UNIFORMITY OF GEODESIC FLOW
IN NON-INTEGRABLE 3-MANIFOLDS

J. BECK, W.W.L. CHEN, AND Y. YANG

ABSTRACT. Almost nothing is known concerning the extension of 3-dimensional
Kronecker-Weyl equidistribution theorem on geodesic flow from the unit torus
[0,1)3 to non-integrable finite polycube translation 3-manifolds.

In the special case when a finite polycube translation 3-manifold is the cartesian
product of a finite polysquare translation surface with the unit torus [0, 1), we have
developed a splitting method with which we can make some progress. This is a
somewhat restricted system, in the sense that one of the directions is integrable.

We then combine this with a split-covering argument to extend our results to
some other finite polycube translation 3-manifolds which satisfy a rather special
condition and where none of the 3 directions is integrable.

1. INTRODUCTION AND THE SPLITTING METHOD

Very little is known about non-integrable dynamical systems in dimensions greater
than 2. A perfect illustration of this sad fact is the following open problem which is
the 3-dimensional non-integrable analogue of the Kronecker—Weyl equidistribution
theorem concerning geodesic flow on the unit torus [0, 1)3.

A vector v = (vy,v9,v3) € R3 is called a Kronecker direction in 3-space if the
coordinates vy, v9, v3 are linearly independent over Q.

Open Problem. Suppose that M is a finite polycube translation 3-manifold. Is it
true that any half-infinite geodesic in M with a Kronecker direction and which does
not hit a singular point of M is uniformly distributed?

The answer to the corresponding 2-dimensional problem is given by the Gutkin—
Veech theorem, but the method does not seem to work in higher dimensions. In 3
dimensions, even the simpler problem of density is wide open.

Here we introduce a new geometric method which enables us to solve the Open
Problem for infinitely many finite polycube translation 3-manifolds which, in the first
instance, satisfy a very special condition which makes them essentially integrable in
one of the 3 directions. We then extend our argument in Sections 8-9 to include
more finite polycube translation 3-manifolds.

We call our new approach the splitting method. It uses the Birkhoff ergodic
theorem, and leads to time-qualitative uniformity. It is an open problem whether
time-quantitative uniformity can be established in these situations.

To illustrate our method and ideas, we consider in the first instance the L-solid
translation 3-manifold, the simplest non-integrable example in 3-dimensions. This
3-manifold consists of 3 atomic cubes arranged in the shape of the letter L, with a
top cube, a middle cube and a right cube, together with face identification given by
perpendicular translation. The picture on the right in Figure 1.1 shows the Y-faces
which are perpendicular to the y-axis. The two faces Y5 are identified with each
other, and the two faces Y3 are identified with each other.
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Figure 1.1: the X-faces and Y-faces of the L-solid translation 3-manifold

Theorem 1. Any half-infinite geodesic in the L-solid translation 3-manifold with a
Kronecker direction v € R® is uniformly distributed unless it hits a singularity.

Suppose that v = (v1,v9,v3) € R? is a Kronecker direction in 3-space. Linear
independence guarantees that the coordinates vy, vy, v3 are non-zero. It is convenient
to denote the Kronecker direction instead by the parallel vector v = («, 1, #), where
a = v1/ve, B = v3/ve and «/f are all irrational. For simplicity, we assume that
a > 0and f > 0. We can further assume that a < 1. If @ > 1, then we simply
interchange the roles of x and y.

We consider the discretization of the v-flow in the L-solid translation 3-manifold
relative to the Y-faces, where the flow hits the faces Y7, Y5, Y3. Let

Top:Y=YUYoUY; 5D (1.1)

denote the relevant discrete transformation defined by consecutive hitting points.

Under our assumptions on the parameters o and 3, the v-flow encounters split
singularities in the form of edges of the L-solid translation 3-manifold, highlighted
in Figure 1.1 in bold. For instance, consider a geodesic segment in the v-direction
that hits the common edge of the faces Y; and Y3. If we move this geodesic segment
marginally to the left, then it crosses the face Y7, quickly hits the right face X; and
then jumps to the left face X;. If we move this geodesic segment marginally to the
right, then it crosses the face X3, quickly hits the top face Y3 and then jumps to the
bottom face Yj.

Consider now the image under 7' é of the singular edge of the L-solid translation
3-manifold which is the common edge of the faces Y7 and Y3. It is a line segment in
the z-direction on the face Y5, as shown in Figure 1.2.
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Figure 1.2: a strip round the inverse image of a singular edge
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Consider a narrow strip neighbourhood S of this line segment, shown in Figure 1.2
as the gray strip on the face Y5. The image of this strip under Tj, g splits along the
singular edge. Our splitting method concerns making use of such splits.

Remark. Note that the front Z-faces on the plane z = 0 and the corresponding back
Z-faces on the plane z = 1 are pairwise identified, and none of the edges of these
faces is a singular edge, so the L-solid translation 3-manifold is essentially integrable
in the z-direction.

The discretization T, 3 on ) defined by (1.1) is area preserving. Our first goal is
to prove that it is also ergodic on )). Suppose, on the contrary, that it is not ergodic.
Then there exist two disjoint T, g-invariant subsets W (white) and S (silver) of Y
such that Y =W U S and

0< AQ(W) < )\2(8) < 3, (12)

where Ay denotes the 2-dimensional Lebesgue measure. We show that this leads to
a contradiction.
Consider the projection of ) to the unit torus [0,1)?, given by

Y= [0,1)%: (z,y,2) = ({a} {z}), (1.3)

where we take the fractional parts of the first and the third coordinates and omit
reference to the second coordinate. Then for every point P € [0,1)?, there are
precisely 3 distinct points Py, P, P3 € Y which have projection image P. Let

w(P)=|{P, P, s} NW| and fs(P)=|{P, P, P}NS| (1.4)

denote the number of these 3 points that fall into VW and S respectively. We refer to
fw and fs as the multiplicity functions of the invariant sets YW and S respectively,
and they are non-negative integer valued functions defined on the unit torus [0,1)?
that satisfy the condition

fw(P) + fs(P) =3 for almost all P € [0,1)%. (1.5)
We also consider the corresponding projection of
Top:Y—Y to Ty:[0,1)* = [0,1)7
which is simply the (a, 3)-shift on the unit torus [0, 1),

Remark. Strictly speaking, W and & are subsets of ). However, it is convenient to
view the pair as a 2-colouring of the set ) with colours WW and S, and not make any
distinction between subset and colour.

Since v is a Kronecker direction, it is not difficult to show that Tj is ergodic.
Indeed, one way is to derive it from the Kronecker-Weyl equidistribution theorem
on the unit torus. Here we give a simpler proof by using the more elementary
Kronecker density theorem which is valid in every dimension d > 1. However, we
restrict our discussion to the case d = 2.

Let w = (a, 3) € R?, where a, 3 are linearly independent over Q, and let Ty be the
w-shift on the unit torus [0, 1)?. If Tj is not ergodic, then there is a w-shift-invariant
measurable subset A C [0, 1)? such that

0<X(A)<1l and A+w=A4, (1.6)

where A + w denotes the image of A under 7Tj.
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Lemma 1.1. Suppose that the set A C [0,1)? is measurable. Then
/ Aa(AN (A+1))dt = (M\(A))2 (1.7)
[0,1)

Proof. For any set B C [0,1)2, let xp denote the characteristic function of B. Then

/W A2<Am(A+t))dt:/m)2 (/AXAH(X) dx) T
_ /[071)2 (/A Xa-x(—t) dx> dt = /A (/{0’1)2 Yx(—t) dt) i

:/AAQ(A_x)dx:/AA2<A>dx:<A2<A)>2-

The change in the order of integration is justified by Fubini’s theorem, and this
completes the proof. O

The identity (1.7) represents an average. Let € > 0 be chosen to be sufficiently
small. Then there exists to € [0,1)? such that

Ao(AN(A+to)) < (M2(A))* +e,

and the Kronecker density theorem implies that there exists a positive integer ng
such that the multiple ngw gets so close to to modulo [0,1)? that

(AN (A+new)) < (AN (A+ty)) +e.
Then it follows that
A (AN (A4 new)) < (Ma(A))? + 2. (1.8)

On the other hand, the identity on the right in (1.6) clearly gives A + now = A, so
(1.8) becomes A\y(A) < (A2(A))?+ 2¢. However, this inequality cannot possibly hold
when € > 0 is sufficiently small, since 0 < A\y(A) < 1. The contradiction establishes
the ergodicity of 7.

The Birkhoff ergodic theorem now guarantees that both f), and fs are constant
integer valued functions. It then follows from (1.2) and (1.5) that

fw(P)=1 and fs(P)=2 for almost all P € [0,1)>. (1.9)

Let us return to the narrow strip S, on the face Y5, as shown in Figure 1.2.
We denote by S; and S5 narrow strips on the lower faces Y; and Y3 respectively,
where the images on [0, 1)? of Sy, Sa, S5 under the projection (1.3) coincide. In other
words, the strips 51, S, S3 are in the same relative positions on the faces Y7, Ys, Y3
respectively.

Using line segments in the x-direction, we can divide the strips S, S, S3 into small
congruent rectangles in a natural way. We refer to them as small special rectangles
of the decomposition of the strips 51, Ss, S3. Note that we have so far not specified
the dimensions of these rectangles.

Let Ri, Ry, R3 denote small special rectangles of the decomposition of the strips
S1, 52,53 on the faces Y7, Ys, Y3 respectively, with the condition that their images
on [0,1)? under the projection (1.3) coincide, so that they are in the same relative
positions on the faces Y7, Ys, Y3 respectively. It is clear that the image of each of
Ry, Ry, Rs under T, g splits along the singular edges E, Fy, F3 into congruent halves,
as shown in the side views given in Figure 1.3 where the z-direction is suppressed.
Here, for each 0 = 1, 2, 3, the rectangle R, splits into the left half R and the right
half R}, and it is clear that their images under T, s may lie on distinct Y-faces.
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Figure 1.3: side view of L-solid translation 3-manifold showing
the rectangles R, Ry, R3 and their images under 7, g
Figure 1.4 is a summary of the pictures in Figure 1.3. The union of the pairs

Top(Ry)UTop(RY), Tap(Ry)UTup(RY), Tap(Ry)UTas(Ry)

are rectangles the same size as the rectangles Ry, Ry, R3, each split down the middle
into congruent halves by a line in the z-direction.

Ry R-;

M;R”“ /\ TMR3

Lz,ﬁ(Rl ) u,ﬁ(Rz )

Figure 1.4: side view of L-solid translation 3-manifold showing
the rectangles R;, Ry, R3 and their images under 7, g

The situation is somewhat clearer if we study the images of Ry, Ry, R3 under To%, Y

where the second application of Ty, g does not produce any further splitting, as shown
in Figure 1.5.

by
To%,ﬁ(RIr) Es T;‘ﬁ(Rg) Es
/ ) /\
To%ﬂ(Rl_) Ti,g(R{)Rz Tig(R?) To%,/j(R;—) R

Figure 1.5: side view of L-solid translation 3-manifold showing
the rectangles R;, Ry, R3 and their images under Toa P

Figure 1.6 is a summary of the pictures in Figure 1.5. The union of the pairs
R} = To%,B(RS ) U TZﬁ(RJr)
Ry = T3 3(Ry ) U T 5(R5), (1.10)
R§ = To%,B(Rl ) U TQB(RJr)
are rectangles on the faces Y7, Ys, Y3 respectively, the same size as Ri, Ro, R3, each
split into congruent halves by a line in the z-direction. Note that the images on

[0,1)? of R}, R}, R; under the projection (1.3) coincide, so that R}, Rj, R} are in the
same relative positions on the faces Y7, Y5, Y3 respectively.
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Figure 1.6: side view of L-solid translation 3-manifold showing
the rectangles R;, Ry, R3 and their images under Toa P

We need the following measure theoretic lemma.

Lemma 1.2. There exists a small special rectangle Ry on the face Y; of the L-solid
translation 3-manifold such that the following two conditions are satisfied:
(i) The set Ry satisfies

Aa(RiNW) - 99 or Xa(R1NS) - 99

Ao (Ry) 100 Ao (Ry) 100°

(ii) There are analogues of (i) for the small special rectangles Ry and Rs on the
faces Yo and Y3 respectively of the L-solid translation 3-manifold, defined such that

the images on [0,1)? of Ry, Ro, R3 under the projection (1.3) coincide, as well as for
the rectangles R}, RS, R} defined by (1.10).

