . ,

and another infinite sequence M1,M2,M3, . . . of positive integers satisfying

1 < Mh < Nh, h = 1, 2, 3, . . . ,

both to be specified later in terms of the parameter h and the chosen integer ℓ. For
every positive integer h, let S(h) ⊂ [0, 1] denote the contraction of S ∩ [0, Nh] to the
unit interval, so that

x ∈ S(h) if and only if Nhx ∈ S ∩ [0, Nh]. (3.1)

Since the characteristic function

χS(h)(x) =

{
1, if x ∈ S(h),
0, if x ̸∈ S(h),

defined over [0, 1] and extended periodically over the whole real line with period 1,
is measurable, we can consider its Fourier series

χS(h)(x) =
∑
j∈Z

aje
2πijx, (3.2)

with Fourier coefficients aj, j ∈ Z. In particular,

a0 = λ1(S(h)).
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Remark. For a measurable set S(h), the infinite Fourier series (3.2) may diverge at
some points. However, Lemma 2.1 is a measure theoretic statement which ignores
sets of measure zero. So it suffices to have pointwise convergence almost everywhere.
Fourier analysis provides at least two options to settle this issue. We can use the
very deep Carleson theorem. Alternatively, we can use the much simpler Lebesgue
theorem with Cesàro summability.

The Parseval formula gives∑
j∈Z

|aj|2 = λ1(S(h)) ⩽ 1,

so that ∑
j∈Z\{0}

|aj|2 = λ1(S(h))− λ2
1(S(h)) = λ1(S(h))(1− λ1(S(h))) < 1. (3.3)

Lemma 2.1 for the chosen value ℓ concerns the arithmetic progression kθ + η,
k ⩾ 0, where 2ℓ ⩽ θ < 2ℓ+1 and 0 ⩽ η < θ. The contraction (3.1) leads to a new
arithmetic progression kα+ β, k ⩾ 0, where 2ℓ/Nh ⩽ α < 2ℓ+1/Nh and 0 ⩽ β < α.

For any α ∈ [2ℓ/Nh, 2
ℓ+1/Nh), let K(α) be the unique integer satisfying

(K(α)− 1)α < 1 ⩽ K(α)α. (3.4)

Using the Fourier series (3.2), we have

K(α)−1∑
k=0

χS(h)(kα+ β)−K(α)λ1(S(h)) =
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+β) (3.5)

for every α and β satisfying 2ℓ/Nh ⩽ α < 2ℓ+1/Nh and 0 ⩽ β < α.
To study (3.5), we consider the integral

J(a;Nh;Mh) =

∫ 2ℓ+1/Nh

2ℓ/Nh

∫ 2ℓ−1/Mh

−2ℓ−1/Mh

∣∣∣∣∣∣
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+γ)

∣∣∣∣∣∣
2

dγ dα. (3.6)

To obtain a bound on this integral, we observe that for γ ∈ [−2ℓ−1/Mh, 2
ℓ−1/Mh],

the inequality 2(1− |γ|Mh/2
ℓ) ⩾ 1 holds. It then follows that

J(a;Nh;Mh) ⩽ 2J∗(a;Nh;Mh), (3.7)

where for integers N and M satisfying 1 < M < N ,

J∗(a;N ;M)

=

∫ 2ℓ+1/N

2ℓ/N

∫ 2ℓ/M

−2ℓ/M

∣∣∣∣∣∣
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+γ)

∣∣∣∣∣∣
2(

1− |γ|M
2ℓ

)
dγ dα. (3.8)

At the end of this section, we establish the following bound for this integral.

