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Abstract. We establish various analogs of the Kronecker–Weyl equidistribution
theorem that can be considered higher-dimensional versions of results established
in our earlier investigation in [1] of the discrete 2-circle problem studied in 1969
by Veech [6]. Whereas the Veech problem can be viewed as one of geodesic flow
on a 2-dimensional flat surface, here we study geodesic flow in higher-dimensional
flat manifolds. This is more challenging, as the overwhelming majority of the
available proof techniques for non-integrable flat systems are based on arguments
in dimension 2. For higher dimensions, we need a new approach.

1. Analog of the Veech 2-circle problem

We extend the idea of Veech [6] and our earlier work [1] to higher dimension.
First we 2-color the unit torus [0, 1)2 red and green in such a way that each of the
red and green parts is the union of finitely many polygons. Figure 1.1 shows two
examples, where the shaded part represents red and the white part represents green.
In particular, we assume that the green part has positive area.

b

Figure 1.1: examples of 2-colorings of the torus [0, 1)2

Observe that in the picture on the right, one of the red (shaded) parts does not
look like a polygon, but it is the union of finitely many polygons. A similar remark
applies to the green (white) part.

Next, we consider a 2-torus system as shown in Figure 1.2, where each square
represents the unit torus [0, 1)2, with identical 2-coloring.

right
torus

left
torus

Figure 1.2: a 2-torus system with identical coloring

Let v = (1, α1, α2) be a Kronecker vector, and let v0 = (α1, α2).
Let s0 ∈ [0, 1)2 be an arbitrary starting point, and consider the v0-shift sequence

sn = s0 + nv0, n = 0, 1, 2, 3, . . . ,

in the unit torus [0, 1)2; in other words, modulo one. Assume that the point s0 is on
the left torus. If s1 is in the red (shaded) part, then we keep it on the left torus. If s1
is in the green (white) part, then we move it to the corresponding point on the right
torus. In general, sn is on a particular torus. If sn+1 is in the red (shaded) part,
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then we keep it on the same torus. If sn+1 is in the green (white) part, then we move
it to the corresponding point on the other torus. Thus the sequence s0, s1, s2, s3, . . .
moves from one torus to the other whenever it hits the green part. The problem is
then to describe the distribution of this sequence in the union of the two tori, clearly
a parity problem motivated by the Kronecker–Weyl equidistribution theorem.
We can visualize this discrete 2-torus system on the plane as a simple continuous

system in 3-space. Figure 1.3 illustrates this observation in the case of the simpler
2-coloring in the picture on the left in Figure 1.1.

(0, b, 0)

(0, 0, 0)
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(1, 1, 1)
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Figure 1.3: 2-cube-b 3-manifold with repeated barriers

Here there are three yz-parallel square faces of the 2-cube solid, each of which is
in part a barrier, colored red (shaded), and in part a gate, colored green (white).
The latter is non-empty, and permits travel between the two cubes. For these two
cubes to form a 3-manifold, we have to guarantee that it is boundary-free. We use
boundary identification which is a modification of the boundary identification for the
torus [0, 1)3. The two xy-parallel square faces with z = 0 are identified with the two
xy-parallel square faces with z = 1 by trivial perpendicular translation. The two xz-
parallel square faces with y = 0 are identified with the two xz-parallel square faces
with y = 1 by trivial perpendicular translation. The right side of the red (shaded)
rectangle on the yz-parallel square face with x = 0 is identified with the left side
of the red (shaded) rectangle on the yz-parallel square face with x = 1, while the
right side of the red (shaded) rectangle on the yz-parallel square face with x = 1 is
identified with the left side of the red (shaded) rectangle on the yz-parallel square
face with x = 2. Finally, the green (white) rectangle on the yz-parallel square face
with x = 0 is identified with the green (white) rectangle on the yz-parallel square
face with x = 2. For convenience, we refer to this as the 2-cube-b 3-manifold.
We thus have a flat 3-manifold, with euclidean metric almost everywhere, and

with boundary identification via perpendicular translation. Thus geodesic flow in
this 3-manifold is 1-direction linear flow. It moves rather like 1-direction geodesic
flow on the torus [0, 1)3, and the novelty comes from the effect of the barriers.

There is clearly an equivalence between the discrete 2-dimensional 2-torus system
and this new continuous 3-dimensional 2-cube system. An infinite v0-shift sequence
is equidistributed on the 2-torus with the 2-coloring given in the picture on the left
of Figure 1.1 if and only if the corresponding half-infinite 1-direction geodesic with
direction vector v is equidistributed in the 2-cube-b 3-manifold.

Assume now that v = (1, α1, α2) ∈ R3 is a Kronecker vector. Is it true that every
half-infinite 1-direction geodesic with direction vector v is equidistributed in any
2-cube-b 3-manifold with 0 < b < 1?
It turns out that for every Kronecker vector v, there are infinitely many values

of the parameter b for which equidistribution fails. To explain this, we need to look
at the corresponding problem in lower dimension. The projection of the 2-cube-b
3-manifold to the xy-plane gives rise to the 2-square-b surface which arises from
the work of Veech [6]. Some of the anti-equidistribution results on such surfaces
obtained recently by the authors in [1] can be converted to anti-equidistribution
results on 2-cube-b 3-manifolds.
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For instance, let α1 ∈ (0, 1/2) be irrational, and let b = 2α1. Then for every α2

for which v = (1, α1, α2) ∈ R3 is a Kronecker vector, every half-infinite 1-direction
geodesic with direction vector v violates equidistribution in the 2-cube-b 3-manifold.
For more details, see [1, Theorem 2.1].

The papers [1] and [6] contain some equidistribution results on the 2-square-b
surface. These, unfortunately, do not immediately lead to corresponding results on
the 2-cube-b 3-manifold. Nevertheless, using a different approach, we can establish
equidistribution for most half-infinite geodesics in the 2-cube-b 3-manifold. Further-
more, we can generalize the result to any 2-coloring of the unit torus [0, 1)2 where
each of the red and green parts is the union of finitely many polygons, and where the
green part has positive area. The richness of the possibilities to fix such 2-colorings
is particularly interesting.

Indeed, we can consider an n-torus system, with n copies of the unit torus [0, 1)2,
where n ⩾ 2 is an integer. This then leads to a flat 3-manifold, with euclidean metric
almost everywhere, and with boundary identification via perpendicular translation.
For instance, if we take n = 4 and use the 2-coloring of the torus [0, 1)2 as shown
in the picture on the right in Figure 1.1, then we have the 4-cube 3-manifold with
repeated barriers as shown in Figure 1.4.
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Figure 1.4: a 4-cube 3-manifold with repeated barriers

Theorem 1. Let n ⩾ 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where the yz-parallel square faces have identical 2-coloring such that each
of the red and green parts is the union of finitely many polygons, and where the
green part has positive area. Then for almost every starting point and almost every
direction v = (1, α1, α2) ∈ R3, the corresponding half-infinite 1-direction geodesic is
equidistributed in M.

As a trivial corollary, we deduce that the half-infinite 1-direction geodesic spends
asymptotically the same amount of time in each one of the n cubes of the n-cube
3-manifold.

We remark that any polygon in the given 2-coloring can be replaced by a circle,
an ellipse, or any other piecewise smooth closed curve. It requires an extra analytic
discussion in the proof that we postpone to Section 6.

An immediate question that arises is whether we can extend Theorem 1 to include
every Kronecker direction v ∈ R3.

By a grid type 2-coloring of the torus [0, 1)2, we mean dividing the torus [0, 1)2

into m2 subsquares in the natural way, where m is a positive integer, and coloring at
least one of the subsquares green and the remainder red, as illustrated in Figure 1.5.

Figure 1.5: grid type 2-coloring of the torus [0, 1)2
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Using a similar method, the authors can establish the following stronger conclusion
in this setting; see [2, Theorem 4].

Theorem 2. Let n ⩾ 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where the yz-parallel square faces have identical grid type 2-coloring, and
where the green part has positive area. Then every half-infinite 1-direction geodesic
with a Kronecker direction v = (1, α1, α2) ∈ R3 is equidistributed in M.

Figure 1.6 shows the 2-cube box with a 2-coloring on the middle yz-parallel square
face such that each of the red (shaded) and green (white) parts is the union of finitely
many polygons, and where the green part has positive area. Consider billiard in this
2-cube box, where in addition to the square faces on the surface of the box, there are
additional barriers on the middle yz-parallel square face given by the parts colored
red. As usual, we consider the ideal case of a point billiard that bounces back at
any barrier, following the well-known rules of optical reflection.

(0, 0, 0)

(2, 0, 1)

(1, 1, 1)

left right
x

y

z

Figure 1.6: 2-cube box with barriers in the middle

We are interested in the long term bahavior of the billiard orbit. We shall show
that Theorem 1 contributes to our understanding of such questions.

To establish equidistribution for such billiard orbits, we extend the idea of König
and Szücs [4] and apply 3-dimensional unfolding. This converts the billiard orbit
in this 2-cube box with barriers into a 1-direction geodesic in a boundary-free flat
3-manifold. The latter system is an 8-copy construction involving 16 cubes, and
results from three consecutive reflections across a plane.

The original 2-cube box with barriers in the middle is highlighted in bold in
Figure 1.7. We reflect it across the plane x = 2, then reflect the 2-copy union across
the plane y = 1, and finally reflect the 4-copy union across the plane z = 1 to obtain
an 8-copy union. Thus the original 2× 1× 1 box becomes a 4× 2× 2 box with two
repeated sets of barriers on the yz-parallel squares [0, 2)2 on the faces x = 1 and
x = 3.
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y

z

(0, 0, 0)
(2, 0, 0)

Figure 1.7: unfolding the billiard orbit in a 2-cube box
with barriers in the middle

This box has boundary, and we turn it into a boundary-free flat 3-manifold with
boundary identification. First of all, the square faces on the boundary of this box
are identified by perpendicular translation. Next, let L and R denote respectively
the barriers on the square faces on the plane x = 1 and x = 3 respectively. The left
side of L is identified with the right side of R, while the right side of L is identified
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with the left side of R. For convenience, we refer to this special 3-manifold as the
2-cube-billiard 3-manifold.
Clearly 1-direction geodesic flow in the 2-cube-billiard 3-manifold is an 8-fold

cover of billiard flow in the 2-cube box with barriers.
We now remove the part [0, 1)× [0, 2)× [0, 2) on the left and join it instead to the

right to become [4, 5)× [0, 2)× [0, 2), as shown in Figure 1.8.

x

y

z

(1, 0, 0)
(3, 0, 0)

Figure 1.8: cutting and pasting

Contracting the resulting 3-manifold by a factor 1/2 in each of the three directions,
we then obtain a 2-cube 3-manifold with repeated barriers that we have studied in
Theorem 1. The following result is then a corollary of Theorem 1 in the special case
n = 2.

Theorem 3. Consider billiard in a special 2-cube box with barriers in the middle
square face joining the cubes given by a 2-coloring such that each of the red and
green parts is the union of finitely many polygons, and where the green part has
positive area. Then for almost every starting point and almost every initial direction
v = (1, α1, α2) ∈ R3 with v0 = (α1, α2) ∈ [−1, 1]2, the corresponding half-infinite
billiard orbit is equidistributed in this special 2-cube box.

Unfortunately, Theorem 1 does not seem to help in the case of more complicated
billiards with barriers.

Of course, there is no reason why the 2-coloring on the distinct yz-parallel square
faces of the n-cube 3-manifold should be the same, apart from possibly making the
problem a little simpler.

We know that if a geodesic hits an xy-parallel square face of M, then it jumps
to the corresponding point on the identified xy-parallel square face and continues in
the same direction, and if a geodesic hits an xz-parallel square face, then it jumps
to the corresponding point on the identified xz-parallel square face and continues in
the same direction.

Suppose now that a geodesic with direction v = (1, α1, α2) hits a yz-parallel
square face at a point P . Then the continuation of the geodesic depends on the
coloring of the intersection point P . If P is green, then the geodesic continues on
its way in the same direction. If P is red, then we consider a directed line starting
from P in the direction (−1, 0, 0). This line will hit a red point P ′ for the first time.
Then the geodesic continues from P ′ in the same direction, as shown in Figure 1.9.

x

z

y

bcbcbcb PP ′

Figure 1.9: when a geodesic hits a red barrier

There is the pathological case that P ′ = P , so that the geodesic continues on its
way as if P were green. To avoid such situations, we deem the point P to be colored
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green. This is some kind of automatic recoloring, but the following rule is a little
simpler.