(1.11)

These rectangles are illustrated in Figure 1.7.
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Figure 1.7: the rectangles Ry, Ry, R3 and R7, R3, R}

The choice of 99/100 in (1.11) is accidental. Note also that Lemma 1.2 somewhat
resembles the Lebesgue density theorem. We include the proof in Section 3.

Recall that we have assumed that Ty, g is not ergodic, and this implies that there
exist disjoint T}, g-invariant subsets W, S C Y such that Y =W U S and (1.4) and
(1.9) are satisfied. Using Lemma 1.2, we are now ready to deduce a contradiction.

Lemma 1.2 ensures that each rectangle R,, 0 = 1,2, 3, has a dominant colour C,,
and each rectangle R}, 0 = 1,2, 3, has a dominant colour C}, where each C, or C}
is white or silver. We now use Figures 1.3, 1.5 and 1.6, and also note that since W
and S are T, g-invariant, they are also Tj, p-invariant.

The image of the rectangle R; under T}, g splits along the edge E; into congruent
halves. The image of R;, the left half of Ry, under ijﬁ forms the left half of Rj.
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The image of R}, the right half of Ry, under T 3 5 forms the right half of Rj. Thus
Ci=C; =Cs. (1.12)

The image of the rectangle Ry under T, 3 splits along the edge Es into congruent
halves. The image of R;, the left half of R, under Tsﬂ forms the left half of R;.
The image of RJ, the right half of Ry, under Ti s forms the right half of R3. Thus

Cy,=C; =Cj. (1.13)

The image of the rectangle Rs under T, 3 splits along the edge Fs3 into congruent
halves. The image of Ry, the left half of Rs, under T ; forms the left half of Rj.
The image of Ry, the right half of Rs, under 7T, aQ,ﬂ forms the right half of Rj5. Thus

C;=Ci=C;. (1.14)

Combining (1.12)—(1.14), we conclude C; = Cy = C3. This means that the dominant
colour in the rectangles R, Ry, R3 is the same colour C.
Thus we can find measurable subsets R ¢ R,, 0 =1,2,3, satisfying
O e — RO Mo(Rs) _ 9.
Ry’ NC =R, and (R 10
and such that their images on [0, 1)? under the projection (1.3) coincide. This clearly
contradicts (1.9), and establishes the ergodicity of Ty, g.
The Birkhoff ergodic theorem now implies that for any fixed Kronecker direction
v € R3, a half-infinite geodesic in the L-solid translation 3-manifold with almost any
starting point is uniformly distributed. This establishes a weaker form of Theorem 1.
In Section 4, we extend ergodicity to unique ergodicity and complete the proof.
Theorem 1 is best possible in the sense that there is no uniform distribution if the
direction v = (vq,v9,v3) € R? of a half-infinite geodesic is not a Kronecker direction,
so that the coordinates vy, v, v3 are linearly dependent over Q. In this case, we do
not even have density. Indeed, the classical Kronecker density theorem implies that
even the modulo one projection of the geodesic orbit to the unit torus [0, 1) is not
dense.

2. SPLITTING DIAGRAM AND SPLITTING PERMUTATION

The key part in the proof of ergodicity in the case of geodesics in the L-solid
translation 3-manifold is illustrated by the splitting diagram given in Figure 2.1,
which is a simpler version of Figure 1.6.

By

®
31 Ri B s
® . ©
2_~_3 ]E 1:4_2 &
Figure 2.1: splitting diagram of the L-solid translation 3-manifold

Here we label the top, middle and right cubes by the numbers 1, 2, 3 respectively.
Then for every o = 1,2,3, Y, is the bottom Y-face of cube o, R, is a small special
rectangle on Y,, and the image of R, under T, 3 splits along the edge E,, and
we then study the images of the congruent halves R, and R} of R, under Tiﬁ.



8 BECK, CHEN, AND YANG

Furthermore, for every o = 1,2, 3, the small special rectangle R,, and so also its
images under 7?2 4> has predominantly the colour C,.

The label 3 ~ 1 on the face Y; indicates that T7 ;(R3) UT7 3(RY) is, apart from
a set of zero measure, a rectangle on the face Y;, and C3 = C1 The label 2~ 3on
the face Y3 indicates that T7; 5(Ry ) U TS 5(Rq) is, apart from a set of zero measure,
a rectangle on the face Y5, and Co = C3. The label 1 ~ 2 on the face Y3 indicates
that 77 5(Ry) UT2 5(R3) is, apart from a set of zero measure, a rectangle on the
face Y3, and C; = Cg Furthermore we can compress this 1nformat10n into a single
cyclic permutation 3 — 1 — 2 — 3. We call this the splitting permutation of the
L-solid translation 3-manifold.

Our argument in Section 1 can therefore be adapted to study geodesic flow on a
class of finite polycube translation 3-manifolds where each member is essentially the
cartesian product of a finite polysquare translation surface and the unit torus [0, 1),
provided that the corresponding splitting permutation is a single cyclic permutation.

We now examine a few more examples.

Example 2.1. Consider the 5-cube staircase translation 3-manifold, with splitting
diagram given in Figure 2.2. The splitting permutation

4—-1—=-5—=2—=3—=4 (2.1)

is given in the form of a single cyclic permutation.

oEl
®
il By By s
® 0
2~3 Ry 52 Rs i s

@ 6
L~5 Ry 3~4 Rj
Figure 2.2: splitting diagram of the 5-cube staircase translation 3-manifold

Let us add 2 cubes to this 3-manifold and consider a 7-cube staircase translation
3-manifold, with splitting diagram given in Figure 2.3.

Ey

L ]
®
4 1 Ry E2 E3
® 0
2__3 ]E 6 2 R3 E4 Es

o 6
1~5 Ry 7~4R E6 E7

® ©
3:_7 & 5:;6 ]i7

Figure 2.3: splitting diagram of the 7-cube staircase translation 3-manifold
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The splitting permutation
4—51-5=26—22—=23->7—14 (2.2)

is also given in the form of a single cyclic permutation.

Note that to go from (2.1) to (2.2), we insert 7 after 3, and insert 6 after 5. The
insertion corresponds to the following observations after adding cubes 6 and 7:

o The image T7? ;(R3 ) moves from Y5 to Y.

o The image T7 ;(R5) moves from Y3 to Y7.

o The image T7 ;(R,) is unchanged for ¢ = 1,2 and o = 4.

o The image T7 ;(R}) is unchanged for o = 1,2,3,4,5.

o The images T ﬁ(RG ) and T7 5(R;) are on Y3 and Y respectively.

o The images Ti (R$) and T2 5(RY) are on Y7 and Yj respectively.

It can be shown that if we go from the s-cube staircase translation 3-manifold to
the (s + 2)-cube staircase translation 3-manifold, where s is odd, then the following
assertions are Valid

o The image T7 ;(R; ;) moves from Y to Y.

o The image T ( ) moves from Y, 5 to Yy,o.

o The image T, ( ) is unchanged for 0 = 1,...,s —3 and 0 = s — 1.
o The image T, ( +) is unchanged for o = 1,...s.

o

S
o

o The images T ﬁ(Rs+1) and T7 5(R;,,) are on Y,_y and Y respectively.

o The images T7 5(R{ ;) and T2 B(RS o) are on Yy, and Y, respectively.

This leads to the insertion of s+ 2 after s — 2 and the insertion of s + 1 after s in
the splitting permutation. Indeed, this argument repeatedly inductively then shows
that for every s-cube staircase translation 3-manifold, where s is odd, the splitting
permutation is a single cyclic permutation.

Example 2.2. A (3,2)-snake translation surface is a finite polysquare translation
surface where the square faces form a finite zigzagging path from left to right, every
street has length 3, apart from the two streets at the end which have length 2. A
(3,2)-snake translation 3-manifold is then the cartesian product of a (3,2)-snake
translation surface and the unit torus [0,1). Figure 2.4 is the splitting diagram of
such a 3-manifold with 7 cubes.

E1 E2
ONINO
3~2 Ri 4~6 Ry By fo

® @

T~1 Ry By B 5~T Rr B
@ ® 6

1~3 Ry 2~4 Ry 6~5 R

Figure 2.4: splitting diagram of a 7-cube (3, 2)-snake translation 3-manifold
The splitting permutation
3522456252 7—>1-—3 (2.3)

is given in the form of a single cyclic permutation.
Let us add 2 cubes to this 3-manifold and consider a 9-cube (3, 2)-snake translation
3-manifold, with splitting diagram given in Figure 2.5.
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ol @] ©l @

3~2 Ry 4~6 R, 6~5 Ry T~8 Ry

® ©

8 1 R; E4 E 5~9 R7 E()

O 0 0
1~3 Ry | 2~4 Ry 9~T R
Figure 2.5: splitting diagram of a 9-cube (3, 2)-snake translation 3-manifold
The splitting permutation

342242625292 7-8—=>1—-3 (2.4)

is also given in the form of a single cyclic permutation.

Note that to go from (2.3) to (2.4), we insert 9 after 5, and insert 8 after 7.
Here the general case is more complicated. As we go from left to right, any vertical
street along the way may go up or down, and the different choices lead to somewhat
different splitting diagrams.

Example 2.3. Figure 2.6 shows the splitting diagram of a polycube translation
3-manifold which is the cartesian product of a finite polysquare translation surface
with a hole and the unit torus [0, 1). Here the finite polysquare translation surface
has edge identification via perpendicular translation, and has 5 horizontal and 6
vertical streets.

© ®

2 i B 82 By 61 R

oo/ @F

9~11 Ry T~3 Ry 11~10 Rs 2~5 R

o [ ; "
5~6 Ry E FEy9 10~4 Rg Eq
- e o =mm —_—

® @)

1~7 Ry 3~9 Rio 4~8 Ry

Figure 2.6: splitting diagram of a finite polycube translation 3-manifold
with a hole

The splitting permutation
8—=+2—=-5—=26—-1=-7—-3—-9—-11—-10—-4—=38
is given in the form of a single cyclic permutation.

The next two examples concern cases where the splitting permutation is not a
single cyclic permutation. This can fail in more than one way.
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Example 2.4. Here we consider a very simple case, where we add an extra cube to
the L-solid translation 3-manifold to form a 4-cube L-solid translation 3-manifold.
Figure 2.7 shows the splitting diagram.

Ey

©

il R By By E,
2~4 Ry | 1~2 Ry 3~3 Ry
Figure 2.7: splitting diagram of a 4-cube L-solid translation 3-manifold

The splitting permutation is given by 4 — 1 — 2 — 4 and 3 — 3 which is clearly
not a single cyclic permutation. There is a stationary point 3.

Example 2.5. Consider a polycube translation 3-manifold which is the cartesian
product of a finite polysquare translation surface with 6 square faces and the unit
torus [0,1). Figure 2.8 shows the splitting diagram.

Fy FEsy
{ ] { ]
OO
3~2 Ry 4~5 Ry Ej Ey
- _— - —e (]
® O

Es 5~1 R3|6~3 Ry

® ©"
2~6 Rs 1~4 R
Figure 2.8: splitting diagram of a 6-cube solid polysquare translation 3-manifold
Here the splitting permutation
3—+2—=6—+3 and 4—-5—-1—4

is a product of two disjoint cyclic permutations.

For the class of polycube translation 3-manifolds which are cartesian products of
finite polysquare translation surfaces and the unit torus [0, 1), the question of which
of these have splitting permutations which are cyclic has a rather simple answer.
Cyclic splitting permutation means a single cycle in the cycle decomposition, and
this happens if and only if the boundary edge identification of the finite polysquare
translation surface reduces the number of vertices to 1. Indeed, this reduction to 1
vertex is precisely the same process by which the colours in the splitting points are
proved to be equal and we end up with a single colour. And wvice versa.

In Section 5, we prove the following result.

Theorem 2. Suppose that a polycube translation 3-manifold M is the cartesian
product of a polysquare translation surface P with d square faces and the unit torus
[0,1). Suppose further that the splitting permutation contains a cycle of length
greater than d/2. Then any half-infinite geodesic in M with a Kronecker direction
v € R? is uniformly distributed unless it hits a singularity.
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It is clear that the restriction that we have imposed on the polycube translation
3-manifolds is a very severe one. It is an interesting open problem to study the
corresponding problem for general finite polycube translation 3-manifolds.