Lemma 3.1. For any sequence a satisfying (3.3), the inequality

J∗(a;N ;M) ⩽ 2ℓ+11. (3.9)

holds uniformly for integers M and N satisfying 1 < M < N , where K(α) is the
integer defined by (3.4) for every α ∈ [2ℓ/N, 2ℓ+1/N).
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Combining (3.6), (3.7) and (3.9), we deduce that

J(a;Nh;Mh) ⩽ 2ℓ+12. (3.10)

The inequality (3.10) is a quadratic average result, from which we can derive infor-
mation concerning the majority of pairs

(α, γ) ∈
[
2ℓ

Nh

,
2ℓ+1

Nh

)
×
[
−2ℓ−1

Mh

,
2ℓ−1

Mh

]
. (3.11)

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

B(Nh;Mh) =

{
(α, γ) ∈

[
2ℓ

Nh

,
2ℓ+1

Nh

)
×
[
−2ℓ−1

Mh

,
2ℓ−1

Mh

]
: (3.12) holds

}
denote the collection of pairs (α, γ) satisfying (3.11) such that∣∣∣∣∣∣

∑
j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+γ)

∣∣∣∣∣∣ ⩾ (hNhMh)
1/2 log(1 + h). (3.12)

Then it follows from (3.10) that

λ2(B(Nh;Mh)) ⩽
2ℓ+12

hNhMh log
2(1 + h)

, (3.13)

where λ2 denotes 2-dimensional Lebesgue measure.
Next, note that as we move from (3.5) to (3.6), we replace the parameter β over a

short interval [0, α) by a parameter γ ∈ [−2ℓ−1/Mh, 2
ℓ−1/Mh] over a longer interval.

For any pair xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(α, β) ∈
[
2ℓ

Nh

,
2ℓ+1

Nh

)
× [0, α), (3.14)

there are at least Nh/2Mh values of γ ∈ [−2ℓ−1/Mh, 2
ℓ−1/Mh] where {γ/α}α = β.

For each of these values of γ, consider the two arithmetic progressions

kα+ γ, k = 0, 1, 2, 3, . . . , K(α)− 1, (3.15)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

kα+ β, k = 0, 1, 2, 3, . . . , K(α)− 1. (3.16)

Since xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

γ =
[γ
α

]
α + β,

the arithmetic progression (3.15) is obtained by simply advancing the arithmetic
progression (3.16) by [γ/α] terms. More precisely, the arithmetic progression (3.15)
is given by

kα+ β, k =
[γ
α

]
,
[γ
α

]
+ 1,

[γ
α

]
+ 2,

[γ
α

]
+ 3, . . . ,

[γ
α

]
+K(α)− 1. (3.17)

Lemma 3.2. If a pair (α, β) such that (3.14) holds satisfies the inequality∣∣∣∣∣∣
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+β)

∣∣∣∣∣∣ ⩾ 2Nh

Mh

+ (hNhMh)
1/2 log(1 + h), (3.18)

then each pair (α, γ) such that (3.11) and {γ/α}α = β hold satisfies the inequality
(3.12).
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Proof. It clearly suffices to prove that∣∣∣∣∣∣
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+β) −
∑

j∈Z\{0}

aj

K(α)−1∑
k=0

e2πij(kα+γ)

∣∣∣∣∣∣ ⩽ 2Nh

Mh

. (3.19)

Since xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∣∣∣[γ
α

]∣∣∣ ⩽ Nh

2Mh

,

it follows from (3.16) and (3.17) that those terms that belong to one of the arithmetic
progressions (3.15) or (3.16) but not both then form two arithmetic progressions of
the form xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

kα+ ρ, k = 0, 1, 2, 3, . . . , K − 1,

where K ⩽ Nh/2Mh. Hence

K(α)−1∑
k=0

e2πij(kα+β) −
K(α)−1∑
k=0

e2πij(kα+γ)

is the sum of two sums of the form

K−1∑
k=0

e2πij(kα+ρ),

where K ⩽ Nh/2Mh. Now for each of the two sums, we have∣∣∣∣∣∣
∑

j∈Z\{0}

aj

K−1∑
k=0

e2πij(kα+ρ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
K−1∑
k=0

∑
j∈Z\{0}

aje
2πij(kα+ρ)

∣∣∣∣∣∣
=

∣∣∣∣∣
K−1∑
k=0

(∑
j∈Z

aje
2πij(kα+ρ) − a0

)∣∣∣∣∣
⩽

K−1∑
k=0

∣∣χS(h)(kα + ρ)− λ1(Sh)
∣∣

⩽ 2K.