Restriction on Red Coloring. On any line perpendicular to any given yz-parallel
square face of M, there are either no points colored red or at least 2 distinct points
colored red. Here we use the standard convention that the left-most yz-parallel
square face and the right-most yz-parallel square face are the same.

Instead of requiring perfect repetition of the 2-coloring on all the yz-parallel square
faces as in Theorem 1, we now impose the substantially weaker condition of local
repetition. More precisely, we require a small local repetition color-split neighborhood,
in the form of a line segment with the same local 2-coloring of red and green in the
two opposite side-neighborhoods. For illustration, see Figure 1.10, where the three
highlighted rectangles are in the same position within the square torus.

Figure 1.10: different 2-colorings with local repetition

We emphasize that the local repetition color-split neighborhood must be present
on all the yz-parallel square faces of the n-cube 3-manifold. Naturally, we still need
2-colorings on each yz-parallel square face such that each of the red and green parts
is the union of finitely many polygons, and where the green part has positive area.
Furthermore, we also require that the Restriction on Red Coloring holds. Since
the 2-colorings on the different yz-parallel squares faces can now be different, this
represents substantially more freedom for the 2-colorings. In Figure 1.11, we have
a 4-cube 3-manifold with local repetition color-split provided by the triangular red
(shaded) regions at the corners of the yz-parallel squares faces. The positions of the
local repetition color-split neighborhood on the different yz-parallel squares faces
are indicated by the short thick lines.

x

z

y

Figure 1.11: a 4-cube 3-manifold with local repetition

The result that we can prove in this more general setting is not really weaker.

Theorem 4. Let n ⩾ 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where each yz-parallel square face has a 2-coloring such that each of the
red and green parts is the union of finitely many polygons, and where the green part
has positive area. Suppose further that the Restriction on Red Coloring holds, and
that there is a local repetition color-split neighborhood on the yz-parallel square faces.
Then for almost every starting point and almost every direction v = (1, α1, α2) ∈ R3,
the corresponding half-infinite 1-direction geodesic is equidistributed in M.

As in Theorem 1, any polygon of the 2-colorings can be replaced by a circle, an
ellipse, or any other piecewise smooth closed curve.
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2. Preparation for the proof of Theorem 4

We work with an equivalent discrete form of the problem.
For every integer i = 0, 1, . . . , n− 1, let

Ui = {i} × [0, 1)2

denote the i-th yz-parallel square face of M, and let

X0 =
n−1⋃
i=0

Ui.

Since each yz-parallel square face has a 2-coloring, for every integer i = 0, 1, . . . , n−1,
there exist two sets Gi and Ri such that

Ui = Gi ∪ Ri and Gi ∩ Ri = ∅. (2.1)

Since the collection of non-Kronecker vectors v = (1, α1, α2) ∈ R3 has measure
zero, we may therefore start our discussion by assuming that v is a Kronecker vector.
Let v = (1, α1, α2) ∈ R3 be a Kronecker vector, and let v0 = (α1, α2). We define an
invertible transformation T = Tv : X0 → X0 as follows.

For any point P = (i,y) ∈ Ui ⊂ X0 where y = (y, z) ∈ [0, 1)2, let

T(P ) =

{
(i+ 1, {y + v0}), if P + v = (i+ 1, {y + v0}) ∈ Gi+1,
(i∗, {y + v0}), if P + v = (i+ 1, {y + v0}) ∈ Ri+1,

(2.2)

where the addition in P + v is modulo n for the first coordinate and modulo 1 for
the remaining coordinates. Thus

{y + v0} = ({y + α1}, {z + α2}), (2.3)

where 0 ⩽ {β} < 1 denotes the fractional part of a real number β. Furthermore,
the value of i∗ is determined by

i∗ = max{j < i+ 1 : (j, {y + v0}) ∈ Rj}, (2.4)

with the convention that

i+ 1 > i > i− 1 > . . . > 1 > 0 > n− 1 > n− 2 > . . . > i+ 2. (2.5)

Note that (2.4) and (2.5) are motivated by Figure 1.9, and Figure 2.1 illustrates the
special case when n = 4. If P + v is a red point, we then move from P + v in the
direction of the vector (−1, 0, 0) until we hit the first red point, and this red point
lies on the yz-parallel square face Ui∗ .

x

z

y

U0 U1 U2 U3 U0

b

bcbcbcb

P

P+v
T (P )

Figure 2.1: when P + v is red

Projecting the transformation T by ignoring the first coordinate, we obtain the
invertible transformation

T0 = Tv0 : [0, 1)
2 → [0, 1)2 : y 7→ {y + v0}.

It is easy to see that T preserves the 2-dimensional Lebesgue measure λ2. Our
goal is to establish that for almost every vector v0 ∈ [0, 1]2, the transformation
T = Tv : X0 → X0 is ergodic, where v = (1,v0). The basic idea is quite surprising,
as we prove ergodicity for this non-integrable system by taking advantage of the
split singularities.
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Remark. We are going to use Birkhoff’s well known pointwise ergodic theorem on
measure preserving transformations. Since we simply apply ergodic theory, we do
not expect the reader to have any serious expertise in the subject. Thus knowledge
of Lebesgue integral and basic measure theory suffices. The theorem concerns a
measure-preserving system (X,A, µ,T). Here (X,A, µ) is a measure space, where
X is the underlying space, A is a σ-algebra of subsets of X and µ is a non-negative
σ-additive measure on X with µ(X) < ∞, while T : X → X is a measurable map
which is measure-preserving, so that T−1A ∈ A and µ(T−1A) = µ(A) for every
A ∈ A.

Let L1(X,A, µ) denote the space of measurable and integrable functions in the
measure space (X,A, µ). Then the general form of Birkhoff’s pointwise ergodic
theorem says that for every function f ∈ L1(X,A, µ), the limit

lim
m→∞

1

m

m−1∑
j=0

f(Tjx) = f ∗(x) (2.6)

exists for µ-almost every x ∈ X, where f ∗ ∈ L1(X,A, µ) is a T-invariant measurable
function satisfying the condition∫

X

f dµ =

∫
X

f ∗ dµ.

A particularly important special case is if T is ergodic, when every measurable
T-invariant set A ∈ A is trivial in the precise sense that µ(A) = 0 or µ(A) = µ(X).
This is equivalent to the assertion that every measurable T-invariant function is
constant µ-almost everywhere.

If T is ergodic, then (2.6) simplifies to

lim
m→∞

1

m

m−1∑
j=0

f(Tjx) =

∫
X

f dµ, (2.7)

and the right-hand side of (2.6) is the same constant for µ-almost every x ∈ X.
The remarkable intuitive interpretation of (2.7) is that the time average on the

left hand side is equal to the space average on the right hand side.

3. Proof of Theorem 4

We focus on the particular measure-preserving system (X0,A, λ2,T), where A is
the family of Borel sets in X0, λ2 is 2-dimensional Lebesgue measure and T = Tv.
We shall establish ergodicity by contradiction.

Step 1. Suppose on the contrary that T is not ergodic. Then there exists a non-
trivial measurable T-invariant subset S0 ⊂ X0 such that 0 < λ2(S0) < n. We try to
derive a contradiction.

Removing possibly a set of λ2-measure zero, we may assume that for every point
x ∈ X0, the point Tj(x) is well defined for every integer j = 1, 2, 3, . . . .

Lemma 3.1. Consider the measure-preserving system (X0,A, λ2,T), where T = Tv

and v = (1,v0) is a Kronecker vector. For any T-invariant subset S0 ⊂ X0, let the
multiplicity function χ̃S0 of S0 be defined for every point P ∈ [0, 1)2 by

χ̃S0(P ) = |{i = 0, 1, . . . , n− 1 : (i, P ) ∈ S0}|.
Suppose further that S0 is a proper subset of X0, so that S0 ̸= ∅ and S0 ̸= X0. Then
there exists an integer k0 = 1, . . . , n − 1 such that χ̃S0(P ) = k0 for almost every
point P ∈ [0, 1)2, so that λ2(S0) = k0.
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Proof. Since v is a Kronecker vector, it follows that the v0-shift on the unit torus
[0, 1)2 is ergodic. Meanwhile, it is easy to check that the multiplicity function χ̃S0 is
T0-invariant. Thus Birkhoff’s ergodic theorem implies that χ̃S0 is constant almost
everywhere. Note that χ̃S0 is integer valued and cannot be equal to 0 or n. This
completes the proof. □

Step 2. Given a point z ∈ X0 and a radius 0 < r < 1/2, let D(z; r) denote the
circular disk of radius r and center z. Clearly D(z; r) has area πr2. Note that
D(z; r) ⊂ X0, due to the fact that X0 is a compact flat surface.
Since the non-trivial T-invariant subset S0 ⊂ X0 is measurable, it follows from

Lebesgue’s density theorem that for almost every z ∈ S0,

lim
r→0

λ2(S0 ∩D(z; r))

πr2
= 1,

whereas for almost every z ∈ Sc
0 = X0 \ S0,

lim
r→0

λ2(S0 ∩D(z; r))

πr2
= 0.

Let M be a large integer, and divide each of U0, U1, . . . , Un−1 into M2 congruent
squares of area (1/M)2 in the standard way. We refer to these small squares as
special (1/M)-squares. Thus there are precisely nM2 special (1/M)-squares in X0.
In view of Lebesgue’s density theorem, we formulate here and prove in Section 4

the following lemma for the hypothetical non-trivial measurable T-invariant subset
S0 ⊂ X0.

Lemma 3.2. Let the real number ε ∈ (0, 1) be arbitrarily small and fixed, and let the
real number ε1 > 0 be fixed. There exists a finite threshold m0 = m0(S0; ε; ε1) such
that for every integerM ⩾ m0, there exist at least (1−ε1)nM2 special (1/M)-squares
Q in X0 such that either

λ2(S0 ∩Q)
(1/M)2

> 1− ε or
λ2(S0 ∩Q)
(1/M)2

< ε.

Let N be a large even integer. Let F(N/2) denote the standard decomposition of
the unit torus [0, 1)2 into (N/2)2 axis-parallel congruent small squares of common
side length 2/N such that the origin (0, 0) is the vertex of a small square. For
δ = (δ1, δ2) ∈ {0, 1}2, let Fδ(N/2) denote the translation of F(N/2) modulo one
such that the vertex (0, 0) moves to (δ1/N, δ2/N). We refer to the small squares in
the four partitions Fδ(N/2), δ ∈ {0, 1}2, as basic (2/N)-squares. It is not difficult to
see that any axis-parallel square B of side length 1/N in the unit torus is contained
in a basic (2/N)-square.

For every i = 0, 1, . . . , n − 1, we replicate the families Fδ(N/2), δ ∈ {0, 1}2, on
the yz-parallel square face Ui = {i} × [0, 1)2. In other words, we write

Fδ(N/2; i) = {i} × Fδ(N/2), δ ∈ {0, 1}2, i = 0, 1, . . . , n− 1.

For every δ ∈ {0, 1}2, Lemma 3.2 with M = N/2 then gives the following.
Let the real number ε ∈ (0, 1) be arbitrarily small and fixed, and let the real

number ε1 > 0 be fixed. There exists a finite threshold m0 = m0(S0; ε; ε1) such
that for every δ ∈ {0, 1}2 and every even integer N ⩾ m0, there exist at least
(1− ε1)n(N/2)

2 basic (2/N)-squares

Q ∈
n−1⋃
i=0

Fδ(N/2; i) (3.1)
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such that either xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(S0 ∩Q)
(2/N)2

> 1− ε or
λ2(S0 ∩Q)
(2/N)2

< ε.

We say that these sets Q satisfy the ε-nearly zero-one law. The conclusion of this
step is that we have a lower bound for the number of such basic (2/N)-squares of
the form (3.1).

Step 3. To apply a version of the splitting method, first introduced in [2], we need
to make use of the local repetition color-split neighborhood S, with green part SG

and red part SR . As this color-split neighborhood is present on all the yz-parallel
square faces of the n-cube 3-manifold M, we assume, for simplicity, that S lies on
the unit torus [0, 1)2.

We can clearly find within S a buffer zone BN as shown in Figure 3.1. The length
of BN is a constant c1 depending only in S, while the width is 1/2N , where the
integer N is sufficiently large, with the color-split boundary splitting BN into green
and red strips of width 1/4N .