3. PROOF OF LEMMA 1.2

Recall that we denote the Kronecker direction by v = (a, 1, 3), where «, 5 and
a/ 3 are all irrational, and also assume that 0 < o < 1 and g > 0.
The irrational number « has infinite continued fraction

1
a=[0;a1,0as,0a3,...| = ——, (3.1)
a; + T
a2+a3+.4.
where aq, as, as, . . . are positive integers. For any k = 1,2, 3, ..., the k-th convergent
Pk JANe]
- = L = [O;aflva%ai’n"'aa’k]?
qk Qk(a)

where the integers p, and ¢ are coprime, is defined in terms of a finite initial segment
of the continued fraction (3.1), with denominator ¢ = (). It is well known that

HQOéH > ||Qk0<|| = quoz _pk|7 g=1,...,q+1 — 1,

el < llgnel], (3.2)
and
L < lgpal <
—— < @] < —.
Qo1 + @ S Gkt
These show that the convergents give the best rational approximations to a.
For any integer k > 1, let A(«) be the partition of [0, 1) with g1 division points
{fa}, €=0,1,2,... qpi1 — 1. (3.3)

We need information on the gaps between neighboring partition points, and these
can be described in terms of continued fractions. We also use the famous 3-distance
theorem [4, 5, 6, 7, 8, 9] in its strong form.

Lemma 3.1 (2-distance theorem). The distance between any pair of neighboring
partition points (3.3) of Ax(a) can only take the values

lgre||  and |lgpe| + ||qrsic],

precisely qp1 — qr and qi times respectively.

For every ¢t = 1,...,qrs1 — 1, consider the short special interval
Q@ !
() = ) =t = 1220, iy o I, (3.4)

with length

| Jk(e; )] = llgrer]]-
In view of ||gra|| + ||gr+1¢|| < 2||gre||, a simple consequence of (3.2), it is clear that
these intervals (i) are pairwise disjoint, (ii) are contained in the open interval (0, 1),
and (iii) have total length greater than 1/3.

The irrational number 8 has infinite continued fraction
1

pygra——

b2+b3+m

B = [bo; b1, b, b3, ...] = by + (3.5)




UNIFORMITY OF GEODESIC FLOW 13

where by is a non-negative integer and by, by, b3, ... are positive integers. For any
h=1,2,3,..., the h-th convergent

Ph _ Pu(B) [

- = = b05b17b27b37"‘7bh]7

@ ()

where the integers pj, and ¢j, are coprime, is defined in terms of a finite initial segment
of the continued fraction (3.5), with denominator ¢, = ¢;,(5).
For any integer h > 1, let B,(3) be the partition of [0,1) with ¢;,, division points

{epy, €=0,1,2,...,¢,, — 1. (3.6)
In view of Lemma 3.1, the distance between any pair of neighboring partition points
(3.6) of Bj(3) can only take the values

lanBll and g, 8] + l|gh1 Bl (3.7)
For every integer j = 1,...,¢,,, — 1, consider the short special interval
. . . a8l . a3
50) = i) = (1o - VB2, gy 4 1LY, (3.5)

with length
| Jh(B: )] = llanBIl-

It is clear that these intervals (i) are pairwise disjoint, (ii) are contained in the open
interval (0, 1), and (iii) have total length greater than 1/3.

Using the short special intervals above, we construct some small special rectangles.

Let the denominator gy = gx(a) of the k-th convergent of a be large, and let the
denominator ¢;, = ¢, () of the h-th convergent of  be substantially larger, both to
be made precise later.

The faces Y1, Ys, Y3 of the L-solid translation 3-manifold have bottom left vertex

P1 = (0717())7 P2 = (07070)7 P3 = (17070)
respectively. For every o = 1,2,3 and every j = 1,...,¢,,1 — Qk+1, We consider the
small special rectangle

Ropn(a; 1585 5) = {po + (2,0,2) € Y, : (x,2) € Ji(a;1) x J(B;7)}

on the face Y,. For every such ¢ and j, and for every i =0,1,...,qrr1 — 2, we also
consider the image of this small special rectangle under T& 5, glven by
R (o1 44585 + 1) = T2 g(Ropn(0; 15 8;5)) (3.9)

which is not necessarily in Y, but can be anywhere in ), and is splitting free, in
view of the properties (i)—(iii) of the short special intervals. In particular, the lack
of splitting implies that they are congruent rectangles, with the same area

Mo (RE (s 145 535 +14)) = (s )M (4 (85 1)), (3.10)
where A\; and )y denote respectively 1- and 2-dimensional Lebesgue measures. Thus
they are also small special rectangles.

Next, recall from Section 1 and (1.9) that the underlying set ) has a non-trivial
decomposition into a disjoint union Y = WUS of T}, g-invariant measurable subsets
W and S, with Ao(W) = 1 and A\o(S) = 2. Let £ > 0 be arbitrarily small but fixed.
Then there exists a subset Wi = W (e; W) C Y which is a finite union of disjoint
rectangles and such that the symmetric difference W AW, = W\ W)U (W \ W)

has measure

)\Q(WAW]_) < E. (311)
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Note also that the Y-complement W, = Y \ W, of W), satisfies

WAW, =8 AW (3.12)
For any pair (0,7) witho = 1,2,3and j = 1,..., ¢}, — k41, we call the collection
R (a4 ds B +14), i=0,1,. .., g1 — 2, (3.13)

of small special rectangles the T, g-power chain of the pair (o, j). Let § = d(¢) > 0
be fixed. We say that this T, g-power chain (3.13) is defective if every member of
the chain is bad in the sense that at least one of the following two properties holds:
(1) The member intersects the boundary of a rectangle of the set W;.
(2) The inequality

AQ(RL,m(O‘% L+4; 855 +14) N (W AWY))

- — >0 (3.14)
Ao(Rypop(as 1445 855 + 1))
holds.
To show that defective T, sg-power chains form a small minority, let A denote the
total number of pairs (o, j) satisfying ¢ = 1,2,3 and j = 1,...,¢),,; — qr+1 such

that the T, g-power chain (3.13) is defective. Then the total number A(gx+; — 1) of
small special rectangles (3.9) with

0=1,23 i=0,1,....,¢0:1—2, j=1,...,q1— G+ (3.15)
in defective T, g-power chains satisfies
Algen —1) <A+9, (3.16)

where A denotes the total number of small special rectangles (3.9) with (3.15) that
intersect the boundary of a rectangle in the set W, and {2 denotes the total number
of small special rectangles (3.9) with (3.15) such that the inequality (3.14) holds.

Consider a face Y,, where a typical point is of the form p, + (z,0, z). Note that
the intervals Jy(o;1 4+14), ¢ = 0,1,...,qrs1 — 2, are disjoint, and for each fixed i,
the intervals J; (857 +1), s = 1,...,¢), .1 — Qe+1, are disjoint. It follows that on Y,
any line segment in the z-direction intersects less than ¢, of the small special
rectangles, while any line segment in the z-direction intersects less than ¢y, of the
small special rectangles. This means that the boundary of any rectangle in the set
W\ intersects less than 2(gr+1 + q), +1> small special rectangles. Since W; contains
only finitely many rectangles, it follows that there exists a constant ¢; = ¢;(g; W)
such that

A < (@ + Gh)- (3.17)
Next, note that properties (i)—(iii) imply the trivial bounds
1 1
M@ > ———— and M(L(B1) > ——

so that
1

9grr1 = D(ghsr — 1)
Combining (3.11), (3.14) and (3.18), we deduce that

)
9grr1 = D(ghsr — 1)

No(RE (i1 403 B3 +14)) > (3.18)

£ > )\Q(WAV\/l) =
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This inequality can be simplified to

Q< e(gri1 = 1)(ghgr — 1) (3.19)
if we choose the parameter § to satisfy
6 =0d(e) = 912, (3.20)

Combining (3.16), (3.17) and (3.19), we deduce that

e (@rr1 + Ghyy)
Qr+1 — 1

A< +e2(gy — 1),

Since there are precisely 3(q, ., — qu+1) Tu g-power chains, it then follows that as
long as (3.20) holds, the proportion of defective T,, g-power chains is at most

c1(Qr + Bhi1) 61/2((1;1“ —1)
3(@hir — @hr) (@ — 1) 3Gy — Gern)’
We now repeat the argument for the reverse flow.
For any integer k& > 1, we consider the partition Ag(—a) of [0, 1) with g1 division
points

(3.21)

{—la}, €=0,1,2,... qxs1— 1.

For every i = 1,...,qx+1— 1, we consider the special short interval Jy(a; —i), defined
by replacing i by —i in (3.4).

For every o = 1,2,3 and every j = quy1+1,...,¢),,, we consider the small special
rectangle

Ra,k,h<a; _Lﬁaj - 2) = {pU + (I,O,Z) € YU : (l’,Z) € Jk(a7 _1) X Jl,z(ﬂaj - 2)}
on the face Y,. For every o and j, and for every i = 0,1,...,qx1 — 2, we also

consider the image of this small special rectangle under T, given by

Rpjnlos =1 =i 8:j = 2 = i) = T b(Ropon(o =13 63 — 2))
which is not necessarily in Y, but can be anywhere in ), and is splitting free. Thus
these are also small special rectangles, with the same area given by (3.10).
As before, for any pair (0,7) with 0 = 1,2,3 and j = quy1 + 1,..., @4, We say
that the T, é—power chain of the pair (o, ), given by

R (=1 —i:fij—2—1), i=0,1,...,q011 —2, (3.22)

is defective if every member of the chain is bad in the sense that at least one of the
following two properties holds:

(1) The member intersects the boundary of a rectangle of the set W;.

(2) The inequality

MRyl =1 =587 =2 =) N (WAW)) _
Ma(RE (s =1 —1i; ;5 — 2 —4)) -
holds, where 0 is defined as before.

An analogous argument then shows that the proportion of defective 7T é—power
chains is at most (3.21).

Lemma 3.2. Suppose that the proportion (3.21) both of defective T, g-power chains
(3.13) and of defective T;g-power chains (3.22) is sufficiently small. Then there
exists an integer jo satisfying qu41 + 1 < Jo < @1 — Qe Such that for every
oc=1,2,3,
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(i) the Taﬁ -power chain (3.13) with j = jy is not defective; and
(i) the T} w.p-power chain (3.22) with j = jo is not defective.

It follows from (i) that for every o = 1,2,3, there exists an integer iy satisfying
0 < 79 < g1 — 2 such that the small special rectangle

R;k,h(@; 1 +do; 35 jo + o)

does not intersect the boundary of a rectangle of the set W, and also satisfies the
inequality

No(RY a0 1+ o3 B3 jo + o) N (W A W)
)‘2<R2,k,h(a; 1 + o3 B; jo +10))
The former implies that
R;k,h(a; 1 +o; 85 jo +140) C Wi or R;M(a; 1 +1do; Bs jo +1i0) CWE. (3.24)
If the first condition in (3.24) holds, then it follows from (3.23) that
)‘2(Rakh(a L +0; B Jo +10) N W) -
)‘2<Rakh(a 1 +io; B3 jo + 40))
If the second condition in (3.24) holds, then it follows from (3.12) and (3.23) that
)‘Q(Rakh<a 1 +i0; B5jo +10) N'S) -
)‘Z(ngh(a 1+ io; B3 jo + o))

Since Ty g is measure-preserving and the subsets W and S are T, g-invariant, it
follows that each condition (3.25) or (3.26), if true, extends to the whole T}, g-power
chain. Thus in particular, one of the inequalities

< 4. (3.23)

1-4. (3.25)

1-6. (3.26)

)\Q(Rakh<a ; B50) NW) )\2(Rakh(a ; B5J0) N S)
: >1—-06 or : >1-
)‘2(Rakh(a : B Jo)) >‘2(Rakh(04 ; B3 Jo))
holds. Similarly, it follows from (ii) that one of the inequalities
>\2(Rokh( —LBijo—2)NW) A2(ngh( —1;B5J0 —2)NS)
>1-0 or >1-0
)\Q(Rakh( —1; B -]0 )) )\Q(Rakh( —1; ﬁ’ Jo _2))

holds. For o0 = 1,2, 3, we now take

R, leh( —1; B5Jo — 2) = Ropn(c; —1; B5 jo — 2)
on the face Y,, and take
Ry = Rl,k,h(a; 1; 85 jo) = Rorn(cs 1; 55 jo)
on the face Y.
To complete the proof of Lemma 1.2, it remains to specify the parameters.