This clearly leads to (3.19) and completes the proof. □

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A(Nh;Mh) =

{
(α, β) ∈

[
2ℓ

Nh

,
2ℓ+1

Nh

]
× [0, α) : (3.18) holds

}
.

Then the above argument leads to the inequality

λ2(B(Nh;Mh)) ⩾
Nh

2Mh

λ2(A(Nh;Mh)). (3.20)

Combining (3.13) and (3.20), we obtain the upper bound

λ2(A(Nh;Mh)) ⩽
2ℓ+13

hN2
h log

2(1 + h)
.
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Combining this with (3.5), it is not difficult to see that apart from a set of measure
λ2(A(Nh;Mh)), every pair (α, β) such that (3.14) holds satisfies the inequality∣∣∣∣∣∣

K(α)−1∑
k=0

χS(h)(kα + β)−K(α)λ1(S(h))

∣∣∣∣∣∣ < 2Nh

Mh

+ (hNhMh)
1/2 log(1 + h).

Next, note that the two expressions

∑
k⩾0

kα+β∈S(h)

1− 1

α
λ1(S(h)) and

K(α)−1∑
k=0

χS(h)(kα + β)−K(α)λ1(S(h))

differ by at most 2, due to the possibility that (K(α)−1)α+β > 1 and the difference
|K(α)− 1/α| < 1, in view of (3.4). It follows that on reversing the contraction, we
see that apart from a set of measure at most

2ℓ+13

h log2(1 + h)
,

every pair (θ, η) such that 2ℓ ⩽ θ ⩽ 2ℓ+1 and η ∈ [0, θ) satisfies the inequality∣∣∣∣∣∣∣∣
∑
k⩾0

kθ+η∈S∩[0,Nh]

1− 1

θ
λ1(S ∩ [0, Nh])

∣∣∣∣∣∣∣∣ <
2Nh

Mh

+ (hNhMh)
1/2 log(1 + h) + 2. (3.21)

Lemma 3.3 (Borel–Cantelli lemma). Let (X,Σ, µ) be a measure space, and suppose
that Eh, h = 1, 2, 3, . . . , is a sequence of Σ-measurable sets. If

∞∑
h=1

µ(Eh) < ∞,

then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

µ

(
∞⋂
h=1

∞⋃
i=h

Ei

)
= 0.

Since xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

∞∑
h=1

1

h log2(1 + h)
< ∞,

we conclude that for almost every pair (θ, η) such that 2ℓ ⩽ θ ⩽ 2ℓ+1 and η ∈ [0, θ),
the inequality (3.21) holds for all sufficiently large positive integers h.

Finally, we specify the integers Nh and Mh in terms of the parameter h ⩾ 1 and
the chosen integer ℓ. Choosing them to satisfy

Nh ⩽ 2ℓ(h4 log2(1 + h)) < Nh + 1 and Mh = 2ℓh (3.22)

ensures that the two dominant terms on the right hand side of (3.21) have the same
order of magnitude in terms of h. For an arbitrary sufficiently integer n, we choose
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h to satisfy Nh ⩽ n < Nh+1. Then it follows from (3.21) and (3.22) that∣∣∣∣∣∣∣∣
∑
k⩾0

kθ+η∈S∩[0,n]

1− 1

θ
λ1(S ∩ [0, n])

∣∣∣∣∣∣∣∣
<

Nh+1 −Nh

θ
+

2Nh

Mh

+ (hNhMh)
1/2 log(1 + h) + 2

⩽
2ℓ((h+ 1)4 log2(2 + h)− h4 log2(1 + h))

θ
+ (2 + 2ℓ)h3 log2(1 + h) + 3

⩽ 2ℓ+3h3 log2(1 + h) +Oℓ(h
3 log(1 + h)) ⩽ c1(ℓ)n

3/4(log n)1/2,

provided that n, and hence also h, is sufficiently large.
This completes the proof of Lemma 2.1.

Proof of Lemma 3.1. For any fixed δ ∈ (0, 1/2), we define the roof function Rδ :
R → R by writing xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Rδ(x) =

{
0, if |x| > δ,
1− (|x|/δ), if 0 ⩽ |x| ⩽ δ.