S

BN
1
2N

c1

Figure 3.1: buffer zone BN within the local repetition color-split neighborhood S
The following result follows from simple geometric considerations.

Lemma 3.3. Let A0 ⊂ [0, 1)2 be an arbitrary axis-parallel square with side length
1/N and center c(A0). Then for every t ∈ [0, 1)2 such that c(A0) + t ∈ BN , the set
A0 + t has substantial color-split in the sense that

λ2((A0 + t) ∩ SG ) ⩾
1

14N2
and λ2((A0 + t) ∩ SR) ⩾

1

14N2
.

The extreme case of the above takes place when BN is tilted at 45 degrees, with
the center c(A0) of A0 at the corner, as shown in Figure 3.2.

b

A0 + t

c(A0) + t

1
2N

BN

Figure 3.2: extreme case of substantial color-split

We need to show that such substantial color-splits occur quite frequently. We
shall establish in Section 5 the following result.

Lemma 3.4. Suppose that the integer N is even and sufficiently large. For every
pair s0 ∈ [0, 1)2 and v0 ∈ [0, 1]2, let F (s0;v0;N

2) denote the number of integers
j = 0, 1, . . . , N2 − 1 such that s0 + jv0 ∈ BN . Then for every ε2 > 0, there exists a
constant c2 > 0 such that

λ2({v0 ∈ [0, 1)2 : F (s0;v0;N
2) ⩾ c2N}) ⩾ 1− ε2. (3.2)
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Step 4. Consider a (1/N)-square A on some yz-parallel square face Ui ofM. We see
from (2.1)–(2.5) that the image T(A) is then given by A+v followed by appropriate
bounce-backs on those parts that hit red. If A + v hits both green and red, then
clearly the splitting of the image T(A) is caused by a color-split. For instance, in
Figure 3.3, the white square on the yz-parallel square face U1 denotes A, the square
A + v experiences a color-split on the yz-parallel square face U2, and the image
T(A), indicated in black, is split between the yz-parallel square faces U1 and U2.
Indeed, if the 2-coloring on the different yz-parallel square faces of M are identical,
then the only splitting of image is caused by a color-split.

x

z

y

U0 U1 U2 U3 U0

Figure 3.3: a color-split

On the other hand, if the different yz-parallel square faces of M can have different
2-colorings, then there are other instances that cause splitting of the image T(A).
For instance, in Figure 3.4, for the white square A on the yz-parallel square face U3,
the square A+ v is on the yz-parallel square face U0, but then different parts have
different bounce-backs, and the image T(A) is split between the yz-parallel square
faces U1 and U3. Although a color-split always leads to an image-split, this example
shows that the converse is not true.

x

z

y

U0 U1 U2 U3 U0

Figure 3.4: an image-split that is not a color-split

It turns out that it is advantageous to consider another kind of splitting which
may or may not result in an image-split. For every i = 0, 1, . . . , n − 1, let {i} × Γi

denote the color-split boundaries of the 2-coloring on Ui, so that Γi ⊂ [0, 1)2 is a
collection of straight edges. Consider the union

Γ =
n−1⋃
i=0

Γi,

and, for every i = 0, 1, . . . , n − 1, replace {i} × Γi on Ui by {i} × Γ, so that the
different yz-parallel square faces of M now have identical Γ-splits. Although an
image-split is always a Γ-split, the example in Figure 3.5 shows that the converse
is not true. Here, and also in Figures 3.3 and 3.4, the Γ-splits are indicated by the
black line segments.

x

z

y

U0 U1 U2 U3 U0

Figure 3.5: a Γ-split that is not an image-split

The important point here is that if there is no Γ-split, then there is no splitting
of any kind and in particular no color-split.
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For the splitting method to work, we need a substantial color-split in the local
repetition color-split neighborhood and a long color-split-free chain either side of it.
In view of the above observation, it therefore suffices to find a substantial color-split
in the local repetition color-split neighborhood and a long Γ-split-free chain either
side of it. As the Γ-split is identical on all the yz-parallel square faces of M, this
allows us to consider v0-flow on the unit torus [0, 1)2 instead of geodesic flow in the
direction v in M.
To establish this, we shall show that the number of short Γ-split-free chains is

small. More precisely, we have the following lemma which we prove in Section 4.
Before we can state the result, we first need some definitions.

Let A0 ⊂ [0, 1)2 be an arbitrary axis-parallel square of side length 1/N . Consider
the N2 v0-shift images xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A0 + jv0, j = 0, 1, . . . , N2 − 1, (3.3)

in [0, 1)2. We say that a set {A0 + jv0 : j ∈ J}, where J is a subset of consecutive
integers in {0, 1, . . . , N2 − 1}, is Γ-split-free if (A0 + jv0) ∩ Γ = ∅ for every j ∈ J .
Furthermore, we say that the set {A0 + jv0 : j ∈ J} is a Γ-split-free chain if it is
Γ-split-free and not contained in a bigger Γ-split-free set. It is convenient to define
the length of the Γ-split-free chain to be |J |+ 1.
Thus the sequence (3.3) decomposes into a subsequence of Γ-split members, with

any two consecutive members of this subsequence possibly separated by a Γ-split-free
chain in between.

For every axis-parallel square A0 ⊂ [0, 1)2 of side length 1/N , we can clearly write
A0 = A0(s0), where s0 = c(A0) is the center of A0. Also, for every vector v = (1,v0),
where v0 ∈ R2, we can identify

v, v0 and v∗ =
v

|v|
with each other. Clearly the collection of all vectors v∗, where v0 ∈ R2, forms the
subset S2

+ = {(x, y, z) ∈ S2 : x > 0} of the unit ball S2.

Lemma 3.5. Let the real number ε2 ∈ (0, 1) be arbitrarily small and fixed, and
let A0 ⊂ [0, 1)2 be an arbitrary axis-parallel square of side length 1/N that runs
uniformly over [0, 1)2, in the sense that the center s0 is uniformly distributed on
[0, 1)2. Then there exists a positive absolute constant c3 such that for at least (1−ε2)-
proportion of the pairs xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(s0,v
∗) ∈ [0, 1)2 × S2

+,

the sequence (3.3) in [0, 1)2 contains at most ε2N Γ-split-free chains with length at
most c3ε

2
2N . The (1− ε2)-proportion is in terms of the product of the 2-dimensional

Lebesgue measure on [0, 1)2 and the normalized surface area measure on S2
+.

Step 5. The motivation for this step is not immediately obvious at this stage, but
we include it here for the sake of convenience. This will become clear in Step 7.

We establish in Section 4 the following result on clustering. It demonstrates that
the overwhelming majority of arithmetic progressions are not clustered.

Lemma 3.6. Let the real number ε2 ∈ (0, 1) be arbitrarily small and fixed. There
exists a finite constant C∗ = C∗(ε2) such that for any starting point s0 in the unit
torus [0, 1)2 and for at least (1 − ε2)-proportion of the vectors v0 ∈ [0, 1]2, every
axis-parallel square Q of side length 2/N in [0, 1)2 contains modulo one at most C∗

elements of the arithmetic progression

s0 + jv0, j = 0, 1, . . . , N2 − 1,

of N2 terms. In particular, we can take C∗ = 1 + 16/ε2.
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Step 6. Here we combine our observations in Steps 3–5. Combining Lemmas 3.3,
3.4, 3.5 and 3.6, we see that there exists a set GD ⊂ [0, 1]2 of good directions
v0 ∈ [0, 1]2 with λ2(GD) ⩾ 1− 3ε2 such that for every v0 ∈ GD, the conclusion of
Lemma 3.6 holds for any s0 ∈ [0, 1)2, and there exists an axis-parallel square A∗

0 in
[0, 1)2 of side length 1/N such that the following two conditions hold:

(i) The sequence xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A∗
0 + jv0, j = 0, 1, . . . , N2 − 1, (3.4)

in [0, 1)2 contains at least c2N members which exhibit substantial color-split in the
local repetition color-split neighborhood S, in the sense that

λ2((A
∗
0 + jv0) ∩ SG ) ⩾

1

14N2
and λ2((A

∗
0 + jv0) ∩ SR) ⩾

1

14N2
.

(ii) The sequence (3.4) has at most ε2N short Γ-split-free chains with length at
most c3ε

2
2N .

Combining (i) and (ii), we conclude that the sequence (3.4) has at least

c2N − 2ε2N − 2

2
⩾
c2N

3
(3.5)

pairs of consecutive long Γ-split-free chains of length at least c3ε
2
2N , where each pair

is separated by a member of the sequence with substantial color-split in the local
repetition color-split neighborhood S. Here we require that ε2 > 0 is chosen to be
arbitrarily small so that the inequality (3.5) holds.

Step 7. To facilitate the use of the splitting method, we need to first demonstrate
the existence of a pair of consecutive long Γ-split-free chains separated by A∗

0+ j0v0

with substantial color-split in the local repetition color-split neighborhood S and
such that both A∗

0 + (j0 − 1)v0 and A∗
0 + (j0 + 1)v0 are Γ-split-free and satisfy the

ε-nearly zero-one law. More precisely, we return to the n-cube 3-manifold M. Then
A∗

0 + j0v0 corresponds to an axis-parallel square A∗∗ of side length 1/N on some
yz-parallel square face Ui, while A

∗
0 + (j0 − 1)v0 and A∗

0 + (j0 + 1)v0 correspond to
the squares A∗∗ − v and A∗∗ + v respectively. Then we claim that either

λ2(S0 ∩ (A∗∗ − v))

λ2(A∗∗ − v)
> 1− ε or

λ2(S0 ∩ (A∗∗ − v))

λ2(A∗∗ − v)
< ε, (3.6)

and either xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(S0 ∩ (A∗∗ + v))

λ2(A∗∗ + v)
> 1− ε or

λ2(S0 ∩ (A∗∗ + v))

λ2(A∗∗ + v)
< ε. (3.7)

To establish our claim, suppose, on the contrary, that for every pair of consecutive
long Γ-split-free chains separated by A∗

0 + j0v0 with substantial color-split in the
local repetition color-split neighborhood S, either (3.6) or (3.7) fails. Without loss
of generality, suppose that (3.7) fails, so that A∗∗+v fails the ε-nearly zero-one law.
Note that A∗∗ + v corresponds to the first member of a Γ-split-free chain of at least
c3ε

2
2N − 2 terms. Since the subset S0 ⊂ X0 is T-invariant, it follows that every set

Tj(A∗∗ + v), 0 ⩽ j ⩽ c3ε
2
2N − 3, (3.8)

is an axis-parallel square of side length 1/N on a yz-parallel square face of M that
is Γ-split-free and fails the ε-nearly zero-one law. Taking into consideration all pairs
of consecutive long Γ-split-free chains, we see that there are at least

c2N

3
· (c3ε22N − 2)

such axis-parallel squares of the form (3.8) which fail the ε-nearly zero-one law.
Each is contained in a basic (2/N)-square Q of the form (3.1) for some δ ∈ {0, 1}2.
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On the other hand, in view of Lemma 3.6, any basic (2/N)-square Q contains at
most C∗ = C∗(ε2) such axis-parallel squares of the form (3.8) which fail the ε-nearly
zero-one law. We conclude therefore that there are at least

c2N(c3ε
2
2N − 2)

3C∗

distinct basic (2/N)-squares Q of the form (3.1) for some δ ∈ {0, 1}2 which fail the
ε-nearly zero-one law. Meanwhile, the conclusion from Step 2 is that the number of
such basic (2/N)-squares Q is bounded above by

4ε1n

(
N

2

)2

.

For any given ε2 > 0, we can now choose ε1 > 0 sufficiently small in terms of the
other parameters to obtain a contradiction. This establishes the claim.

Step 8. We now apply the splitting method. Assume that A∗∗ is an axis-parallel
square of side length 1/N on some yz-parallel square face of M, and that (3.6) and
(3.7) both hold. For every i = 0, 1, . . . , n− 1, let Ai ⊂ Ui be the axis-parallel square
of side length 1/N that is in the same general position as A∗∗, and let

Bi−1 = Ai − v and Ci+1 = Ai + v.

Note that each Ai falls within the local repetition color-split neignborhood S, with
local 2-coloring SG and SR , and that each Bi−1 and each Ci+1 is Γ-split-free and so
monochromatic, and also ε-nearly in S0 or ε-nearly outside S0.