To satisfy the condition (1.11) and its analogues, we need 1 — 4 > 99/100, so that
d < 1/100. In view of (3.20), we need the parameter € > 0 to satisfy

1

< .
810000
The parameter € > 0 also needs to be sufficiently small to ensure that the proportion
(3.21) of defective power chains is small. Note that that we can guarantee that

_'_ / / _ 1
qk,ﬂ Thi1 <1 and ?hH <1
3(qhyr — Q1) 3(qhy1 — qr+1)
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by ensuring that the two continued fraction denominators g4 and g, satisfy the

condition q;,,; > caqr41 for some suitably large absolute constant c,. Recall next

that the constant ¢; depends only on € and W. It follows that we can choose the

continued fraction denominator g1 to be sufficiently large to ensure that the factor
1

Qe+1 — 1
is as small as we please. This completes the proof of Lemma 1.2.

4. EXTENDING ERGODICITY TO UNIQUE ERGODICITY

The term unique ergodicity refers to the extension from uniformity for half-infinite
geodesics with almost every starting point to uniformity for half-infinite geodesics
with every starting point and that do not hit any singularity and become undefined.
The basic ideas and pioneering results are due to Bogoliuboff and Krylov [1] in 1937;
see also Furstenberg [2, Sections 3.2-3.3].

The proof of Theorem 1 is by contradiction and consists of two parts. Part 1 is a
general argument based on Krylov—Bogoliuboff theory, and the key idea here is to
reformulate the problem in terms of invariant Borel measures and to use functional
analysis. Part 2 is an ad hoc argument based on the special property that the v-flow
in the L-solid translation 3-manifold, when reduced modulo one to geodesic flow in
the unit torus [0,1)3, exhibits uniformity.

For convenience, we denote by M the L-solid translation 3-manifold.

Part 1. Suppose, on the contrary, that there exist a half-infinite geodesic L(v; po; t),
t > 0, with arc-length parametization, where v € R3 is a Kronecker direction and
p € M is the starting point, and a non-zero continuous function f, on M for which
uniformity fails. Then the infinite sequence of integrals

1 n
E/ fo(L(v;po;t))dt, n=1,2,3,...,
0

does not converge to

1
g /M f() d)\g, (41)

where %)\3 is a probability measure on M, so that there exists an infinite strictly
increasing sequence hg < hy < hy < hg < ... of positive integers such that the limit
1 hn
lim —— fo(L(v;post)) dt

n—oo h,, 0
exists but is not equal to (4.1).
Lemma 4.1. Under these assumptions, there exists an ergodic measure-preserving

system (M, B, v, v-flow), where B denotes the Borel o-algebra in M, and v denotes
a new v-flow-invariant Borel probability measure, such that

.1 [ 1
lim —/ Jo(L(v; Po;t))dt:/ Jodv # —/ JodAs. (4.2)
n—oo by, Jo M 3 Jm
Proof. We introduce, for every integer n = 1,2,3,..., the particular normalized
length-counting measure v, on Borel sets B in M defined by

1

n(B)= - / s (L(v: poi ) dt,
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where the characteristic function y g satisfies

|1, ifpeB,
XB(p)_{O7 if p ¢ B.

We then apply a general theorem in functional analysis which says that the space of
Borel probability measures on any compact set is compact in the weak-star topology,
which means that for every continuous function f on the compact space, as n — oo,

i, — o if and only if /fdun — /fd,u. (4.3)

Remark. This compactness theorem is a non-trivial result. The standard proof is
based on the Riesz representation theorem and can be found in most textbooks on
functional analysis.

Thus the space I = M (M) of Borel probability measures on M is compact, so
there exists a subsequence v, of the sequence v,, and a Borel probability measure
Voo such that v, — vo as m — oo, and it follows from (4.3) that

lim f dv,, = / fdv, for every continuous function f on M. (4.4)
M

m— 00

Let t; > O be arbitrary but fixed. For any continuous function f defined on M,
let f;, denote the function obtained from f writing f(¢t + ¢1) = fi, (). Then

1 P, 1 Py,
/ fu dvn, = 7 / [ (L(vipos;t)) dt = ; / F(L(vipost +t1))dt
M Nm Nm J0

0

1

b,
— i [ et at

1
hnm

_ / Fdvn, + E(ny),
M

_|_

/ol(fw(";pm’“r hn,,)) = F(L£(vi o)) dt

where

2ty sup | f|
hn,, '

Since f is continuous on the compact set M, the factor sup | f| exists and is finite.
Thus E(n,) — 0 as m — oo, so that

lim / fo, dvp,, = hm fdunm (4.5)

m— 00

Combining (4.4) and (4.5), we conclude that

/ fr,dvee = / fdvee,

and this establishes the v-flow-invariance of the limit measure v,,. Furthermore,
combining (4.2) and (4.4) with f = fo, we conclude that

1

This completes the proof. 0

|E(nm)| <
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Let 91, C 991 denote the set of Borel probability measures g on M that are
v-flow-invariant and satisfy the requirement

/M fodyu = /M o dv.

Then v, € My, so that My is a non-empty closed subset of M, and so M, is
compact.

With some appropriate v* € 91y, we can extend the above to a measure-preserving
system (M, B, v*, v-flow) which is ergodic. To prove this, we use the almost trivial
fact that 9, is convex. The general Krein—Millman theorem in functional analysis
implies that the non-empty compact and convex set 91, is spanned by its extremal
points. It is a well known result in ergodic theory that the extremal points in the
space of measures are the ergodic measures; see Furstenberg [2, Proposition 3.4].
Thus we can choose the measure v* € 2, above to be such an extremal point.

Part 2. Consider the measure-preserving system (M, B, v*, v-flow) which is ergodic.
We now apply the flow version of the Birkhoff ergodic theorem. For a continuous
function f on M and v*-almost every starting point p € M, we have

lim ! nf(ﬁ(v;p;t))dt :/ fdv. (4.7)
0 M

n—oo N

We return to the continuous function f; at the beginning of Part 1 for which
uniformity fails, and consider the Borel set

Y = {p € M : lim 1 nfo(/l(v;p;t))dt :/ fo du*}. (4.8)
M

n—oo M, 0

Then it follows from (4.7) and (4.8) that
v'(Y)=1. (4.9)
Meanwhile, the weaker form of Theorem 1 gives uniformity for As-almost every
starting point p € M, and so
M 1
tim [ fol(vipit) de = / fods. (4.10)
M

n—oo N 0

Combining (4.6) with v* replacing v, (4.7) in the special case f = f, and (4.10),
we conclude that

As(Y) = 0.

This implies that for every 6 > 0, there exists an infinite collection of disjoint axis-
parallel rectangular boxes R;, i = 1,2,3,..., such that

> A(R) <6 and Y C %, (4.11)
=1

=1

and it follows from (4.9) that

v (G zm) =1. (4.12)

Comparing (4.11) and (4.12), we see that there exists a positive integer iy such that

A3(Rip)
(R, < 4. (4.13)
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Clearly, for v*-almost every starting point p € M, we have

lim l/ X, (L(vipit)) dt = v"(Ry), (4.14)
0

n—oo 1N

where xg, is the characteristic function of R,

We next make use of the crucial fact that the v-flow in M reduces modulo one
to v-flow in the unit torus [0,1)®. Since M consists of 3 cubes, every point in
the unit torus [0,1)% has 3 pre-images in M. We can clearly assume that R, is
contained in one of these 3 cubes. Write R;, = P(1), and then let 23(2) and 2R(3)
denote axis-parallel rectangular boxes in the other 2 cubes with the property that
M(1),R(2),R(3) reduce modulo one to the same axis-parallel rectangular box in the
unit torus [0, 1)3.

Since v is a Kronecker direction, the continuous form of the Kronecker—Weyl
equidistribution theorem applies for geodesic flow in direction v in the unit torus
[0,1)3. Tt follows that

im 3~ [ o (v B3 )t = DR UK UR(B) = 30(0%) (@15)

holds for every starting point p € M where the half-infinite geodesic does not hit a
singularity.

Recall that (4.14) holds for v*-almost every starting point p € M. Let p* be such
a starting point. Combining (4.13) and (4.14) gives

Az (R 1 m )
3(6 . < Hm S e (E(vipT)) i (4.16)

On the other hand, the right hand side of (4.16) can be bounded from above by
using (4.15) with p = p*, and we have

1 n
lim — [ xo, (£(vip";t)) dt < 3A3(Ry,).

n—oo 1 Jg

Choosing 6 = 1/3 clearly leads to a contradiction, and this completes the proof of
Theorem 1.

5. PROOF OF THEOREM 2

The proof of Theorem 2 is an adaptation of the proof of Theorem 1, where the
only extra idea is one more application of ergodicity.

The geodesic flow in P x [0,1) under consideration is v-flow, with v = («, 1, ),
where «, 8 and «/f are all irrational. For simplicity, we assume that o > 0 and
£ > 0, and like before, we further assume that o < 1.

For the o-th atomic cube of P x [0,1), where ¢ = 1,...,d, we denote by X,
and Y, the left X-face and the bottom Y-face respectively, and denote by FE, the
common edge of the right X-face and the top Y-face, as shown in Figure 5.1.
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y ® o4

X v

Y, So

Figure 5.1: the faces X,,Y, and the edge F, of the o-th atomic cube,
and the narrow strip S, on Y,

We consider the discretization of the v-flow in polycube translation 3-manifold
P x [0,1) relative to the Y-faces, where the flow hits the faces Yi,...,Y;. Let

Top:Y=Y1U...UY; =) (5.1)

denote the relevant discrete transformation defined by consecutive hitting points.
Note that the projection of the v-flow to the zy-plane gives rise to a flow on the
polysquare translation surface P with slope a~!.

We need to prove that T, 3 is ergodic. As before, we proceed by contradiction.
Assume, on the contrary, that Ty, g is not ergodic. Then there exist two 7T}, g-invariant

subsets W (white) and S (silver) such that Y = WU S and
1< W) < M(S8) <d—1, (5.2)

where Ay denotes the 2-dimensional Lebesgue measure. We show that this leads to
a contradiction.

Again, we consider the multiplicity functions fy,, and fs of the invariant sets W
and S respectively. More precisely, consider the projection of ) to the unit torus
[0,1)2, given by (1.3). Then for every point P € [0,1)?, there are precisely d points
Py, ..., P; € Y which have projection image P. Let

w(P)=|{P,....,P;}nW| and fs(P)=|P,...,Pi}NS| (5.3)
denote the number of these d points that fall into VW and S respectively, so that
fw(P)+ fs(P)=d for almost all P € [0,1)%. (5.4)
We also consider the corresponding projection of
Tos:Y—Y to Tp:[0,1)> =1[0,1)%

which is simply the (a, 3)-shift on the unit torus [0, 1),

For each 0 = 1,...,d, there is a line segment on the face Y, which is the image
under 77 é of the edge E, of P x [0,1) of the o-th atomic cube. It is possible that
this edge E, is a singular edge of P x [0, 1). Consider a narrow strip neighbourhood
S, of this line segment, as illustrated in light gray in the picture on the right in
Figure 5.1. As in the proof of Lemma 1.2, we can think of the z-coordinate of every
point in .S, to fall modulo one into an interval of the type

Jk(Oé; _1) _ ({—Oé} N ||qkaH’{_a} + HQI;OCH) '

2

In other words, if p, represents the bottom left vertex of the face Y, of the translation
3-manifold M, then

Sy ={Ps + (2,0,2) € Y, : (z,2) € Jp(a; —1) x [0,1)}.

It is straightforward to extend Lemma 1.2 to the case of a polycube translation
3-manifold which is the cartesian product of a polysquare translation surface with
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d faces with the unit torus. However, to establish Theorem 2, we need something
stronger than this extension, and this is facilitated by making a small change to the
definition of the small special rectangles.

For every integer j = 1,...,¢,,, — 1, we replace the short special interval (3.8)
by the possibly longer interval

. . , B 37 - B;J;+
i) = o) = (19 = HEE gy BEEDN s
where 0(3;j; —) and 9(f;j; +) denote the distances of {j5} to its immediate left
neighbour and to its immediate right neighbour respectively in By (). Clearly each
of 9(B;j; —) and 9(B; 7; +) has value equal to one of the values in (3.7).
The small special rectangles R, j 5 and R! ok 88 well as the Ty, g-power chains and

the T, } s-power chains are then defined with the modification (5.5) in place. Note in
partlcular that this modification is in the z-direction which is integrable, so all the
small special rectangles and their images remain splitting free as before.