For every integer j ∈ Z, we consider the integral

I(δ; j) =

∫ 1/2

−1/2

Rδ(x)e
2πijx dx. (3.23)

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(δ; 0) = δ and I(δ; j) = δ

(
sin πjδ

πjδ

)2

, j ∈ Z \ {0}. (3.24)

For any integers j1, j2 ∈ Z \ {0} and positive integer N , let

B(j1; j2;N) =

∫ 2ℓ+1/N

2ℓ/N

aj1

K(α)−1∑
k1=0

e2πij1k1α

aj2

K(α)−1∑
k2=0

e−2πij2k2α

 dα

=

∫ 2ℓ+1/N

2ℓ/N

(
aj1

e2πij1K(α)α − 1

e2πij1α − 1

)(
aj2

e−2πij2K(α)α − 1

e−2πij2α − 1

)
dα, (3.25)

so that

|B(j1; j2;N)|

⩽
1

2

∫ 2ℓ+1/N

2ℓ/N

(∣∣∣∣aj1 e2πij1K(α)α − 1

e2πij1α − 1

∣∣∣∣2 + ∣∣∣∣aj2 e2πij2K(α)α − 1

e2πij2α − 1

∣∣∣∣2
)
dα. (3.26)

Then it follows from (3.8), (3.23) with δ = 2ℓ/M and j = j1 − j2 and from (3.25)
that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

J∗(a;N ;M) =
∑

j1∈Z\{0}

∑
j2∈Z\{0}

I

(
2ℓ

M
; j1 − j2

)
B(j1; j2;N).

We write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

J∗(a;N ;M) = J∗
1 (a;N ;M) + J∗

2 (a;N ;M), (3.27)
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where J∗
1 (a;N ;M) contains all the diagonal terms in J∗(a;N ;M) with j1 = j2, while

J∗
2 (a;N ;M) contains all the off-diagonal terms in J∗(a;N ;M) with j1 ̸= j2. Noting

that I(2ℓ/M ; 0) = 2ℓ/M , we see that

J∗
1 (a;N ;M) =

2ℓ

M

∑
j∈Z\{0}

|aj|2E(j;N), (3.28)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

E(j;N) =

∫ 2ℓ+1/N

2ℓ/N

∣∣∣∣e2πijK(α)α − 1

e2πijα − 1

∣∣∣∣2 dα. (3.29)

Meanwhile, noting (3.24), we see that

J∗
2 (a;N ;M) =

2ℓ

M

∑
j1∈Z\{0}

∑
j2∈Z\{0}

j1 ̸=j2

(
sin π(j1 − j2)2

ℓM−1

π(j1 − j2)2ℓM−1

)2

B(j1; j2;N). (3.30)

Combining (3.26) and (3.30), we deduce that

|J∗
2 (a;N ;M)| ⩽ 2ℓ

M

∑
j∈Z\{0}

∑
ζ∈Z\{0}

(
sin πζ2ℓM−1

πζ2ℓM−1

)2

|aj|2E(j;N). (3.31)

It then follows from (3.27), (3.28) and (3.31) that

|J∗(a;N ;M)| ⩽ 2ℓ

M

1 +
∑

ζ∈Z\{0}

(
sin πζ2ℓM−1

πζ2ℓM−1

)2
 ∑

j∈Z\{0}

|aj|2E(j;N). (3.32)

Next, note that

2ℓ

M

1 +
∑

ζ∈Z\{0}

(
sin πζ2ℓM−1

πζ2ℓM−1

)2
 ⩽

2ℓ

M

 ∑
|ζ|⩽M/2ℓ

1 +
∑

|ζ|>M/2ℓ

(
M

πζ2ℓ

)2


⩽
2ℓ

M

(
2M

2ℓ
+ 1 +

2M2

π24ℓ

∫ ∞

M/2ℓ

dx

x2

)
⩽ 6. (3.33)

To complete the proof of Lemma 3.1, in view of (3.3), (3.32) and (3.33), it suffices
to show that for every j ∈ Z \ {0} and integer N > 1, we have