For each i = 0, 1, . . . , n− 1, let Bi−1(+) ⊂ Bi−1 be defined by

T(Bi−1(+)) = Ai ∩ SG ,

so that its image under T is precisely the green part of Ai, and let

Bi−1(−) = Bi−1 \Bi−1(+).

Suppose that Ci+1 ⊂ Gi+1, so that it is on the green part of Ui+1. Then it follows
from the definition of T, as given by (2.1)–(2.5), that

Ci+1 = T2(Bi−1(+)) ∪T2(Bi(−)).

Suppose that Ci+1 ⊂ Ri+1, so that it is on the red part of Ui+1. Corresponding to
(2.4) and using the convention (2.5), let

i∗ = max{j < i+ 1 : Cj ⊂ Rj}.
Then it follows from the definition of T, as given by (2.1)–(2.5), that

Ci∗ = T2(Bi−1(+)) ∪T2(Bi(−)).

In either case, the two sets Bi−1(+) and Bi(−), and so also the two sets Bi−1 and Bi,
are either both ε-nearly in S0 or both ε-nearly outside S0. Thus the sets

B0, . . . , Bn−1 and C0, . . . , Cn−1

are either all ε-nearly in S0 or all ε-nearly outside S0. This contradicts the assertion
in Step 1 that χ̃S0(P ) = k0 for almost every point P ∈ [0, 1)2 for some integer
k0 < n.

We can guarantee ε2 → 0 by taking N → ∞. This establishes that T = Tv is
ergodic, where v = (1,v0), for almost every v0 ∈ [0, 1]2.

Step 9. We can now use the standard technique of extending ergodicity to unique
ergodicity using functional analysis and Borel measures. This completes the proof
of Theorem 4.
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4. Proof of Lemmas 3.2, 3.5 and 3.6

Proof of Lemma 3.2. Since S0 is Lebesgue measurable, given any δ > 0, there exists
a finite set of disjoint axis-parallel rectangles such that their union V satisfies

λ2(V \ S0) + λ2(S0 \ V ) < δ.

Suppose that 0 < λ2(S0) = τ < n. Then

λ2(V ) > λ2(S0)− δ = τ − δ and λ2(S
c
0 ∩ V ) < δ,

where Sc
0 = X0 \ S0. Since V is a finite union of disjoint axis-parallel rectangles,

there clearly exists a threshold t1 = t1(V ; δ) such that the union V1 of the special
(1/t)-squares Q contained in V has measure

λ2(V1) > λ2(V )− δ > τ − 2δ,

provided that the integer t ⩾ t1. Let B denote the set of special (1/t)-squares Q in
V1 that satisfy xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(S
c
0 ∩Q)

(1/t)2
⩾ ε.

Then, provided that t ⩾ t1(V ; δ), we have

δ > λ2(S
c
0 ∩ V ) ⩾ λ2(S

c
0 ∩ V1) =

∑
Q⊂V1

λ2(S
c
0 ∩Q) ⩾

∑
Q∈B

λ2(S
c
0 ∩Q) ⩾

ε|B|
t2

,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|B| ⩽ δt2

ε
=
ε1t

2

6
,

if we choose δ = εε1/6. Deleting the special (1/t)-squares Q ∈ B, we see that V1
contains at least xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx(

τ − 2δ − ε1
6

)
t2 ⩾

(
τ − ε1

2

)
t2 (4.1)

special (1/t)-squares Q such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(S
c
0 ∩Q)

(1/t)2
< ε.

It follows that, as long as the integer t ⩾ t1(V ; δ), the number of special (1/t)-squares
in X0 that satisfy xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(S0 ∩Q)
(1/t)2

> 1− ε (4.2)

is bounded below by (4.1). Repeating the same argument but replacing S0 by S
c
0, we

obtain another threshold t2 = t2(V ; δ) such that, as long as the integer t ⩾ t2(V ; δ),
the number of special (1/t)-squares in X0 that satisfy

λ2(S0 ∩Q)
(1/t)2

< ε (4.3)

is bounded below by xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx(
n− τ − ε1

2

)
t2. (4.4)

Combining the lower bounds (4.1) and (4.4), we see that, provided that an integer
M ⩾ max{t1, t2}, the number of special (1/M)-squares in X0 that satisfy (4.2) or
(4.3) is bounded below by (n− ε1)M

2, and this completes the proof. □
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Proof of Lemma 3.5. Throughout this proof, the parameters C1, C2, C3, . . . represent
positive absolute constants.

Let η = η(ε2) > 0, to be fixed later.
Suppose that an integer j∗, satisfying 0 < j∗ ⩽ ηN , is such that both A0 and

A0 + j∗v0 exhibit Γ-split, but A0 + jv0 for any integer j satisfying 0 < j < j∗ is
Γ-split-free. This gives rise to a Γ-split-free chain of length j∗, and we say that v0

is a bad direction for A0.
We now go to 3-space as follows. A discrete point sequence

s0 + jv0, j = 0, 1, . . . , N2 − 1,

in the torus [0, 1)2 defines a straight line

s+ tv ∈ R3,

where v = (1,v0). It follows that the sequence (3.3) leads to a sequence

A+ jv, j = 0, 1, . . . , N2 − 1, (4.5)

in R3, where A = {x0} × A0 is an axis-parallel square of side length 1/N on some
plane x = x0 where x0 is an integer. The Γ-split-free chain under consideration is
then characterized by a vector from the center of A to the centre of A+ j∗v in R3.
Clearly the direction of any such vector is given by v, and the length is at most√
3ηN , where we assume that

√
3ηN > 1.

Let the integer m satisfy xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

2m−1 <
√
3ηN ⩽ 2m. (4.6)

Our basic idea is straightforward. We consider all yz-parallel unit squares arising
from the lattice Z3, and extend Γ to each in the usual way. Assume that A is a
Γ-split (1/N)-square on some yz-parallel unit square. Consider some other Γ-split
(1/N)-square A∗ on some other yz-parallel unit square. If the center of A∗ is reached
from the center of A via a vector in the direction of v and of length at most 2m,
then A∗ determines a bad direction v for A. Theoretically, we can determine all
possible Γ-split (1/N)-squares A∗ on other yz-parallel unit squares, the centers of
which can be reached from the center of A via vectors of length at most 2m, leading
to a collection of bad directions for A. Carrying this out, however, is impossible
without more care.

Clearly every yz-parallel unit square has N2 special (1/N)-squares obtained by
dividing the unit square into congruent squares with side length 1/N in the standard
way. Since the set Γ is defined by the boundaries of a finite set of polygons, there
are at most C1N special (1/N)-squares that exhibit Γ-split in its interior or on part
of its boundary. We refer to these as Γ-split special (1/N)-squares. We also say that
a special (1/N)-square on some yz-parallel unit square is exceptional if it has Γ-split
or it is in a 3× 3 array of 9 special (1/N)-squares, at least one of which has Γ-split.
Note that some of these 9 special (1/N)-squares may lie on neighboring yz-parallel
unit squares.

We start with a fixed Γ-split (1/N)-square A on some yz-parallel unit square.
Assume that the bad direction vector has length between 2ℓ−1 and 2ℓ, where the
positive integer ℓ ⩽ m.

(i) Clearly A + j∗v is contained in a 3 × 3 array of 9 exceptional (1/N)-squares
contained in at most 4 distinct but adjoining yz-parallel unit squares. Each such
exceptional (1/N)-square contributes a set of bad directions for A with surface area
measure at most xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C1

(
1/N

2ℓ

)2
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on S2
+.

(ii) The number of distinct yz-parallel unit squares reachable from the center of
A by a vector of length between 2ℓ−1 and 2ℓ is at most C2(2

ℓ)3.
(iii) The total number of exceptional (1/N)-squares on any yz-parallel unit square

is at most C3N .
Combining (i)–(iii), we see immediately that the total measure of bad directions

for A that are characterized by bad direction vectors of length between 2ℓ−1 and 2ℓ

is at most xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

C1

(
1/N

2ℓ

)2

· C2(2
ℓ)3 · C3N = C4

2ℓ

N
.

It follows, in view of (4.6), that the total measure of bad directions for A that are
characterized by bad direction vectors of length up to ηN is at most

m∑
ℓ=1

C4
2ℓ

N
< C5η. (4.7)

Next, note that A is contained in a 3 × 3 array of 9 exceptional (1/N)-squares
contained in at most 4 distinct but adjoining yz-parallel unit squares. Recall that
the total number of exceptional (1/N)-squares on any yz-parallel unit square is at
most C3N . Let Ψ(A(s0);v

∗;N2) denote the number of Γ-split-free chains in (4.5) of
the form xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A+ j1v, . . . , A+ j2v, 0 ⩽ j1 < j2 ⩽ ηN.

Then we have the inequality∫
[0,1)2

∫
S2

Ψ(A(s0);v
∗;N2) dv∗ ds0 ⩽ C3N · C5η = C6ηN. (4.8)

Remark. An inequality of the form∫
S2

Ψ(A(s0);v
∗;N2) dv∗ ⩽ C5η

for every A(s∗) would be ideal, but cannot be deduced from the upper bound (4.7),
in view of the possibility that the integrand may exceed 1. Thus we need to average
over s0 as well. The inequality (4.8) is valid with the integrand Ψ(A(s∗);v∗;N2),
since if the sequence has more than one Γ-split-free chain, the multiplicity is taken
care of by the parameter s0, as the terms of the sequence (4.5) correspond to N2

distinct values of s0.

Let Φ(ε2N ; ηN) denote the set of pairs (s0,v
∗) ∈ [0, 1)2 × S2

+ such that the
sequence (4.5) has more than ε2N Γ-split-free chains with length at most ηN . Then
writing meas for the product measure, we have

meas(Φ(ε2N ; ηN))ε2N ⩽
∫
[0,1)2

∫
S2

Ψ(A(s0);v
∗;N2) dv∗ ds0. (4.9)

Combining (4.8) and (4.9), we conclude that

meas(Φ(ε2N ; ηN)) ⩽
C6η

ε2
.

The proof is now complete if we choose η = c3ε
2
2 with a suitable constant c3. □

Proof of Lemma 3.6. For any integer k = 1, . . . , N2, write

Ω(N ; k) =

{
v0 = (α1, α2) ∈ [0, 1]2 : ∥kα1∥ <

2

N
and ∥kα2∥ <

2

N

}
. (4.10)
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It is not difficult to see that

Ω(N ; k) ∩ [0, 1)2 =

([
0,

2

kN

)
∪

k−1⋃
j=1

(
j

k
− 2

kN
,
j

k
+

2

kN

)
∪
(
1− 2

kN
, 1

))2

,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ2(Ω(N ; k)) =

(
4

N

)2

=
16

N2
. (4.11)

For every (α1, α2) ∈ [0, 1]2, consider the counting function

ωN(α1, α2) = |{k = 1, . . . , N2 : (α1, α2) ∈ Ω(N ; k)}|. (4.12)

Combining (4.10)–(4.12), we see that∫ 1

0

∫ 1

0

ωN(α1, α2) dα1 dα2 =
N2∑
k=1

λ2(Ω(N ; k)) = 16.

Given any ε2 > 0, write

Ω(ε2) =

{
(α1, α2) ∈ [0, 1]2 : ωN(α1, α2) ⩾

16

ε2

}
.

Since the function ωN(α1, α2) is non-negative, we clearly have

16 =

∫ 1

0

∫ 1

0

ωN(α1, α2) dα1 dα2 ⩾
16

ε2
λ2(Ω(ε2)),

so that λ2(Ω(ε2)) ⩽ ε2. It follows that

λ2([0, 1]
2 \ Ω(ε2)) > 1− ε2,

so that the collection of vectors

v0 = (α1, α2) ∈ [0, 1]2 \ Ω(ε2) (4.13)

represents at least (1− ε2)-proportion of the set [0, 1]2.
We shall show that the lemma holds with the choice

C∗ = C∗(ε2) = 1 +
16

ε2
.

Suppose on the contrary that some axis-parallel square Q with side length 2/N
contains modulo one more than 1 + 16/ε2 elements of some sequence

s0 + jv0, j = 0, 1, . . . , N2 − 1.

In other words, suppose that there exists a subset J ⊂ {0, 1, . . . , N2 − 1} with
|J | > 1 + 16/ε2 such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

s0 + jv0 ∈ Q, j ∈ J.