Let I C [0,1) be an interval of the form (5.5), and let

Ry, ={(z,y,2) € So:2€ 1}, o=1,...,d, (5.6)
denote small special rectangles of the decomposition of the strips Si,..., 53 on the
faces Y1, ..., Yy respectively with the condition that their images on [0,1)? under

the projection (1.3) coincide, so that they are in the same relative positions on the
faces Y1, ..., Yy respectively. It is clear that the image of each of Ry,..., Ry under
T, s splits along the edges L, ..., Eq into congruent halves. For each o =1,...,d,
the rectangle R, splits into the left half RS and the right half R}, and it is clear

that their images under 7T, g may lie on distinct Y-faces. On the other hand, for
every o0 = 1,...,d, there is a small special rectangle in Y, of the form

which is the union of the image under Tfé, g of the left half R, of some small special

rectangle R, and the image under 7’ 2,5 of the right half R;r,, of some small special
rectangle [7,,. Here the two small special rectangles R, and I,» may be identical or
different. However, in view of the restriction imposed on the small special rectangles
Ry,..., Ry that their images under the projection (1.3) coincide, we deduce that the
images of the small special rectangles R}, ..., R} under the projection (1.3) also
coincide, apart possibly from sets of zero measure caused by the singular edges of

P x[0,1).

®
®

R*

o

7
R,~7 R, R,

TZ

a,B

(Ry) T2 5(Ry0)

Figure 5.2: the small special rectangles R, and R} on the face Y,
and the projectied view with the z-coordinate removed

It is clear that the rectangles Ry, ..., Rq and RJ,..., R} have the same area.
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Given a positive number 1 > 0, we say that a collection (R, ..., Rq) of the form
(5.6) is n-nice if for each 0 = 1,...,d, the set R, satisfies
Ao(R, N WV) X (R, NS)
=2 I >1-np or /L 2 >1-—n,
Aa(Ry) ! Na(Ry) !
and the set R}, satisfies
Xo(RENW) X(RENS)
— - >1- or ——>——~>1-—n.
Aa(B) ! Aa(F3) !

We have the following stronger form of Lemma 1.2.

Lemma 5.1. Let € > 0 and n > 0 be arbitrarily small and fized. Then there exist
sufficiently large integers k and h such that for every o = 1,...,d, the union of all
rectangles Ry . n(a; 1; 85 j) in the strip S, arising from n-nice collections (R, ..., Rq)
has area at least (1 — £)Ay(Sy).

Idea of proof. There are two critical changes to the proof of Lemma 1.2, and each
contributes to part of the value of €.

First of all, by modifying the small rectangles in the z-direction, we ensure that
for each 0 = 1,...,d, the inequality

Q;LJrl_Qk—o—l

M| U Rownles385) | = (1= aea(lanBl + ldhaB1)) Aa(So)
j=1

holds. With sufficiently large values of h and k, the factor gry1(||g,8] + [|gh16]))
can be made arbitrarily close to 0. This means that the small special rectangles in
the strip S, make up nearly all of .S,.

Next, the conclusion of Lemma 3.2 can be significantly extended. It can be shown
that by choosing h and k suitably large, we can guarantee a proportion arbitrarily
close to 1 of indices jo satisfying gp+1 + 1 < jo < ¢, — Qr41 such that for every
o = 1,...,d, the T, g-power chain (3.13) with j = jy is not defective, and the
T L-power chain (3.22) with j = jo is not defective. O

a?
We may assume, without loss of generality, that ¢ = 1 is part of the cycle of

length dy > d/2 of the splitting permutation.
Suppose that there exist two different small special rectangles R} and R/ in the

strip S; that arise from n-nice collections (R}, ..., R)) and (RY,..., R} respectively
such that
Ao (R NW X(R]NS
Ao (1) Ao (RY)

Applying the splitting method argument at the end of Section 1 to R}, we conclude
that there are at least dy sets among R, ..., R/, which are overwhelmingly in W, so
that fyy > dy > d/2. Meanwhile, applying the same argument to R/, we conclude
that there are at least dy sets among R, ..., R which are overwhelmingly in S, so

that fs > dy > d/2. This is clearly a contradiction, since fy, + fs = d.

Hence the strip 57 is overwhelmingly monochromatic. We may assume, without
loss of generality, that the strip S is overwhelmingly in W. In fact, a proportion
exceedingly (1 —¢)(1 —n) of Sy is in W. We shall show that this eventually leads
to a contradiction.

We return to the translation 3-manifold M = P x [0, 1), with As-preserving flow
in the direction v = («, 1, ). We have assumed that this flow is not ergodic, so that
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there exists a decomposition M = W5 U S3 into two v-flow-invariant and disjoint
subsets W5 and S; such that

1<)\3(W3):fwgd—1, 1<)\3(53):f3<d—1, fw+f3:d

Remark. In view of the relationship between the discrete 7, g-invariance and the
continuous v-flow-invariance, one can visualize a close relationship between the pair

(W, S) and the pair (W3, Ss3), in that
fw(P) =X3(Ws3) and fs(P) = \3(S3) for almost all P € [0,1)%.
For convenience, we may write fyy = A\3(Ws) and fs = A3(S3).

Let x = xy, denote the characteristic function of the invariant subset W5 C M,
so that

()_ 1, if s € Wy,
XSI=9 0, ifsgws.

Writing s = (x,y, 2) and using Fubini’s theorem, we have

/M x(s)ds = /P (/m’l)x(fv,y,Z) dZ) da(z,y),

where the inner integral
R ARCAELE (57)
0,1

is well defined in the Lebesgue sense for almost every (z,y) € P.

Lemma 5.2. Suppose that the v-flow in M is not ergodic. Then for almost every
(z,y) € P, we have
d—1

<y =<l 63

Sketch of proof. Recall that the projection of the v-flow in the translation 3-manifold
M to the xy-plane is a geodesic flow with slope a™! on the polysquare translation
surface P. Meanwhile, note that M = P x [0,1) is a cartesian product where the
second factor, the unit torus [0, 1), is in the integrable z-direction. Since W5 C M is
a v-flow-invariant set, it follows that the function ¢(x,y) in (5.7) on P is invariant
under the geodesic flow with slope a~! on P. As the slope ! is irrational, it follows
from the Gutkin—Veech theorem [3, 10] that this geodesic flow on P is ergodic. This
implies that the function ¢ (z,y) is constant almost everywhere on P. The result
follows. U

Lemma 5.2 implies that fs/d > 1/d part of S} is in S, a contradiction. This gives
ergodicity in Theorem 2. Unique ergodicity can be established by a straightforward
adaptation of the argument in Section 4.

We also establish the following simple consequence for use later.

Let OxP denote the union of the d edges of the polysquare surface P which are
in the x-direction.

Lemma 5.3. Suppose that the v-flow in M is not ergodic. Then for almost every
point (v,y) € OxP, the inequalities (5.8) hold.

Sketch of proof. Since the v-flow is linear, the integral (5.7) is well defined for almost
every (z,y) € OxP. On the other hand, for every x* € [0, 1), there are precisely d
points (2,,Yy,) € OxP, 0 = 1,...,d, such that z, = 2* mod 1. a
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6. A STRONGER RESULT

The next step in our investigation is to remove the somewhat artificial hypothesis
in Theorem 2 concerning the splitting permutation.

Theorem 3. Suppose that a polycube translation 3-manifold M is the cartesian
product of a polysquare translation surface P with d square faces and the unit torus
[0,1). Then any half-infinite geodesic in M with a Kronecker direction v € R? is
uniformly distributed unless it hits a singularity.

As before for Theorem 2, we assume that v = (a, 1, 3), where o, 5 and «/f are
all irrational, and that 0 < a < 1 and § > 0. We also adopt the notation and
terminology in Section 5. Again, we assume that the discrete transformation 77, g
given by (5.1) is not ergodic. This leads to a partition ) = W U S into a disjoint
union of two T, g-invariant measurable subsets W and S such that (5.2)-(5.4) are
valid. Since W is measurable, given any arbitrarily small € > 0, to be fixed later,
there exists a set W, = W (e; W) which is a finite union of disjoint rectangles aligned
with the edges of the faces Yi,..., Y, such that the symmetric difference

WAWr=WAW)UWi\ W)
satisfies the inequality
/\2(WAW1) < €. (61)

Given any positive integer H, we can divide the unit interval [0,1) in the usual
way into H equal subintervals

—1
I(1) = {—TH ,%), T=1,...,H.

For each 7 = 1,...,H and ¢ = 1,...,d, let I,(7) be the subinterval on the part
of OxP corresponding to the face Y, such that [,(7) = I(7) mod 1, and consider
the strip 1,(7) x {y,} x [0,1) on the face Y,, where y, is the common value of the
y-coordinates of the points on Y.

Since the set W is a finite union of disjoint aligned rectangles, it follows that
as long as the threshold H = H(W)) is chosen sufficiently large, then at least half
of the indices 7 = 1,..., H are safe in the sense that for every ¢ = 1,...,d, the
strip I,(7) X {y,} % [0,1) on the face Y, does not contain any z-parallel edge of any
aligned rectangle in the finite union W;. Let H C {1,..., H} denote the collection
of safe indices. Then it is clear that |H| > H/2.

Let 7" € H satisfy the property

Ao ((W 2w 0 () x {n} < [0, 1>>>

o=1

:m%&(WAMAﬂU X {yo} % MDO‘

TE
For convenience, write
I(7) = Ty = Ly(W,) C [0,1), sothat |Zo|=H ", (6.2)
and for o = 1,...,d, write
T, = I,(r"), sothat Z, =7Zymod 1.

We have the following intermediate results.
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Property A. For everyo =1,...,d and every x € Z,, consider the z-parallel cross
section of Wy on the face Y, given by
cso(z;Wh) ={2€10,1): (z,y5,2) EWL1NY,} C[0,1).
Then cs,(x; Wh) is independent of the choice of © € Z,,.
Sketch of proof. Consider the set
cseWh) = {(z,2) € T, x [0,1) : (x,ys,2) € W1 NY,}.

Note that Z, = I,(7*), where 7* is a safe index. This means that for any aligned
rectangle R in the finite union W, either

cse W) NR=0 or cs,(W)NR=T, xJ
for some subinterval J C [0,1). The result follows almost immediately. O

Remark. For every o = 1,...,d and almost every € Z,, the z-parallel cross section
of WW on the face Y, given by

cso(z; W) ={2€[0,1): (2,9,,2) e WNY,} C[0,1)
is well defined and measurable, but is not independent of the choice of x € Z,.

Property B. For every o =1,...,d, we have
2e
(W AW N (Z, x {ys} x [0,1))) < T (6.3)

Proof. We have
Ao(W A W) N (T % {yo} x [0,1))) = Aa(W A W) N (L(77) X {ys} x [0,1)))

x <<w Aw) N6 % urd < 0 1>>) <2 2

o=1
where the second last inequality comes from the fact that the minimum over H does
not exceed the average and the fact that

U U x{ys} x[0,1)) C Y

TEH o=1
is a disjoint union so that

d
> A ((W AW A JUs(7) x o} x [0, 1)))
TEH o=1
< ((WAW)NY) = (W AW).
This completes the proof. O
In view of Property A, for every o = 1,...,d, we can choose z, € Z, arbitrarily,

and consider the z-parellel cross section
Ua == Csa(xa; Wl)

We need some auxiliary results.

We consider Lebesgue measurable subsets U, C [0,1), 0 = 1,...,d, of the unit
torus [0,1). In particular, we make the assumption that 0 < A\ (U;) < 1, where A\;
denotes 1-dimensional Lebesgue measure. Furthermore, for any real number v € R,
we consider the u-translated copy of U;, given by

u+ U ={{u+z}:2€eU}.
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Lemma 6.1. The set of values ug € [0,1) for which the inequalities

MUy, A (ug + 1)) = —=M(U)(1 = \(Th)), o=1,...,d,

1
32d?
hold simultaneously has Lebesque measure at least 1/2.

For every real number z € R, denote by

lz]| = min |z — n|
neZ
the distance of z from the nearest integer.

Lemma 6.2. Let v = (a, 1, 3) € R3 be a Kronecker vector. For every e; > 0, there
exists an infinite sequence

L <my(er) < ma(er) <mas(eg) < ...
of positive integers such that
|lm;(e1)al] <e1, j=1,2,3,..., (6.4)
and the sequence {m;(e1)B}, j =1,2,3,..., is uniformly distributed in [0,1).