E(j;N) ⩽ 2ℓ+8. (3.34)

Consider first small values of j, where 1 ⩽ |j| ⩽ N/2ℓ+2. Suppose first that j > 0.
Since α ∈ [2ℓ/N, 2ℓ+1/N), it follows that 0 ⩽ jα ⩽ 1/2, so that e2πijα is a point on
the upper half circle of unit radius. On the other hand, (3.4) implies the inequality
0 ⩽ jK(α)α− j < jα. Hence e2πijK(α)α = e2πi(jK(α)α−j) is a point on the circular arc
of the upper half circle of unit radius joining the points 1 and e2πijα. As shown in
Figure 4.1, we clearly have |e2πijK(α)α − 1| < |e2πijα − 1|.

b

b

be2πijK(α)α

e2πijα

1

Figure 2: justifying the inequality (3.35)
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Meanwhile, replacing j by −j preserves this inequality. It follows that for every
integer j satisfying 1 ⩽ |j| ⩽ N/2ℓ+2, we have∣∣∣∣e2πijK(α)α − 1

e2πijα − 1

∣∣∣∣ < 1 and so E(j;N) ⩽
2ℓ

N
. (3.35)

Next, for any fixed integer j satisfying |j| > N/2ℓ+2, we use the inequalities∣∣∣∣e2πijK(α)α − 1

e2πijα − 1

∣∣∣∣ ⩽ min

{
K(α),

1

∥jα∥

}
⩽ min

{
N,

1

∥jα∥

}
, (3.36)

where ∥x∥ denotes the distance of a real number x from the nearest integer, and the
inequality K(α) ⩽ N follows from α ∈ [2ℓ/N, 2ℓ+1/N) and (3.4).

Let r be the integer closest to jα. Then

∥jα∥ <
1

N
if and only if

∣∣∣∣α− r

j

∣∣∣∣ < 1

|j|N
,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

∥jα∥ <
1

N
if and only if α ∈

(
r

j
− 1

|j|N
,
r

j
+

1

|j|N

)
. (3.37)

For this fixed integer j satisfying |j| > N/2ℓ+2, there are at most

max

{
5,

2ℓ+2|j|
N

}
⩽

2ℓ+5|j|
N

(3.38)

integers r such that (
r

j
− 1

|j|N
,
r

j
+

1

|j|N

)
∩
[
2ℓ

N
,
2ℓ+1

N

)
̸= ∅. (3.39)

On the other hand, suppose that n is a positive fixed integer satisfying 2n ⩽ N .
Then analogous to (3.37), we have

2n−1

N
⩽ ∥jα∥ ⩽

2n

N
if and only if α ∈ I(j;N ;n), (3.40)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(j;N ;n) =

[
r

j
− 2n

|j|N
,
r

j
− 2n−1

|j|N

]
∪
[
r

j
+

2n−1

|j|N
,
r

j
+

2n

|j|N

]
, (3.41)

except when 2n/N > 1/2, in which case we have the modification

I(j;N ;n) =

[
r

j
− 1

2|j|
,
r

j
− 2n−1

|j|N

]
∪
[
r

j
+

2n−1

|j|N
,
r

j
+

1

2|j|

]
. (3.42)

Similarly, for this fixed integer j satisfying |j| > N/2ℓ+2 and fixed positive integer
n satisfying 2n ⩽ N , there are at most (3.38) integers r such that

I(j;N ;n) ∩
[
2ℓ

N
,
2ℓ+1

N

)
̸= ∅. (3.43)
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Combining (3.29) and (3.36)–(3.43), we see that for any fixed integer j satisfying
|j| > N/2ℓ+2, we have

E(j;N) ⩽
∫ 2ℓ+1/N

2ℓ/N

(
min

{
N,

1

∥jα∥

})2

dα

⩽ N2 2
ℓ+5|j|
N

2

|j|N
+

∞∑
n=1
2n⩽N

(
N

2n−1

)2
2ℓ+5|j|
N

2n

|j|N
⩽ 2ℓ+5

(
2 + 4

∞∑
n=1

1

2n

)
,

confirming the assertion (3.34) and completing the proof. □
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