Let j0 be the smallest element of J , and let

J∗ = J \ {j0}.
It is not difficult to see that

J∗ ⊂ {k = 1, . . . , N2 : (α1, α2) ∈ Ω(N ; k)},
and so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ωN(v0) ⩾ |J∗| > 16

ε2
.

This implies that v0 ∈ Ω(ε2), contradicting (4.13). The lemma now follows. □
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5. Establishing Lemma 3.4

In this section, we establish an intermediate result from which Lemma 3.4 follows
easily.

Lemma 5.1. Let the integer H be even and positive, and let ∆ = ∆(u1, u2; θ) be
an arbitrary rectangle with side lengths 2u1 and 2u2, and tilted by an angle θ in the
anticlockwise direction, where 0 < u1, u2 < 1/2. Let

F (s0;α1, α2;H) = |{j = 0, 1, . . . , H − 1 : s0 + j(α1, α2) ∈ ∆}|.
Then for any parameter κ > 1, we have

λ2

({
(α1, α2) ∈ [0, 1]2 : F (s0;α1, α2;H) ⩾

u1u2H

2
− κψ(u1, u2)

})
⩾ 1− 1

κ
,

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ψ(u1, u2) = 223max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
+

216

u
1/3
1 u

1/3
2

. (5.1)

Proof of Lemma 3.4. We take H = N2. For the buffer zone ∆ = BN , we have

u1 =
c1
2
, and u2 =

1

4N
.

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

u1u2H

2
=
c1N

16
and ψ(u1, u2) = c4N

1/2 + c5N
1/3 (5.2)

for some positive absolute constants c4 and c5. For large values of N , the right hand
side in (5.2) is much smaller than the left hand side. Thus given any ε2 > 0, we can
choose a sufficiently large κ = κ(ε2) > 1 to guarantee that the inequality (3.2) holds
for some constant c2 satisfying 0 < c2 < c1/16. □

Proof of Lemma 5.1. We proceed by a number of steps.

Step 1. We aim to give a good description of the term F (s0;α1, α2;H).
Let L(α1, α2) denote the lattice in R3 generated by the vectors

e1 = (α1, α2, 1), e2 = (−1, 0, 0), e3 = (0,−1, 0),

and consider the 3× 3 matrix

M =
(
e1 e2 e3

)
=

 α1 −1 0
α2 0 −1
1 0 0

 , with det(M) = 1. (5.3)

Then, with n ∈ Z3 expressed as column vectors, we have

L(α1, α2) = {Mn : n ∈ Z3}. (5.4)

Writing B = (∆− s0)× [0, H) ⊂ R3, we then have

F (s0;α1, α2;H) = |L(α1, α2) ∩B| =
∑
n∈Z3

χB(Mn), (5.5)

where χB is the characteristic function of B.
We next use the Poisson summation formula, that under some mild condition on

a function f : R3 → R, we have∑
n∈Z3

f(n) =
∑
m∈Z3

∫
R3

f(x)e−2πix·m dx. (5.6)
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Applying this formula with f = χB, it follows from (5.5) and noting (5.3) that

F (s0;α1, α2;H) =
∑
n∈Z3

χB(Mn) =
∑
m∈Z3

∫
R3

χB(Mx)e−2πix·m dx

=
1

det(M)

∑
m∈Z3

∫
R3

χB(z)e
−2πiM−1z·m dz =

∑
m∈Z3

∫
B

e−2πiM−1z·m dz. (5.7)

Note, in particular, that for m = 0, we have∫
B

e−2πiM−1z·m dz =

∫
B

e−2πiM−1z·0 dz = λ3(B) = λ2(∆)H = 4u1u2H. (5.8)

On the other hand, it is easy to see that the inverse matrix

M−1 =

 0 0 1
−1 0 α1

0 −1 α2

 ,

so that M−1z = (z3, α1z3 − z1, α2z3 − z2). Thus with v = (1, α1, α2), we have

M−1z ·m = z3m1 + (α1z3 − z1)m2 + (α2z3 − z2)m3

= −z1m2 − z2m3 + z3(m1 + α1m2 + α2m3)

= −z1m2 − z2m3 + z3v ·m. (5.9)

Then for every m ∈ Z3 \ {0}, we can write∫
B

e−2πiM−1z·m dz = I(m; ∆− s0)J (m;v;H), (5.10)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(m; ∆− s0) =

∫
∆−s0

e2πi(z1m2+z2m3) dz1 dz2 (5.11)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

J (m;v;H) =

∫ H

0

e−2πiz3v·m dz3 =
1− e−2πiHv·m

2πiv ·m . (5.12)

Write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

z∗ = (z1, z2) and m∗ = (m2,m3),

and let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

∆ = ρ([−u1, u1]× [−u2, u2]) +w ⊂ [0, 1)2,

where ρ denotes an anticlockwise rotation. Then

z∗ ∈ ∆− s0 = ρ([−u1, u1]× [−u2, u2]) +w − s0

if and only if xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

z′ = (z′1, z
′
2) = ρ−1(z∗ −w + s0) ∈ [−u1, u1]× [−u2, u2].

Note that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

z′ = ρ−1(z∗ −w + s0) if and only if z∗ = ρz′ +w − s0.
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It then follows from (5.11) that

I(m; ∆− s0) =

∫
∆−s0

e2πiz
∗·m∗

dz∗ =

∫
[−u1,u1]×[−u2,u2]

e2πi(ρz
′+w−s0)·m∗

dz′

= e2πi(w−s0)·m∗
∫
[−u1,u1]×[−u2,u2]

e2πiρz
′·m∗

dz′

= e2πi(w−s0)·m∗
∫
[−u1,u1]×[−u2,u2]

e2πiz
′·ρ−1m∗

dz′, (5.13)

since ρz′ ·m∗ = z′ · ρ−1m∗ as the scalar product remains unchanged under identical
rotation for both constituent vectors. Furthermore, if ρ is anticlockwise rotation by
an angle θ, then

ρ−1m∗ = ρ−1(m2,m3) = (m2 cos θ +m3 sin θ,m3 cos θ −m2 sin θ). (5.14)

Combining (5.13) and (5.14), we conclude that

I(m; ∆− s0) = e2πi(w−s0)·m∗I(m2,m3; θ;u1)I(m3,−m2; θ;u2), (5.15)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(m2,m3; θ;u1) =

∫ u1

−u1

e2πiz
′
1(m2 cos θ+m3 sin θ) dz′1

= 2

∫ u1

0

cos(2πz′1(m2 cos θ +m3 sin θ)) dz
′
1

=
sin(2πu1(m2 cos θ +m3 sin θ))

π(m2 cos θ +m3 sin θ)
(5.16)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(m3,−m2; θ;u2) =

∫ u2

−u2

e2πiz
′
2(m3 cos θ−m2 sin θ) dz′2

= 2

∫ u2

0

cos(2πz′2(m3 cos θ −m2 sin θ)) dz
′
2

=
sin(2πu2(m3 cos θ −m2 sin θ))

π(m3 cos θ −m2 sin θ)
. (5.17)

Finally, combining (5.7), (5.8), (5.10) and (5.15), we conclude that

F (s0;α1, α2;H)− 4u1u2H

=
∑

m∈Z3\{0}

e2πi(w−s0)·m∗I(m2,m3; θ;u1)I(m3,−m2; θ;u2)J (m;v;H), (5.18)

where the details for the various factors in the summand are given by (5.12), (5.16)
and (5.17).

Step 2. Here we contract the interval [0, H] in the third direction and average over
all contractions. More precisely, for every h ∈ R satisfying 0 ⩽ h ⩽ H/2, consider
the smaller set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

B(h) = (∆− s0)× [h,H − h) ⊂ B.
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Clearly, in view of an analog of (5.8), we have

F (s0;α1, α2;H) ⩾
2

H

∫ H/2

0

(∑
n∈Z3

χB(h)(Mn)

)
dh

=
2

H

∫ H/2

0

4u1u2(H − 2h) dh+
2

H

∫ H/2

0

 ∑
m∈Z3\{0}

∫
B(h)

e−2πiM−1z·m dz

 dh

= 2u1u2H +
2

H

∫ H/2

0

 ∑
m∈Z3\{0}

∫
B(h)

e−2πiM−1z·m dz

 dh. (5.19)

For any m ∈ Z3 \ {0}, analogous to (5.10), we have∫
B(h)

e−2πiM−1z·m dz = I(m; ∆− s0)J (m;v;H;h) (5.20)

where the first two directions are unaffected and

J (m;v;H;h) =

∫ H−h

h

e−2πiz3v·m dz3 =
e−2πihv·m − e−2πi(H−h)v·m

2πiv ·m , (5.21)

so that∫ H/2

0

J (m;v;H;h) dh =
1− 2e−πiHv·m + e−2πiHv·m

(2πiv ·m)2
= −(1− e−πiHv·m)2

4π2(v ·m)2
,

and so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

J̃ (m;v;H) =
2

H

∫ H/2

0

J (m;v;H;h) dh = −(1− e−πiHv·m)2

2π2H(v ·m)2
. (5.22)

Finally, combining (5.15), (5.19), (5.20) and (5.22), we conclude that

F (s0;α1, α2;H)− 2u1u2H

⩾
∑

m∈Z3\{0}

e2πi(w−s0)·m∗I(m2,m3; θ;u1)I(m3,−m2; θ;u2)J̃ (m;v;H), (5.23)

the analog of (5.18).

Step 3. Here we also contract the rectangle [−u1, u1] × [−u2, u2] in the first two
directions and average over all contractions. More precisely, for every γ1 and γ2
satisfying 0 ⩽ γ1, γ2 ⩽ 1, consider the smaller set

∆(γ1, γ2) = ρ([−γ1u1, γ1u1]× [−γ2u2, γ2u2]) +w ⊂ [0, 1)2,

and the corresponding smaller set

B(γ1, γ2;h) = (∆(γ1, γ2)− s0)× [h,H − h) ⊂ B(h) ⊂ B.

Clearly, in view of an analog of (5.8), we have

F (s0;α1, α2;H) ⩾
2

H

∫ H/2

0

∫ 1

0

∫ 1

0

(∑
n∈Z3

χB(γ1,γ2,h)(Mn)

)
dγ1 dγ2 dh

=
2

H

∫ H/2

0

∫ 1

0

∫ 1

0

4γ1γ2u1u2(H − 2h) dγ1 dγ2 dh

+
2

H

∫ H/2

0

∫ 1

0

∫ 1

0

 ∑
m∈Z3\{0}

∫
B(γ1,γ2,h)

e−2πiM−1z·m dz

 dγ1 dγ2 dh, (5.24)
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where the first term

2

H

∫ H/2

0

∫ 1

0

∫ 1

0

4γ1γ2u1u2(H − 2h) dγ1 dγ2 dh =
u1u2H

2
. (5.25)

For any m ∈ Z3 \ {0}, analogous to (5.10) and (5.20), we have∫
B(γ1,γ2,h)

e−2πiM−1z·m dz = I(m; ∆(γ1, γ2)− s0)J (m;v;H;h) (5.26)

Then, analogous to (5.15), we have

I(m; ∆(γ1, γ2)− s0) = e2πi(w−s0)·m∗I(m2,m3; θ; γ1u1)I(m3,−m2; θ; γ2u2). (5.27)

Simple calculations now give

Ĩ(m2,m3; θ;u1) =

∫ 1

0

I(m2,m3; θ; γ1u1) dγ1

=

∫ 1

0

sin(2πγ1u1(m2 cos θ +m3 sin θ))

π(m2 cos θ +m3 sin θ)
dγ1

=
1− cos(2πu1(m2 cos θ +m3 sin θ))

2π2u1(m2 cos θ +m3 sin θ)2

=
sin2(πu1(m2 cos θ +m3 sin θ))

π2u1(m2 cos θ +m3 sin θ)2
(5.28)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ĩ(m3,−m2; θ;u2) =

∫ 1

0

I(m3,−m2; θ; γ2u2) dγ2

=

∫ 1

0

sin(2πγ2u2(m3 cos θ −m2 sin θ))

π(m3 cos θ −m2 sin θ)
dγ2

=
1− cos(2πu2(m3 cos θ −m2 sin θ))

2π2u2(m3 cos θ −m2 sin θ)2

=
sin2(πu2(m3 cos θ −m2 sin θ))

π2u2(m3 cos θ −m2 sin θ)2
. (5.29)

It now follows from (5.22) and (5.24)–(5.29) that

F (s0;α1, α2;H)− u1u2H

2

⩾
∑

m∈Z3\{0}

e2πi(w−s0)·m∗ Ĩ(m2,m3; θ;u1)Ĩ(m3,−m2; θ;u2)J̃ (m;v;H), (5.30)

the analog of (5.18) and (5.23).