Proof. Since «, f and a/f are all irrational, the Kronecker—Weyl equidistribution
theorem implies that the sequence

{je},{58}), 7=1,23,...,

is uniformly distributed in the unit square [0,1)?. For any g; > 0, let my, ma, ms, . . .
be the subsequence of 1,2, 3, ... such that

{mja} €[0,e9)U(1—¢€1,1), j=1,2,3,....
The conclusion follows easily. 0
Since the sequence {m;(e1)8}, j = 1,2,3, ..., is uniformly distributed in [0, 1), it

follows that for any § > 0, there exists a subsequence m;,, m;,, mj,, ... such that for
each term m;, = mj,(e1;9), the inequality

[[1m,(£15.0) 5 — ol <0

holds, where ug € [0,1) is given by Lemma 6.1 and fixed. Clearly there exist two
successive convergents of «, with denominators ¢x(a) and gxi1(cv) such that

i) < my(€1;0) < Grya(a). (6.5)

We work with the denominator ¢ = gx(«) of a particular convergent of a that
satisfies the inequalities (6.5), and can choose my,(€1;6) large enough so that gy is
substantially larger than |Zo|~' = H, where Z; is defined by (6.2).
Write N = mj,(g1;9), so that
ar(a) < N < grya(a).
Foreveryo=1,...,dand i =1,...,q1—1, consider the Ji-type z-parallel strip
Sek(i) ={(2,Ys,2) € Y, : © € Ji(i) mod 1},

where the short special interval Jg(i) is given by (3.4). Furthermore, consider the
half Ji-type z—parallel strips

i) ={(7,ys,2) € Yo 1w € J (i) mod 1},
S:k() {(z,v5,2) €Y, : x € J;F (i) mod 1},
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where

I (i) = ({m} - ”q’;"‘”,{m}> and J7 (i) = ({m},{m} + qu&H) .

2

Since g is large compared to |Zy| ™', the z-parallel strip Z; x {y;} x [0,1) C V;
contains a significant number of strips of the form S (i), where i =1, ..., g1 — 1.

Lemma 6.3. For everyi =1,...,q+1—1, at least one of the two T,, 3g-power chains
10551 ,(0), n=1,...,N, (6.6)
TgﬂSik(i), n=1,...,N, (6.7)

1s splitting free.

Proof. For any fixed i = 1,..., qx+1 — 1, consider the T, g-power chain
T35S k(i), n=1,...,N.

Either no member of this chain splits, or there is a smallest ng = 1, ..., N satisfying
i+ no = gr+1, in view of the 2-distance theorem, such that 7,95 k( ) splits. In the
latter case, we have

({(z’+n0)a}— A+ ng)a + ”q’; ”) n{0,1} # 0. (6.8)

Suppose first that the intersection (6.8) is {0}. Then

el
2

. qro]| . [ ||
0<{(z+n0)a}<T<{(z no)a} + —— 5

Any point (z,y,z) € Tg%Ska(z) must satisfy

xe ({@ +ng)at, {(i + ng)a} + ”q’; ”) mod 1. (6.9)
Since the interval in (6.9) is contained in (0,1), it follows that T7%ST, (i) does not
split. We can now prove by induction that for every n = ng+ 1,..., N, any point
(,y,2) € T7 557, (i) must satisfy

T € ({(z +n)at, {(i +n)a} + Hq]; H> mod 1. (6.10)

The inequality 0 < n —ng < gx+1 — 1 and the 2-distance theorem now ensure that
the interval in (6.10) is contained in (0,1). Tt follows that T S}, () does not split.
We thus conclude that the T, g-power chain (6.7) does not split.

Suppose next that the intersection (6.8) is {1}. Then a similar argument shows
that the T, g-power chain (6.6) does not split. O

We denote by

Tr,S1 (i), n=1,...,N, (6.11)
one of the T, g-power chain (6.6) and (6.7) that is splitting free.
It is clear from the properties of the short special intervals Ji(7),7 = 1,..., qer1—1,

that the sets S;k(z’), i=1,...,qk11— 1, that are contained in Z; x {1} x [0,1) C Y}
together occupy more than 1/10 of Z; x {y;1 } [0, 1), and so have total area exceeding
1/10H. For each of these sets, consider the last element of the chain (6.11), of the
form

TOIL\’TBSI,,C(Z') CY, forsomeo=1,...,d
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Suppose that Y,, contains the maximum number of such images, and let J(oy)
denote the collection of indices ¢ = 1,...,qs1 — 1 such that TCJXBSI,,C(Z') C Y,, and

ST 4(1) C Ty x {y1} x [0,1). Then

1
N ot ¢
U C Yo‘g and )\2 | U TaﬂSl,k(Z) 2 M (612)
ZEj 0'0) 163(0'0)

Lemma 6.4. We have

M| Waw)n | TNS806) | <260 +20ed) | | T,ST,3) | (6.13)
1€3(o0) i€J(00)
and
| wawyn | S1.6) ) <20edx [ | S].60) |- (6.14)
1€J(00) 1€J3(00)

Proof. For every i € J(0y), the condition Sik(z) C 7y x {y1} x [0,1), together with
(6.4) and N = mj,(e1;0), ensure that the total area of the images in (6.12) that fall
outside the subset Z,, X {yo,} X [0,1) C Y, does not exceed 2¢;. It then follows
from (6.3) with 0 = 0 and the second inequality in (6.12) that

X | W aw)n U L (4)

1€3(00)

S A2 U ZsS1a(0) |\ Zoo X {40} x [0,1))

1€3(00)

+ (W AW N (Zoy X {0} x [0,1)))

2e .
<2+ <20 +20ed)y | ) T, :

1€3(o0)

establishing (6.13).
To establish (6.14), note from the second inequality in (6.12) that

1
F ] s
(U SLo) | = o (6.15)
1€J3(09)

It then follows from (6.3) with o = 1 and (6.15) that

Do | Wawnn | SLu) | < (Y AW)N (T x {yi} x [0,1)))

i1€J(00)

%
<4 < < 20ed )\, US

i1€J(00)

This completes the proof. 0
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Lemma 6.5. Let 21 be the x-coordinate of a point of Sik(z) for some i € J(oy).
Then

NG+ csi(x1; W) = 8oy (Tog; W),
where
INB = ol <6 (6.16)
and ,, 1s the x-coordinate of a point of TO{\’BSIT (1) satisfying {x,,} = {x1 + Na}.
Sketch of proof. Note that TN gives rise to a shift in the z-direction by N mod 1

and a shift in the x- d1rect10n by Na mod 1. Note also that W is invariant under
T, 3. We have earlier chosen N to satisfy (6.16) and ||[Na|| < e;. O

We are interested in the set

Xo=<z:(x,y1,2 U S ) for some z € [0, 1) (6.17)

i1€J3(00)

of the z-coordinates of points on Y; and the set

Xn =R 2:(2,Ys,, 2 U ) for some z € [0, 1) (6.18)

i€J(00)

of the z-coordinates of points in Y,,.
Let x; € &y and z,, € Xn be chosen arbitrarily. Applying Lemma 6.1 with
o = o0y to the sets

Uy =csi(z;Wh) and U,y = Sgy(Tog; Wh), (6.19)

we deduce that

)\ (UGOA<U0+U1)) )\ (Ul)(l—/\l(Ul))

32d?

By the continuity of the Lebesgue measure, for any fixed n > 0, if 6 > 0 in (6.16) is
sufficiently small, then

1
M(Usy & (NB+Th)) 2 oM 1(Un)(1 = M(Uh)) —
Choosing
1
=M1 = M(lh)),
we deduce that
1
M(Usg A (NB+UY)) = @)\1(%)(1 — A\ (Uh)), (6.20)

provided that § > 0 is sufficiently small.

Lemma 6.6. We have
1
M{z € Xt Ai(cse, (3 W) A e84y (23 W) > 300ed}) < 1—0)\1()(N), (6.21)
provided that 1 is sufficiently small. We also have

M({r € Xy M(esi (@) A esi (2 01)) > 200ed)}) < 1—10>\1(X0). (6.22)
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Proof. First, note that

/ A (CSey (23 W) A CSgp (2 Wh))de = X | W AW N U T
XN

1€J(o0)

Combining this with (6.13) and noting

)\2 U T . :)\l(XN)a

1€3(00)

we conclude that

/ A1 (CSgo (T W) A Sgy (23 Wh)) dae < 261 + 20ed A (Xy) < 30edA (Xy)
XN

provided that
g1 < 5€d)\1(XN) (623)

The inequality (6.21) follows immediately from this.
Next, note that

/ A(esi(zs W) Acsy(x;Wh))de = e | W AW N U S
Xo

1€J(00)

Combining this with (6.14) and noting

/\2 U S . = )\1(‘)(0)7

”LEJ 0’0

we conclude that

/ Ar(esy(x; W) A esy(z; W) doe < 20ed A (XD).
Xo

The inequality (6.22) follows immediately from this. O

It now follows from Lemma 6.6 that there exist z7 € &y and = € Xy satisfying
{z},} = {27 + Na} such that

A1 (CSay (255; W) A 5o, (25
provided that (6.23) holds, and
A(csy(a]; W) A esq (27 W) < 200ed. (6.25)
Combining (6.19) and (6.20), we have

W) < 300ed, (6.24)

0'07

A (UD)(1 = A (U1)) < A€o (Tog; W1) AN (NS + cs1(z1;Wh)))
= A1(C8gq (@) ; Wh) A (N 4 csy (273 W), (6.26)

64d2

where the last step is justified by Property A. Next, by the triangle inequality
MAAC) < MAAB)+M(BAC),
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valid for measurable sets A, B,C' C [0,1), we have

A (CSgo (25 W) & (N + csi(z]; Wh)))
< A1(C8gy (75 W) A csgy (2,3 W)
+ A1 (esey (25 W) A (NB + csi(z]; W)
+ AM((NB + es1(@; W) A& (NS + esi(2]; Wh)))
o0i W) & 8o (25,5 W)
+ M((NB + esi(@; W) A (N + esi (a1 Wh)), (6.27)

< Ai(esgy (2 o0’

where the last step is justified by Lemma 6.5.
Combining (6.24)—(6.27), we now conclude that if (6.23) holds, then

1
64d?
It remains to specify the parameters ¢ and ¢;.

The assumption that the discrete transformation 717, g is not ergodic also implies
that the v-flow in M is not ergodic. Thus Lemma 5.3 implies that
d—1

< /\1(C81([E’1(,W)) < T

— M (U) (1 = A (Th)) < 5002d. (6.28)

S

Combining this with (6.25), we deduce that

1 d—1
— —200ed < Ag(csi(z7; W) < —— + 200ed.

d d
Choosing ¢ to satisfy
1
200ed < —, 2
00=d < o (6.29)
and noting that U; = csy(27; Wy), we deduce that
1 1
Hence
Lo -nwn s (LY (6.30)
64a2" BV eaar \2d ) '
Clearly (6.28) and (6.30) contradict each other if
- 1
1280004

This is stronger than the restriction (6.29).
Finally, note from (6.17) and (6.18) that

1

H?

where H = H(W)) is chosen sufficiently large. Here W; depends on ¢, in view of
(6.1). Clearly ¢; can be chosen sufficiently small in terms of € so that the condition
(6.23) is satisfied.

This gives ergodicity in Theorem 3. Unique ergodicity can then be established by
a straightforward adaptation of the argument in Section 4.

M(Xy) = M (X)) < || = | L] =
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7. PROOF OF LEMMA 6.1

For every o = 1,...,d, let
(z) = 1, ifx e U,,
XUAT) =0, ifz €U,
and

(.%)_ 1, ifxeu+ U,
XutU\F) = 0, ife &u+ U,

denote respectively the characteristic functions of U, and u + U;. Then it is not
difficult to see that

M(Us A (uo + Ur)) = /0 (xv, (%) = Xuztr (2)) dz. (7.1)

On the other hand, the n-th Fourier coefficient of . and of .., are respectively

1
an;o — / XU, (x)e—Qwin:p dZL’
0

and
1 1
—27minx —2minu —2min(x—u —2minu
/ Xuiv; (7)€ dr=e / X, (x —u)e @ dr =e 1.
0 0

Applying the Parseval formula to the right hand side of (7.1) then gives

MUs A (ug+U1)) =) |t — e ] (7.2)
nez
Suppose that n € Z is non-zero. The complex valued function e *™"“q,, is

periodic in u € R with period |n|™!. Indeed, its values over a period forms a circle
circle(n; 1) = {e ?™q,, : 0 < u < |n| ™'}

on the complex plane, as shown on the left in Figure 7.1.

ﬁnlan;l
disk(n; o3 7)

Un;o

circle(n; 1) .

0 \
|an; | length < 27r = 2771 |

Figure 7.1: circle(n; 1) and disk(n;o;7r)

Let disk(n;o;7) denote the circular disk on the complex plane centred at a,.,
and with radius r > 0, as shown on the right in Figure 7.1. The intersection of
circle(n; 1) and disk(n; o;r), if not empty, is a circular arc within disk(n;o;r) with
length clearly less than the circumference 277 of the disk.

We let r = n|a,,1|, where the parameter n € (0,1) will be determined later. Now
partition circle(n; 1) into two parts, one disjoint from disk(n; o; n|a,.1|) and the other
contained in disk(n; o;n|an1|). It is then clear that the inequality
ana|? = 1?|ana |* (7.3)

—27inu
s — €
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holds for u € [0,1), with the possible exception of a subset

bad(n;o;n) C [0,1) with Aj(bad(n;o;n)) < n. (7.4)
For every n € Z \ {0}, every 0 = 1,...,d and every u € [0, 1), let
| Janal?, if u € bad(n;o;n),
Frio(u) = { 0, if u ¢ bad(n;o;n). (7.5)

Then for every o = 1,...,d, it follows from (7.4) and (7.5) that
Z / ncrn 77 Z |anl|2 (76>
nezZ\{0} neZ\{0}

If, further, we let

1
violator(o;n) = ¢ u € [0,1) : Z Foom(u) > 3 Z anal? ¢, (7.7)

nezZ\{0} neZ\{0}
then it follows from (7.5) and (7.6) that

A1 (violator(o;n)) < 2n. (7.8)
If w e [0,1) \ violator(c;n), then using (7.5) and (7.7), we have

Z |ana* = Z |anal® — Z [

nez\{0} neZ\{0} neZ\{0}
Fn;d;n(u)zo an»n(u);ﬁO
1 2
= > analP = D> Fug(u ) > > anal” (7.9)
nez\{0} nez\{0} nez\{0}

Recalling that the condition F,,,.,(u) = 0 implies the inequality (7.3), it then follows
from (7.9) that

2
Do lawe =T 0P 2t Y el > Y lanal

neZ\{0} neZ\{0} neZ\{0}
Fniom(u)=0 Fr.om(u)=0

We therefore deduce that for every o = 1,...,d, the inequality
2
Do lawe e ang P> L Y Janal (7.10)
n€Z\{0} neZ\{0}

holds for every u € [0, 1) \ violator(c;n), where the bound (7.8) holds.

To evaluate the sum
Z |ana* = Z |ana [ = [aoa]?, (7.11)
neZ\{0} nez

we note that the Parseval formula gives

S amal? = / 2, (1) da = / o () d = A(T), (7.12)

nez

while by definition we have
2

sl = ([ (@) ar) = u()? (713)
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From (7.11)—(7.13), we deduce that
D anal = MU = M (D). (7.14)

nez\{0}
Combining (7.2), (7.10) and (7.14), we now deduce that for every o = 1,...,d,
the inequality
2

M(Us & (o +T2)) > TX(O)(1 = Ma(T))

holds for every u € [0,1) \ violator(o;7n), where the bound (7.8) holds. Finally, let
n = (4d)~'. Then it follows from (7.8) that

d
. 1
A1 (U violator(o; n)) < 2nd = 3

o=1

This completes the proof of Lemma 6.1.

8. KRONECKER—WEYL POLYCUBE TRANSLATION 3-MANIFOLDS

Both Theorems 2 and 3 concern finite polycube translation 3-manifolds that are
the cartesian products of finite polysquare translation surfaces with the unit torus
[0,1)%. These special polycube translation 3-manifolds all have one direction which
is integrable, and can therefore be considered as degenerate cases in the class of all
finite polycube translation 3-manifolds.

We are currently unable to answer in full generality the question raised in the Open
Problem in Section 1. However, we are nevertheless able to answer this question
in the affirmative for infinitely many finite polycube translation 3-manifolds that
do not have any direction which can be considered integrable. The construction of
such examples of finite polycube translation 3-manifolds comes from the notion of
split-covering.

Before we describe this construction, we consider a simple example.

Example 8.1. Consider the unit torus [0,1)? as a basic building block. Then any
half-infinite geodesic in [0,1)* with a Kronecker direction is uniformly distributed.
The L-solid translation 3-manifold M can be viewed as a 3-fold split-covering of
[0,1)3, and Theorem 1 states that any half-infinite geodesic in M, with a Kronecker
direction is uniformly distributed unless it hits a singularity.

Let us now take M as a basic building block, and consider next a rather special
4-fold split-covering of M| where the 4 copies of M are placed side-by-side in the
x-direction, as shown in Figure 8.1.

)

Clearly if we simply glue the 4 copies of M, together, then the resulting polycube
translation 3-manifold M is integrable in the z-direction, and can be considered
degenerate. To ensure that the resulting polycube translation 3-manifold M is not

Figure 8.1: 4 L-solid translation 3-manifolds
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degenerate, we convert some of the X-faces into walls, as shown in the examples in
Figure 8.2.

Figure 8.2: non-degenerate 4-fold split-coverings
of the L-solid translation 3-manifolds

We claim that any half-infinite geodesic in either example of M in Figure 8.2 with
a Kronecker direction is uniformly distributed unless it hits a singularity.

To give a brief glimpse of our method and help formulate our result, let us consider
the example of M on the right hand side, and ignore the atomic cubes at the front,
as indicated in Figure 8.3.

7/

-4+ i i e I A o
|
‘ | |
| | |
k

v |

L, v AN SN A

Figure 8.3: ignoring parts of a non-degenerate 4-fold split-covering
of the L-solid translation 3-manifolds

Removing the front atomic cubes altogether, we obtain the collection of atomic
cubes as shown in Figure 8.4. Here we see a 4-fold split-covering in the z-direction
with an X-street of length 4, while immediately below are 4 X-streets of length 1.

Figure 8.4: a very special 4-fold split-covering

We shall show that this is the crucial part of M, and that the remaining atomic
cubes of M are totally irrelevant.

Theorem 4. Let P be a finite polysquare translation surface, and let My = [0, 1) x P
denote the cartesian product of the unit torus [0,1) with P, where the x-direction
1s the direction of the unit torus. For any fixed positive integer s, let M denote an
s-fold split-covering of My, where the s copies of Mg are placed side-by-side in the
x-direction and glued together, and where some X -faces are replaced by walls.

Suppose that M contains an s X 2 X 1 array of atomic cubes, where the top row
of s atomic cubes gives rise to an X -street of length s, and where any X -face of any
atomic cube in the bottom row is a wall. Then any half-infinite geodesic in M with
a Kronecker direction is uniformly distributed unless it hits a singularity.
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Remark. Note that in Figure 8.4, we can take the bottom row of atomic cubes and
place them at the top instead. Note that in Figure 8.5, we must ensure that the
bottom Y-face of any atomic cube in the bottom row is identified with the top
Y -face of the corrresponding atomic cube in the top row.

Y
L
T

Figure 8.5: an alternative very special 4-fold split-covering

Remark. In Theorem 4, we can also allow M to contain an s x 2 x 1 array of atomic
cubes, where the bottom row of s atomic cubes gives rise to an X-street of length s,
and where any X-face of any atomic cube in the top row is a wall.

Example 8.2. Consider a finite polysquare translation surface P of 9 faces as shown
in Figure 8.6, where identified edges are obtained from each other by perpendicular
translation, and where 2 of the y-perpendicular edges and 2 of the z-perpendicular
edges are walls.

Y

e

Figure 8.6: a finite polysquare translation surface

Let My = [0,1) x P denote the polycube translation 3-manifold obtained from
the cartesian product of the unit torus [0,1) with P, as shown in the picture on
the left in Figure 8.7. Corresponding to the 2 y-perpendicular edges of P, the 3-
manifold Mg has 2 Y-faces that are walls. Corresponding to the 2 z-perpendicular
edges of P, the 3-manifold M, has 2 Z-faces that are walls.

Y e e

Figure 8.7: a very special 5-fold split-covering
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Next, we construct a 5-fold split-covering of M, with 5 copies of M placed side-
by-side in the x-direction and glued together, and where some X-faces are replaced
by walls, as shown in the picture on the right in Figure 8.7. It is clear from this
picture that the resulting polycube translation 3-manifold M contains a 5 x 2 x 1
array of atomic cubes of the type described in the statement of Theorem 4. Those
X-faces that are walls and are not in the special 5 x 2 x 1 array of atomic cubes
are irrelevant. The Y-faces and Z-faces present in M correspond precisely to those
present in M.

We say that a finite polycube translation 3-manifold M is Kronecker—Weyl if every
half-infinite geodesic in M with a Kronecker direction is uniformly distributed unless
it hits a singularity. Using s-fold split-covering and noting the irrelevance of whether
many X-faces are walls or otherwise, we see that we can construct exponentially
many such polycube translation 3-manifolds. On the other hand, we are a long way
from a full solution of the Open Problem in Section 1.

9. PROOF OF THEOREM 4

The proof of Theorem 4 goes very much along the lines of that of Theorem 1.
However, extra ideas are needed at various stages of the argument.

Suppose that the period polycube translation 3-manifold M, contains precisely d
distinct atomic cubes. Let YU, ... Y@ denote the bottom Y-faces of these atomic
cubes, and let

Vo=YPu...uy®,

Then the s-fold split-covering M contains precisely sd distinct atomic cubes, where
each Y-face YV, v =1,...,d, of M leads to s distinct Y-faces Yg(v), o=1,...,s.
Let

d s
y=U e

y=1o0=1

As before, we consider the discretization of the v-flow in M relative to the Y-faces,
where v = (a, 1, ) is a Kronecker direction, and let

Ta,ﬁ:y%y

denote the relevant discrete transformation defined by consecutive hitting points.
We need to show that this area-preserving map is ergodic on ). Suppose, on the
contrary, that it is not ergodic. Then there exist two disjoint 7T, g-invariant subsets
W and S of Y such that Y =W US and

0< )\Q(W) < )\2(8) < Sd, (91)

where Ay denotes the 2-dimensional Lebesgue measure. We show that this leads to
a contradiction.
The natural projection of ) to ), can be represented in the form

y — yO : (l’,y, Z) = ({JI},y, Z)? (92)

indicating that, for every v =1, ..., d, the images of the Y-faces Y(,(V), o=1,...,s,
coincide and are all equal to Y, and the image of each point in ng is in the same
relative position in Y. Thus for every point P € ), there are precisely s distinct
points Py, ..., P; € Y which have projection image P. Let

w(P)=[{P,....,P}nW| and fs(P)=|{F,...,P}NS]
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denote the number of these s points that fall into YW and S respectively. They are
non-negative integer valued functions defined on ), that satisfy the condition

fw(P) + fs(P)=s for almost all P € ). (9.3)
We also consider the corresponding projection of
Ta,ﬁ : y — y to T() = TO,a,B : 3/0 — y07 (94)

which is simply the discretization of the v-flow in M, relative to the Y -faces.
Theorem 3 establishes the ergodicity of 7Tjy. The Birkhoff ergodic theorem then

guarantees that both f,, and fs are constant integer valued functions. It then

follows from (9.1) and (9.3) that there exist two integers s; and s, satisfying

1<s1,89<s—1 and s +8 =35 (9.5)
such that
fw(P)=s; and fs(P)=sy for almost all P € ). (9.6)

We then derive a contradiction by establishing a suitable analogue of Lemma 1.2.

For a Kronecker direction v = (o, 1, §), where «a, 3 and «/f are all irrational, we
can clearly assume that a > 0 and # > 0. In the simple case of Theorem 1 and
Lemma 1.2, the parameter (3 is concerned with a direction which is considered to be
integrable, so its value causes no difficulty. Furthermore, since we can interchange
the other two directions, we can assume that 0 < o < 1.

Here, the parameter 3 is no longer concerned with a direction which is considered
to be integrable, so its value can potentially cause difficulties. Meanwhile, the value
of the parameter o can also cause some inconvenience. To formulate and establish
a suitable analogue of Lemma 1.2, we need to first understand these difficulties.