Step 4. It follows from (5.30) that

F (s0;α1, α2;H) ⩾
u1u2H

2
+

∑
m∈Z3\{0}

Λ(θ;u1, u2;H;v;m),

where

Λ(θ;u1, u2;H;v;m) = Ĩ(m2,m3; θ;u1)Ĩ(m3,−m2; θ;u2)|J̃ (m;v;H)|, (5.31)

since it is clear from (5.28) and (5.29) that Ĩ(m2,m3; θ;u1) and Ĩ(m3,−m2; θ;u2)
are real and non-negative.
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The inequalities in Steps 1–3 are at this stage only formal inequalities, as we have
not considered the question of convergence. Write

Ξ(α1, α2) =
∑

m∈Z3\{0}

Λ(θ;u1, u2;H;v;m), (5.32)

where v = (1, α1, α2). We shall use the first-moment method and analyze the average∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2,

and remove those directions (α1, α2) for which Ξ(α1, α2) is substantially larger than
the average. In this step, we do some further preparation.

First of all, the inequalities

Ĩ(m2,m3; θ;u1) ⩽ min

{
u1,

1

π2u1(m2 cos θ +m3 sin θ)2

}
(5.33)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ĩ(m3,−m2; θ;u2) ⩽ min

{
u2,

1

π2u2(m3 cos θ −m2 sin θ)2

}
(5.34)

follow on applying the inequality | sin y| ⩽ min{|y|, 1}, which holds for every y ∈ R,
to (5.28) and (5.29) respectively. Next, the inequality

|J̃ (m;v;H)| = |1− e−πiHv·m|2
2π2H(v ·m)2

⩽ min

{
H

2
,

2

π2H(v ·m)2

}
(5.35)

follows on applying the inequality |1− eiy| ⩽ min{|y|, 2}, which also holds for every
y ∈ R, to (5.22). Since we consider only those m ̸= 0, it follows that in the trivial
case when m∗ = (m2,m3) = (0, 0), we must have m1 ̸= 0 and, since H is even, also

|J̃ (m;v;H)| = |1− e−πiHv·m|2
2π2H(v ·m)2

= 0. (5.36)

Hence we can assume that m∗ = (m2,m3) ∈ Z2 \ {(0, 0)}. We can write

Z2 \ {(0, 0)} =
∞⋃
j=0

Zj (5.37)

as a disjoint union of subsets, where for every j = 0, 1, 2, 3, . . . , the subset

Zj = {m∗ = (m2,m3) ∈ Z2 \ {(0, 0)} : 2j−1 < max{|m2|, |m3|} ⩽ 2j}
= Z2 ∩ ([−2j, 2j]2 \ [−2j−1, 2j−1]2). (5.38)

For every m∗ = (m2,m3) ∈ Zj, let

Ωj(m
∗; 0) =

{
(α1, α2) ∈ [0, 1]2 : |v ·m| ⩽ 1

H
for some m1 ∈ Z

}
, (5.39)

and for every integer ℓ ⩾ 1, let

Ωj(m
∗; ℓ) =

{
(α1, α2) ∈ [0, 1]2 :

2ℓ−1

H
< |v ·m| ⩽ 2ℓ

H
for some m1 ∈ Z

}
. (5.40)

We claim that the inequality

λ2(Ωj(m
∗; ℓ)) ⩽ min

{
2ℓ+5

H
+

22ℓ+3−j

H2
, 1

}
⩽ min

{
2ℓ+6

H
, 1

}
(5.41)

holds for every m∗ = (m2,m3) ∈ Zj and every integer ℓ ⩾ 0.
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Suppose first of all that ℓ = 0. To estimate λ2(Ωj(m
∗; 0)), we may assume that

|m2| ⩽ |m3|. Then for fixed m1, α1,m2, the variable α2 ∈ [0, 1] must satisfy the
inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

− 1

H
⩽ m1 + α1m2 + α2m3 ⩽

1

H
, (5.42)

and so falls into an interval of length

2

Hm3

⩽
22−j

H
.

Note next that the inequality (5.42) has no solution if

|m1| > 2j+1 +
1

H
.

It follows that

λ2(Ωj(m
∗; 0)) ⩽ min

{(
2j+2 + 1 +

2

H

)
22−j

H
, 1

}
⩽ min

{
25

H
+

23−j

H2
, 1

}
,

and this establishes (5.41) for ℓ = 0.
Suppose next that ℓ ⩾ 1. To estimate λ2(Ωj(m

∗; ℓ)), we may assume again that
|m2| ⩽ |m3|. Then for fixed m1, α1,m2, the variable α2 ∈ [0, 1] must satisfy one of
the inequalities

−2ℓ

H
⩽ m1 +α1m2 +α2m3 < −2ℓ−1

H
or

2ℓ−1

H
< m1 +α1m2 +α2m3 ⩽

2ℓ

H
, (5.43)

and so falls into two intervals of total length

2ℓ

Hm3

⩽
2ℓ+1−j

H
.

Note next that the inequalities in (5.43) have no solution if

|m1| > 2j+1 +
2ℓ

H
.

It follows that

λ2(Ωj(m
∗; ℓ)) ⩽ min

{(
2j+2 + 1 +

2ℓ+1

H

)
2ℓ+1−j

H
, 1

}
⩽ min

{
2ℓ+4

H
+

22ℓ+2−j

H2
, 1

}
,

and this more than establishes (5.41) for every ℓ ⩾ 1.

Step 5. For every (m2,m3) ∈ Zj, we use the identity

(m2 cos θ +m3 sin θ)
2 + (m3 cos θ −m2 sin θ)

2 = m2
2 +m2

3 (5.44)

to study the product Ĩ(m2,m3; θ;u1)Ĩ(m3,−m2; θ;u2).
Case 1: Assume that

min{(m2 cos θ +m3 sin θ)
2, (m3 cos θ −m2 sin θ)

2} < 2j−3. (5.45)

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

max{(m2 cos θ +m3 sin θ)
2, (m3 cos θ −m2 sin θ)

2}
= (m2

2 +m2
3)−min{(m2 cos θ +m3 sin θ)

2, (m3 cos θ −m2 sin θ)
2}

> 22j−2 − 2j−3 > 22j−3. (5.46)

Since m∗ = (m2,m3) ∈ Zj, it follows from (5.38) that the vector (m2,m3) has length
greater than 2j−1, while (5.45) shows that one of the two dot products

(m2,m3) · (cos θ, sin θ) and (m2,m3) · (− sin θ, cos θ)
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has size less than 2(j−3)/2 which is substantially smaller than 2j−1 if j is large,
meaning that the vector (m2,m3) is nearly perpendicular to one of the two vectors
(cos θ, sin θ) and (− sin θ, cos θ) and nearly parallel to the other one, where nearly
parallel means that the angle in between is in the range 2−j/2, so

Z†
j = {(m2,m3) ∈ Zj : (5.45) holds}

is the set of points in Z2 which fall into the dark shaded part in Figure 5.1, and we
have generous upper bound

|Z†
j | ⩽ 21022j2−j/2 = 210+3j/2. (5.47)

2j2j−1
m2

m3 (cos θ, sin θ)

(− sin θ, cos θ)

Figure 5.1: the location of m∗ = (m2,m3) ∈ Z†
j

For every m∗ = (m2,m3) ∈ Z†
j , it then follows from the bounds (5.33), (5.34) and

(5.46) that

Ĩ(m2,m3; θ;u1)Ĩ(m3,−m2; θ;u2)

⩽ min

{
u1u2,

u1
π2u2(m3 cos θ −m2 sin θ)2

,
u2

π2u1(m2 cos θ +m3 sin θ)2

}
⩽ min

{
u1u2,max

{
u1
u2
,
u2
u1

}
1

π222j−3

}
⩽ min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
. (5.48)

Case 2: Suppose that (5.45) fails, so that m∗ = (m2,m3) ∈ Z‡
j = Zj \ Z†

j . Then

min{(m2 cos θ +m3 sin θ)
2, (m3 cos θ −m2 sin θ)

2} ⩾ 2j−3. (5.49)

On the other hand, using the identity (5.44) and the inequality (5.38), we see that

max{(m2 cos θ +m3 sin θ)
2, (m3 cos θ −m2 sin θ)

2} ⩾
m2

2 +m2
3

2
⩾ 22j−3. (5.50)

It then follows from the bounds (5.33), (5.34), (5.49) and (5.50) that

Ĩ(m2,m3; θ;u1)Ĩ(m3,−m2; θ;u2)

⩽ min

{
u1u2,

1

π4u1u2(m2 cos θ +m3 sin θ)2(m3 cos θ −m2 sin θ)2

}
⩽ min

{
u1u2,

1

π4u1u223j−6

}
⩽ min

{
u1u2,

1

23ju1u2

}
. (5.51)
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Step 6. Using (5.32) and taking into account that the identity (5.36) holds whenever
m∗ = (m2,m3) = (0, 0), we now have the trivial upper bound∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2 ⩽ I1 + I2, (5.52)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1 =
∞∑
j=0

∞∑
ℓ=0

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2, (5.53)

I2 =
∞∑
j=0

∞∑
ℓ=0

∑
m∗∈Z‡

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2. (5.54)

Lemma 5.2. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1 ⩽ 223max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
. (5.55)

Proof. (i) Suppose first that ℓ = 0. It follows from (5.31), (5.35) and (5.48) that for

every m∗ = (m2,m3) ∈ Z†
j and (α1, α2) ∈ Ωj(m

∗; 0), we have

0 ⩽ Λ(θ;u1, u2;H;v;m) ⩽
H

2
min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
.

Combining this with (5.41) and (5.47), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;0)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 210+3j/2λ2(Ωj(m
∗; 0))

H

2
min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
⩽ 215+3j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
. (5.56)

We claim that
∞∑
j=0

23j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
⩽ 23max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
. (5.57)

To see this, let J† denote the largest non-negative integer j such that

u1u2 ⩽
1

22j
max

{
u1
u2
,
u2
u1

}
, (5.58)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

22J
†
⩽

1

u1u2
max

{
u1
u2
,
u2
u1

}
and 22J

†+2 >
1

u1u2
max

{
u1
u2
,
u2
u1

}
. (5.59)

Then it follows from (5.58) and (5.59) that

J†∑
j=0

23j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
⩽ u1u2

J†∑
j=0

23j/2

⩽ 2u1u2

(
1

u1u2
max

{
u1
u2
,
u2
u1

})3/4

= 2max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
(5.60)
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and
∞∑

j=J†+1

23j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
⩽ max

{
u1
u2
,
u2
u1

} ∞∑
j=J†+1

2−j/2

⩽ 4max

{
u1
u2
,
u2
u1

}(
1

u1u2
max

{
u1
u2
,
u2
u1

})−1/4

= 4max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
. (5.61)

The inequality (5.57) follows on combining (5.60) and (5.61). Combining (5.56) and
(5.57) now leads to the inequality

∞∑
j=0

∑
m∗∈Z†

j

∫
Ωj(m∗;0)

Λ(θ;u1, u2;H;v;m) dα1 dα2 ⩽ 218max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
. (5.62)

(ii) Suppose next that ℓ ⩾ 1. It follows from (5.31), (5.35), (5.40) and (5.48) that

for every m∗ = (m2,m3) ∈ Z†
j and (α1, α2) ∈ Ωj(m

∗; ℓ), we have

0 ⩽ Λ(θ;u1, u2;H;v;m) ⩽
H

22ℓ
min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
. (5.63)

Combining (5.41), (5.47) and (5.63), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 210+3j/2λ2(Ωj(m
∗; ℓ))

H

22ℓ
min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
⩽ 210+3j/2min

{
1

2ℓ−8
,
H

22ℓ

}
min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
∞∑
ℓ=1

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 210+3j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}} ∞∑
ℓ=1

min

{
1

2ℓ−8
,
H

22ℓ

}
⩽ 219+3j/2min

{
u1u2,

1

22j
max

{
u1
u2
,
u2
u1

}}
. (5.64)

Combining (5.57) and (5.64) now leads to the inequality

∞∑
j=0

∞∑
ℓ=1

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2 ⩽ 222max

{
u1

u
1/2
2

,
u2

u
1/2
1

}
.