Remark on the value of a. Assume that the z-direction is integrable, so that the
parameter § does not cause any difficulties. Figure 9.1 shows the singularities of
the v-flow, in the special case when 0 < a < 1, in a 4 x 2 x 1 array of atomic cubes
of the type described in the statement of Theorem 4 in connection with a 4-fold
split-covering, with the z-direction suppressed. The dashed line segment in each
bottom atomic cube indicates that a line segment in the z-direction on the bottom
Y -face of the atomic cube is taken by the flow to the singular edge at the top of the
wall that is the right X-face of the atomic cube.

T3 5(Ry) T2 5(RY) T2 5(Ry) T2 5(R3) T3 5(Ry) To 5(RY) T3 5(Ry) T2 5(RY)

T (R Tos(R5). Tos(R5). Tos(R7)

Tops(RY) Top(RY) Tap(RY) Tap(RY)

Y

» Bi Rf Ry Ry Ry Ry R; R}

Figure 9.1: the case when 0 < aw < 1

The situation is a bit more complicated when o > 1, as illustrated in Figure 9.2.
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T3 5(Ry) T2 5(RS) T2 5(Ry) T2 5(RY) T3 5(Ry) T2 5(RY) T2 5(Ry) T2 5(Ry)

Top(R7) Top(Ry) Ta,s(R3) Top(Ry)
Tap(RY) Top(RY) Tap(RY) Top(RY)

Y

» Ri RS Ry Rf Ry RY R} Rf

Figure 9.2: the case when 2 < a < 3
In each case, we start with 4 small rectangles

Ri=R{/UR, Ry=R,UR;, R3=R;URS, Ry=R;,URS.

Each is on the bottom Y-face of a bottom atomic cube, and they are in the same
relative position within their own Y-faces. Each is split under T, g by the singular
edge at the top of the wall that forms the right X-face of its own atomic cube.

Although we draw the same conclusion, for instance, that the image T2 43(R;y ) of
the left half R of Ry and the image T7 5(Ry) of the right half Ry of R, together
essentially form a small rectangle on some Y-face, the identity of this Y-face is not
so straightforward as in the case 0 < o < 1 earlier.

This is not a major issue, but we shall fix this at the same time as we deal with
the real issue concerning the value of 8. The idea is that of short transportation,
illustrated in Figure 9.3, where we keep our attention on the flow much closer to the
singularities.

T3 s(Ry) T3 5(R{) T3 5(Ry) T3 5(RY) T3 5(Ry) T3 5(RY) T3 5(Ry) T7 5(RY)

Ry R} R; Ry Ry Rf R, RS

[

Figure 9.3: fixing the problem with the value of «

Remark on the value of 5. The parameter § deals with the part of the flow in the
z-direction. Figure 9.1 shows the singularities of the v-flow, in the special case when
£ > 0 is small, in a 4 X 2 x 1 array of atomic cubes of the type described in the
statement of Theorem 4 in connection with a 4-fold split-covering. The dashed line
segment in each bottom atomic cube indicates that a line segment in the z-direction
on the bottom Y-face of the atomic cube is taken by the flow to the singular edge
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at the top of the wall that is the right X-face of the atomic cube. As the value of
3 is small, we can find suitable small rectangles such that their images under T, g
and T 2 5 stay within this 4 x 2 X 1 array of atomic cubes.

Y

Figure 9.4: small values of 3

The situation is different if 5 > 0 is not so small, as there is the possibility that
the flow from a small rectangle crosses the back Z-face of the bottom atomic cube
before reaching the wall that is the right X-face of the atomic cube, as illustrated
in Figure 9.5. In this case, the images of the small rectangle under T, s and Tiﬂ
may no longer stay within this 4 x 2 x 1 array of atomic cubes. What then happens
depends on whether some X-faces outside this array are walls or not.

Y

|/

.

Figure 9.6 shows the view from the top of what may happen, with small o > 0, and
we do not have the appropriate composition of the image rectangles. For instance,
the images T2 3(R; ) and T 5(R}") now form a small rectangle. It seems complicated
to eradicate the situation if § > 1.

Figure 9.5: larger values of /3

T2 5(Ry) T2 4(R{) T3 5(Ry) T2 5(RY)

S S S S.
1 Y, 2 Y, 3 Y, 4

Figure 9.6: larger values of 3

Figure 9.3 gives a hint on a possible remedy of the situation for the value of the
parameter « if the value of the parameter [ does not cause any serious difficulties.
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It turns out that essentially the same idea can also deal with any difficulties arising
from the value of the parameter 3.

Short transportation means concentrating on what happens much closer to the
singularities. However, to do so, we need to move into the interior of the atomic
cubes and not just the Y-faces. Thus we move outside the set ) and have to abandon
the discretization of the v-flow in M relative to the Y-faces.

A simpler approach is to magnify the polycube translation 3-manifold M instead.
More precisely, given any Kronecker direction v = (a, 1, 5) with @ > 0 and > 0,
let .4 be an integer satisfying

A > max{a, 1+ 25}. (9.7)

We now magnify the polycube translation 3-manifold M by a factor .4 in each
direction, so that any atomic cube in M is magnified to volume .43, and any face
in M is magnified to area .#2. We then split each magnified atomic cube into .43
atomic cubes of unit volume, so that each magnified face of M is split into .42 faces
of unit area. We shall abuse notation and denote the resulting polycube translation
3-manifold also by M. This new M has .#3sd atomic cubes, with .#3sd distinct
Y -faces that make up a new set ). We can perform a similar exercise to obtain a new
polycube translation 3-manifold M, with .43d atomic cubes, with .4#3d distinct
Y -faces that make up a corresponding new set ). Clearly the new M is an s-fold
split-covering of the new M.

We can consider the corresponding new mappings given in (9.4), and repeat our
previous argument. Then the inequalities (9.1) are replaced by the inequalities

0< AQ(W) < )\2(8) < JVSSd.

Crucially, the assertions (9.5) and (9.6) remain valid.
The special s x 2 x 1 array of atomic cubes is now replaced by an s/ x 24" x A
array of atomic cubes. Suppose that the coordinates of the points are in

[0, 547 x [0,247] x [0, A]. (9.8)
Then the walls correspond precisely to the collection of points
{(z,y,2) :x €{0,4,...,54} and y,z € [0, 4]}

For the special case when s = 4 and .4 = 4, this array is shown in Figure 9.3 with
the z-direction suppressed.
It is also convenient to write

By =[(c =) AN, oN] x[0,24] x [0, 4], oc=1,...,s. (9.9)

Their union gives the s-fold split-covering of [0, 4] x [0,2.47] x [0, 4] C M, that
corresponds to M being the s-fold split-covering of M.

We are ready to formulate a suitable analogue of Lemma 1.2. To do so, we need
to find small special rectangles Ry, ..., R, on suitable Y-faces Y7,...,Y, as well as
small special rectangles R7,..., R: on suitable Y-faces Y{*, ..., Y.

Remark. We comment in advance that while in Lemma 1.2, we have
Y=YiUY,UY, =Yy UYS UY;,
here we have
Yiu...UY, #Y U...UY/, (9.10)
and both sides of (9.10) are proper subsets of V.
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Let us now choose a suitable Y-face Y; in 4;. We shall make use of the coordinate
system given by (9.8) and (9.9).

Figure 9.3 suggests that the y-coordinate of any point on Y; should be equal to
A — 1, making it a y-distance 1 below the top of the vertical wall separating %,
and Ay. Figure 9.3 also suggests that Y; should contain a line segment S; in the
z-direction of length 1 and which is mapped by the v-flow to the top edge of this
wall. Clearly the z-coordinate of any point of S; must be equal to A4 —a«a € (0, .4).
This explains the requirement that .4#" > « in (9.7).

Now let p; = (21, ¥1,21) be the coordinates of the bottom left vertex of Y;. The
above argument shows that 1 = [/ — o] and y; = A4 — 1. We shall take

21 = 0, (9].1)

to be explained later.

We next determine the Y-faces Ys,...,Y, in %, ..., %A, and containing the line
segments Sy, ..., S, in the z-direction respectively, so that the images of Yi,..., Y,
under the modulo .4 analog of the natural projection (9.2) coincide, as do the
images of S1,...,S;.

The argument thus far is summarized in the bottom half of Figure 9.7, where the
y-direction is suppressed.

T3 5(Ry) T2 5(RY) T2 5(Ry) T2 5(Ry) To 5(Ry) T2 5(Ry) T3 5(Rg) T2 5(Ry)

ot

St / 53 / 53 53 /
| | | |
NI NI NI NEg
- Sl - S2 - S3 LI 54 -
)31 Ya Y3 Y,
z Fand Fand Paind Faind
/N / N\ /N /N
Ry Ry R; Ry Ry Rf R; Rf
xT

Figure 9.7: a process equivalent to short transportation

Consider next the image S5 = S; + (2, 2,203) of Sy that corresponds to two
applications of the map T, 3 if we ignore the singularity at the top of the wall.

The y-coordinate of any point on S5 is clearly .4#” + 1. The z-coordinate is equal
to N +a € (AN,247). The z-coordinate lies in the interval (25,1 + 23) C (0,.4).
Hence S5 lies on two adjoining Y-faces in %,, with total length 1, and explains the
choice (9.11) as well as the condition .4 > 14 23 in (9.7).

Now let Y5" denote the Y-face that contains the longer half of the line segment S5,
with bottom left vertex p3 = (3,45, 25). Then a} = [A +a]+1,y5 = A + 1 and

. _{ 28],  if {26} <1/2,
14 [26], if {28} > 1/2.

3=

Let S5(0) = Y5" NS5 denote this longer part of S that lies on the Y-face Y5, and
let S1(0) = S5(0) — (2, 2,20) be the image of S5(0) under two applications of the
inverse map 1. é if we ignore the singularity at the top of the wall. Then S;(0) is
part of S, and both S;(0) and S5(0) have length greater than 1/2.

We next determine the Y-faces Y, Y5, ..., Y.  in Ay, Bs..., B and containing
the line segments S7(0), S5(0),...,S%(0) in the z-direction respectively, so that the
images of Y{*,..., Y. under the modulo .#" analog of the natural projection (9.2)
coincide, as do the images of S7(0),...,S5%(0).
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This latter part of the argument is summarized in Figure 9.7, where the y-direction
is suppressed.

Lemma 9.1. There exist small special rectangles Ry, . .., Rq, Ry, ..., R: on the faces
Yi,.. Y Y YF of Y osuch that the following conditions are satisfied:
(i) For every o = 1,...,s, the set R, satisfies
Xo(R, NWW) 99 Xo(R,NS) 99
—_— > — or > ,
Ao (R,) 100 Xo(R,) 100
and the set R} satisfies
Xo(RENW) 99 X (RENS) 99
—7 = >— or > .
Ao (RE) 100 Ao (RE) 100
(ii) The images on Mg of Ry, ..., Rs under the modulo A analog of the projection

(9.2) coincide.
(iii) For every o =1,...,s, the set R: satisfies

Ry = Tj,ﬂ(R;—l) U TaQ,B(R:%
with the convention that Ry = R .

As in our earlier discussion concerning Theorem 1, the dominant colours in the

rectangles Ry, ..., R is the same colour C which is precisely one of W and S. In
view of (ii), this clearly contradicts (9.5) and (9.6), and establishes the ergodicity of
T p-

The proof of Lemma 9.1 goes along similar lines to the proof of Lemma 1.2,
apart from some modification of Lemma 3.2. There, in order to find non-defective
T, p-power chains (3.13) and non-defective T, é-power chains (3.22), we look for an
integer j in the range qp41 +1 < j < ¢),,; — @r+1- In that particular situation where
the z-direction in integrable, every integer j in this range is a candidate.

Here we have to be more careful, and consider only those values of j such that
the first term in the 7T, g-power chain (3.13) has non-empty intersection with the
line segment S (0), and the first term in the T g-power chain (3.22) has non-empty
intersection with the line segment S,(0). Let us refer to these values of j as special.
Since the line segments S, (0) and S%(0) have length greater than 1/2, it follows from
the 2-distance theorem that the proportion of special values of j in the prescribed
range is greater than a positive constant dependent only on the parameter h. The
argument in the proof of Lemma 1.2 can be adapted easily to accommodate this loss
of a factor.
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