(5.65)
The inequality (5.55) now follows on combining (5.53), (5.62) and (5.65). □

Lemma 5.3. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I2 ⩽
216

u
1/3
1 u

1/3
2

. (5.66)

Proof. (i) Suppose first that ℓ = 0. It follows from (5.31), (5.35) and (5.51) that for

every m∗ = (m2,m3) ∈ Z‡
j and (α1, α2) ∈ Ωj(m

∗; 0), we have

0 ⩽ Λ(θ;u1, u2;H;v;m) ⩽
H

2
min

{
u1u2,

1

23ju1u2

}
. (5.67)
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Note that it follows from (5.38) that |Z‡
0| ⩽ 8 and |Z‡

j | ⩽ 4j+1 for j ⩾ 1, and so

|Z‡
j | ⩽ 4j+2 (5.68)

for all j ⩾ 0. Combining this with (5.41) and (5.67), we deduce that∑
m∗∈Z‡

j

∫
Ωj(m∗;0)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 4j+2λ2(Ωj(m
∗; 0))

H

2
min

{
u1u2,

1

23ju1u2

}
⩽ 22j+9min

{
u1u2,

1

23ju1u2

}
. (5.69)

We claim that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
∞∑
j=0

22j min

{
u1u2,

1

23ju1u2

}
⩽

4

u
1/3
1 u

1/3
2

. (5.70)

To see this, let J‡ denote the largest non-negative integer j such that

u1u2 ⩽
1

23ju1u2
, (5.71)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

23J
‡
⩽

1

u21u
2
2

and 23J
‡+3 >

1

u21u
2
2

. (5.72)

Then it follows from (5.71) and (5.72) that

J‡∑
j=0

22j min

{
u1u2,

1

23ju1u2

}
⩽ u1u2

J‡∑
j=0

22j

⩽ 2u1u2

(
1

u21u
2
2

)2/3

=
2

u
1/3
1 u

1/3
2

(5.73)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
∞∑

j=J‡+1

22j min

{
u1u2,

1

23ju1u2

}
⩽

1

u1u2

∞∑
j=J‡+1

1

2j

⩽
2

u1u2
(u21u

2
2)

1/3 =
2

u
1/3
1 u

1/3
2

. (5.74)

Combining (5.73) and (5.74) leads to (5.70) which, together with (5.69), leads to
the inequality

∞∑
j=0

∑
m∗∈Z‡

j

∫
Ωj(m∗;0)

Λ(θ;u1, u2;H;v;m) dα1 dα2 ⩽
211

u
1/3
1 u

1/3
2

. (5.75)

(ii) Suppose next that ℓ ⩾ 1. It follows from (5.31), (5.35), (5.40) and (5.51) that

for every m∗ = (m2,m3) ∈ Z‡
j and (α1, α2) ∈ Ωj(m

∗; ℓ), we have

0 ⩽ Λ(θ;u1, u2;H;v;m) ⩽
H

22ℓ−2
min

{
u1u2,

1

23ju1u2

}
. (5.76)
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Combining (5.41), (5.68) and (5.76), we deduce that∑
m∗∈Z‡

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 4j+2λ2(Ωj(m
∗; ℓ))

H

22ℓ−2
min

{
u1u2,

1

23ju1u2

}
⩽ 22j+4 min

{
1

2ℓ−8
,
H

22ℓ−2

}
min

{
u1u2,

1

23ju1u2

}
,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
∞∑
ℓ=1

∑
m∗∈Z‡

j

∫
Ωj(m∗;ℓ)

Λ(θ;u1, u2;H;v;m) dα1 dα2

⩽ 22j+4min

{
u1u2,

1

23ju1u2

} ∞∑
ℓ=1

min

{
1

2ℓ−8
,
H

22ℓ−2

}
⩽ 22j+13min

{
u1u2,

1

23ju1u2

}
. (5.77)

Combining (5.70) and (5.77) now leads to the inequality

∞∑
j=0

∞∑
ℓ=1

∑
m∗∈Z‡

j

∫
Ωj(m∗;0)

Λ(θ;u1, u2;H;v;m) dα1 dα2 ⩽
215

u
1/3
1 u

1/3
2

. (5.78)

The inequality (5.66) now follows on combining (5.54), (5.75) and (5.78). □

It now follows from (5.52), (5.55) and (5.66) that∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2 ⩽ ψ(u1, u2),

where ψ(u1, u2) is given by (5.1). Then for every real parameter κ > 1, we have

λ2({(α1, α2) ∈ [0, 1]2 : Ξ(α1, α2) ⩾ κψ(u1, u2)}) ⩽
1

κ
. (5.79)

Step 7. It remains to justify all the steps. Choosing any real parameter κ > 1, we
remove the set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

B(κ) = {(α1, α2) ∈ [0, 1]2 : Ξ(α1, α2) ⩾ κψ(u1, u2)}
of κ-bad direction vectors v0 = (α1, α2) ∈ [0, 1]2. In view of the estimate (5.79), the
remaining set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

G(κ) = [0, 1]2 \B(κ)

of κ-good direction vectors satisfies

λ2(G(κ)) ⩾ 1− 1

κ
.

Furthermore, for every v0 = (α1, α2) ∈ G(κ), we have the identity

2

H

∫ H/2

0

∫ 1

0

∫ 1

0

(∑
n∈Z3

χB(γ1,γ2,h)(Mn)

)
dγ1 dγ2 dh

=
2

H

∫ H/2

0

∫ 1

0

∫ 1

0

(∑
m∈Z3

∫
B(γ1,γ2,h)

e−2πiM−1z·m dz

)
dγ1 dγ2 dh, (5.80)
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and the quantitative argument in Steps 4–6 shows that the infinite sum on the right
hand side of (5.80) is absolutely convergent. This justifies the use of the Poisson
summation formula and makes the argument precise.

This completes the proof of Lemma 5.1. □

6. Piecewise smooth barriers

Recall that in Theorems 1 and 4, we have made a rather specific restriction on
the 2-coloring on the yz-parallel square faces of the n-cube 3-manifold, that each of
the red and green parts is the union of finitely many polygons. Here we investigate
how any polygon of the 2-colorings can be replaced by a circle, an ellipse, or any
other piecewise smooth closed curve.

Theorem 5. Let n ⩾ 2 be an integer, and let M be any n-cube 3-manifold with bar-
riers, where each yz-parallel square face has a 2-coloring such that each of the red and
green parts is the union of finitely many regions with edges that are piecewise smooth
closed curves, satisfying some mild technical requirements as stated in Lemma 6.1,
and where the green part has positive area. Suppose further that the Restriction on
Red Coloring holds, and that there is a local repetition color-split neighborhood on
the yz-parallel square faces. Then for almost every starting point and almost every
direction v = (1, α1, α2) ∈ R3, the corresponding half-infinite 1-direction geodesic is
equidistributed in M.

Since the edges of a polygon have zero curvature, the buffer zone BN within the
local repetition color-split neighborhood which is central to our argument can be
taken as a long and narrow rectangular color-split strip. To establish Theorem 5,
it is sufficient to deal with some buffer zone color-split strip which involves proper
bending, with non-zero curvature. We therefore need to establish a suitable analog
of Lemma 3.4. Clearly it suffices to establish a suitable analog of Lemma 5.1.

The first step is to describe such a strip with proper bending.
Let f : [a, b] → R be a monotonic and sufficiently smooth function. More precisely,

we require that its derivative f ′ satisfies

min
x∈[a,b]

|f ′(x)| > 0,

the curvature is non-zero in [a, b], together with some mild technical requirements
on higher order derivatives which we shall describe later.

The strip with proper bending is then a u-neighborhood

C(f ;u) = C(f ; a, b;u) = {(x, y) ∈ R2 : x ∈ [a, b] and y ∈ [f(x)− u, f(x) + u]} (6.1)

of a color-split curved edge

C(f) = C(f ; a, b) = {(x, y) ∈ R2 : x ∈ [a, b] and y = f(x)},
as illustrated in Figure 6.1.

y

x
a b

2u

Figure 6.1: the u-neighborhood C(f ;u) of the color-split curved edge C(f)
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Clearly the u-neighborhood C(f ;u) has area
λ2(C(f ;u)) = 2u(b− a).

We consider functions f : [a, b] → R that are 3-times continuously differentiable,
with positive constants c6, . . . , c11, depending at most on the function f in the
interval [a, b], such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 < c6 = min
x∈[a,b]

|f ′(x)| ⩽ max
x∈[a,b]

|f ′(x)| = c7, (6.2)

0 < c8 = min
x∈[a,b]

|f ′′(x)| ⩽ max
x∈[a,b]

|f ′′(x)| = c9, (6.3)

0 < c10 = min
x∈[a,b]

|f ′′′(x)| ⩽ max
x∈[a,b]

|f ′′′(x)| = c11. (6.4)

We also require the function f to satisfy a mild technical condition, that there exists
a constant c12 = c12(f ; a, b) > 0, depending at most on the function f in the interval
[a, b], such that for any integer pair (m2,m3) ∈ Z2 \ {(0, 0)}, the interval [a, b] is the
union of at most c12 subintervals such that the functions

(m2 +m3f
′(x))2

f ′′(x)
and

(m2 +m3f
′(x))3

f ′(x)f ′′(x)
(6.5)

are monotonic in each of the subintervals.

Lemma 6.1. Let f : [a, b] → R be a 3-times continuously differentiable function for
which the conditions (6.2)–(6.4) as well as the technical condition concerning the
functions (6.5) hold. For any even positive integer H, let

G(s0;α1, α2;H) = |{j = 0, 1, . . . , H − 1 : s0 + j(α1, α2) ∈ C(f ;u)}|,
where the u-neighborhood C(f ;u) is defined by (6.1). Then for any parameter κ > 1,
we have

λ2

({
(α1, α2) ∈ [0, 1]2 : G(s0;α1, α2;H) ⩾

u(b− a)H

4
− κψ(u)

})
⩾ 1− 1

κ
,

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ψ(u) = c13
(
u−1/2 + c14

)
, (6.6)

and the constants c13 = c13(f ; a, b) > 0 and c14 = c14(f ; a, b) > 0 depend at most on
the function f in the interval [a, b].

Remark. Note that (b − a)/2 and u play the roles of u1 and u2 in Lemma 5.1, and
that G(s0;α1, α2;H) is the analog of the counting function F (s0;α1, α2;H) there.
We also have non-zero curvature instead of rotation there.

Proof of Lemma 6.1. We proceed by a number of steps corresponding to those in
the proof of Lemma 5.1. We also use similar notation as much as possible.

Step 1. Here we give a good description of G(s0;α1, α2;H). As before, we consider
the lattice L(α1, α2) defined by (5.3) and (5.4). Then writing

B = (C(f ;u)− s0)× [0, H) ⊂ R3,

we then have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

G(s0;α1, α2;H) = |L(α1, α2) ∩B| =
∑
n∈Z3

χB(Mn).

Applying the Poisson summation formula (5.6) with f = χB, we have, analogous to
(5.7), the formal identity

G(s0;α1, α2;H) =
∑
m∈Z3

∫
B

e−2πiM−1z·m dz. (6.7)
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Note, in particular, that for m = 0, we have∫
B

e−2πiM−1z·m dz = λ3(B) = λ2(C(f ;u))H = 2u(b− a)H. (6.8)

Then, using (5.9) and analogous to (5.10)–(5.12), for every m ∈ Z3 \ {0}, we can
write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∫

B

e−2πiM−1z·m dz = I(m; C(f ;u)− s0)J (m;v;H), (6.9)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(m; C(f ;u)− s0) =

∫
C(f ;u)−s0

e2πi(z1m2+z2m3) dz1 dz2 (6.10)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

J (m;v;H) =

∫ H

0

e−2πiz3v·m dz3 =
1− e−2πiHv·m

2πiv ·m . (6.11)

To study the term (6.10), note from (6.1) that a typical point in C(f ;u) is of the form
(x, f(x) + t), where x ∈ [a, b] and −u ⩽ t ⩽ u. We therefore use the substitution

(z1, z2) = (x, f(x) + t)− s0, with Jacobian f ′(x),

so that, writing m∗ = (m2,m3), we have

I(m; C(f ;u)− s0) =

∫ b

a

∫ u

−u

e2πi((x,f(x)+t)−s0)·m∗
f ′(x) dt dx

= e−2πis0·m∗
∫ b

a

∫ u

−u

e2πi(x,f(x)+t)·m∗
f ′(x) dt dx

= e−2πis0·m∗I1(m; C(f ;u))I2(m; C(f ;u)), (6.12)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1(m; C(f ;u)) =
∫ b

a

e2πi(m2x+m3f(x))f ′(x) dx (6.13)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I2(m; C(f ;u)) =
∫ u

−u

e2πitm3 dt =
sin(2πum3)

πm3

, (6.14)

provided that m3 ̸= 0. If m3 = 0, then clearly

I2(m; C(f ;u)) =
∫ u

−u

dt = 2u. (6.15)

The analysis of the integral (6.13) is complicated. However, the smoothness of
the function f makes it possible to have effective estimates. We observe that it is
possible to establish good estimates for complex exponential integrals whenever the
exponential function exhibits rapid fluctuations. The worst case scenario is when
the exponential function e2πi(m2x+m3f(x)) is almost constant in a small neighborhood
of some point x0 ∈ [a, b].
Let us consider some heuristics. Write h(x) = m2x+m3f(x). Then we have the

finite Taylor expansion

h(x)− h(x0) = m2(x− x0) +m3(f(x)− f(x0))

= (x− x0)(m2 +m3f
′(x0)) +

(x− x0)
2m3f

′′(x0)

2
+

(x− x0)
3m3f

′′′(y)

6
(6.16)
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for some appropriate y between x0 and x. Suppose further that there exists some
x0 ∈ [a, b] such that h′(x0) = m2 + m3f

′(x0) = 0. Then for every x ∈ [a, b], the
Taylor expansion (6.16) simplifies to

h(x)− h(x0) =
(x− x0)

2m3f
′′(x0)

2
+

(x− x0)
3m3f

′′′(y)

6
(6.17)

for some y ∈ [a, b]. The Taylor expansions (6.16) and (6.17) show that the complex
exponential function xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

e2πih(x) = e2πi(m2x+m3f(x))

starts to exhibit increasing fluctuations if x is relatively far from x0.
The estimation of fluctuating integrals is a well known general problem in number

theory and especially in the theory of the Riemann zeta-function. The following
result can be found in the treatise of Titchmarsh [5, Lemma 4.3] on the latter.

Lemma 6.2. Suppose that for real functions F and G, the quotient F ′(x)/G(x) is
monotonic in the interval [a, b], and |F ′(x)/G(x)| ⩾ µ > 0 for every x ∈ [a, b]. Then∣∣∣∣∫ b

a

eiF (x)G(x) dx

∣∣∣∣ ⩽ 4

µ
.

To estimate the integral (6.13), we consider the functions

F (x) = 2π(m2x+m3f(x)) and G(x) = f ′(x)

in the interval [a, b]. Note that

F ′(x)

G(x)
=

2π(m2 +m3f
′(x))

f ′(x)
=

2πm2

f ′(x)
+ 2πm3, (6.18)

and the derivative xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

d

dx

F ′(x)

G(x)
= −2πm2f

′′(x)

(f ′(x))2

has constant sign in [a, b], since f ′(x) and f ′′(x) are continuous and non-zero in [a, b],
in view of (6.2) and (6.3). Hence the function (6.18) is monotonic in [a, b]. To apply
Lemma 6.2, we need to ensure that the function (6.18) is also bounded away from 0.
If no x0 is in or near the interval [a, b] such that F ′(x0) = 2π(m2 +m3f

′(x0)) = 0,
then we can find a good value for µ in Lemma 6.2. However, we clearly have a
problem if there exists x0 ∈ [a, b] such that F ′(x0) = 2π(m2 +m3f

′(x0)) = 0.
The following is the worst case scenario. Suppose that x0 ∈ (a, b). Let δ > 0 be

a small parameter, to be specified later, such that a < x0 − δ < x0 + δ < b. Then

I1(m; C(f ;u)) =
∫ b

a

e2πi(m2x+m3f(x))f ′(x) dx

= I(−)
1 (m; C(f ;u)) + I(0)

1 (m; C(f ;u)) + I(+)
1 (m; C(f ;u)), (6.19)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I(−)
1 (m; C(f ;u)) =

∫ x0−δ

a

e2πi(m2x+m3f(x))f ′(x) dx,

I(0)
1 (m; C(f ;u)) =

∫ x0+δ

x0−δ

e2πi(m2x+m3f(x))f ′(x) dx,

I(+)
1 (m; C(f ;u)) =

∫ b

x0+δ

e2πi(m2x+m3f(x))f ′(x) dx.
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For the integral I(0)
1 (m; C(f ;u)), we have the trivial estimate

|I(0)
1 (m; C(f ;u))| ⩽ 2δ max

x∈[a,b]
|f ′(x)| = 2c7δ, (6.20)

in view of (6.2). For the integral I(+)
1 (m; C(f ;u)), we use the Taylor expansion

F ′(x0 + δ) = 2π(m2 +m3f
′(x0 + δ))

= 2π(m2 +m3f
′(x0)) + 2πm3

(
δf ′′(x0) +

δ2f ′′′(y+)

2

)
= 2πm3

(
δf ′′(x0) +

δ2f ′′′(y+)

2

)
for some y+ ∈ (x0, x0 + δ). Since F ′(x0)/G(x0) = 0 and F ′(x)/G(x) is monotonic in
[a, b], it follows that for every x ∈ [x0 + δ, b], we have∣∣∣∣F ′(x)

G(x)

∣∣∣∣ ⩾ ∣∣∣∣F ′(x0 + δ)

G(x0 + δ)

∣∣∣∣ = 2π|m3|
|f ′(x0 + δ)|

∣∣∣∣δf ′′(x0) +
δ2f ′′′(y+)

2

∣∣∣∣
⩾

2π|m3|
|f ′(x0 + δ)|

(
δ|f ′′(x0)| −

δ2|f ′′′(y+)|
2

)
. (6.21)

For the integral I(−)
1 (m; C(f ;u)), we use the Taylor expansion

F ′(x0 − δ) = 2π(m2 +m3f
′(x0 − δ))

= 2π(m2 +m3f
′(x0)) + 2πm3

(
−δf ′′(x0) +

δ2f ′′′(y−)

2

)
= 2πm3

(
−δf ′′(x0) +

δ2f ′′′(y−)

2

)
for some y− ∈ (x0 − δ, x0). Since F

′(x0)/G(x0) = 0 and F ′(x)/G(x) is monotonic in
[a, b], it follows that for every x ∈ [a, x0 − δ], we have∣∣∣∣F ′(x)

G(x)

∣∣∣∣ ⩾ ∣∣∣∣F ′(x0 − δ)

G(x0 − δ)

∣∣∣∣ = 2π|m3|
|f ′(x0 − δ)|

∣∣∣∣δf ′′(x0)−
δ2f ′′′(y−)

2

∣∣∣∣
⩾

2π|m3|
|f ′(x0 − δ)|

(
δ|f ′′(x0)| −

δ2|f ′′′(y−)|
2

)
. (6.22)

Combining (6.2)–(6.4), (6.21) and (6.22), we conclude that for any x ∈ [a, x0− δ] or
any x ∈ [x0 + δ, b], we have the lower bound∣∣∣∣F ′(x)

G(x)

∣∣∣∣ ⩾ 2π|m3|
c7

(
c8δ −

c11δ
2

2

)
⩾ c15δ|m3|,

provided that 0 < δ ⩽ c16, where c15 = c15(f ; a, b) > 0 and c16 = c16(f ; a, b) > 0
are constants depending at most on the function f in the interval [a, b]. Using this
bound, Lemma 6.2 then gives the estimates

|I(±)
1 (m; C(f ;u))| ⩽ 4

c15δ|m3|
. (6.23)

Combining (6.19), (6.20) and (6.23), we arrive at the estimate

|I1(m; C(f ;u))| ⩽ 2c7δ +
8

c15δ|m3|
⩽

c17
|m3|1/2

(6.24)

if we choose δ in the range of |m3|−1/2, where the constant c17 = c17(f ; a, b) > 0
depends at most on the function f in the interval [a, b].
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The above analysis and the estimate (6.24) are only valid provided that m3 ̸= 0.
If m3 = 0, then (6.13) becomes

I1(m; C(f ;u)) =
∫ b

a

e2πim2xf ′(x) dx,

and it follows from (6.2) that |I1(m; C(f ;u))| ⩽ (b− a)c7. For convenience, we can
choose c17 = c17(f ; a, b) > 0 sufficiently large so that

c17 ⩾ (b− a)c7.

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|I1(m; C(f ;u))| ⩽ c17. (6.25)

We emphasize again that the above represents the worst case scenario. Of course,
the estimates (6.24) and (6.25) remain valid if m2 +m3f

′(x) ̸= 0 for any x ∈ [a, b].
Combining (6.7)–(6.9) and (6.12), we conclude that

G(s0;α1, α2;H)− 2u(b− a)H

=
∑

m∈Z3\{0}

e−2πis0·m∗I1(m; C(f ;u))I2(m; C(f ;u))J (m;v;H),

where estimates for the various factors in the summand are given by (6.11), (6.14),
(6.15), (6.24) and (6.25).

Step 2. Here we mimic Step 2 in Section 5, contract the interval [0, H] in the third
direction and average over all contractions in a similar manner. We then conclude,
analogous to (5.23), that

G(s0;α1, α2;H)− u(b− a)H

⩾
∑

m∈Z3\{0}

e−2πis0·m∗I1(m; C(f ;u))I2(m; C(f ;u))J̃ (m;v;H),

where the factor J̃ (m;v;H) is given by (5.22).

Step 3. Here we also contract the intervals [a, b] and [f(x)− u, f(x) + u] in C(f ;u)
and average over all contractions. More precisely, for every γ1 and γ2 satisfying
0 ⩽ γ1 ⩽ (b− a)/2 and 0 ⩽ γ2 ⩽ 1, consider the smaller set

∆(γ1, γ2) = C(f ; a+ γ1, b− γ1; γ2u)

= {(x, y) ∈ R2 : x ∈ [a+ γ1, b− γ1] and y ∈ [f(x)− γ2u, f(x) + γ2u]}.
Then, analogous to (5.24) and (5.25), we have

G(s0;α1, α2;H)− u(b− a)H

4

⩾
4

(b− a)H

∫ H/2

0

∫ 1

0

∫ (b−a)/2

0

 ∑
m∈Z3\{0}

∫
B(γ1,γ2,h)

e−2πiM−1z·m dz

 dγ1 dγ2 dh,

(6.26)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

B(γ1, γ2, h) = (∆(γ1, γ2)− s0)× [h,H − h),

and, analogous to (5.26), we have∫
B(γ1,γ2,h)

e−2πiM−1z·m dz = I(m; ∆(γ1, γ2)− s0)J (m;v;H;h). (6.27)
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Here J (m;v;H;h) is given by (5.21) and

I(m; ∆(γ1, γ2)− s0) = e−2πis0·m∗I1(m; ∆(γ1, γ2))I2(m; ∆(γ1, γ2)), (6.28)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1(m; ∆(γ1, γ2)) =

∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))f ′(x) dx (6.29)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I2(m; ∆(γ1, γ2)) =

∫ γ2u

−γ2u

e2πitm3 dt =
sin(2πγ2um3)

πm3

, (6.30)

provided that m3 ̸= 0. If m3 = 0, then clearly

I2(m; ∆(γ1, γ2)) = 2γ2u. (6.31)

Write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ĩ1(m; C(f ;u)) = 2

b− a

∫ (b−a)/2

0

∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))f ′(x) dx dγ1 (6.32)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ĩ2(m; C(f ;u)) =
∫ 1

0

∫ γ2u

−γ2u

e2πitm3 dt dγ2

=

∫ 1

0

sin(2πγ2um3)

πm3

dγ2 =
2 sin2(πum3)

u(πm3)2
, (6.33)

provided that m3 ̸= 0. If m3 = 0, then clearly

Ĩ2(m; C(f ;u)) =
∫ 1

0

∫ γ2u

−γ2u

dt dγ2 =

∫ 1

0

2γ2u dγ2 = u. (6.34)

It now follows from (5.22) and (6.26)–(6.34) that

G(s0;α1, α2;H)− u(b− a)H

4

⩾
∑

m∈Z3\{0}

e−2πis0·m∗ Ĩ1(m; C(f ;u))Ĩ2(m; C(f ;u))J̃ (m;v;H). (6.35)

Step 4. It follows from (6.35) that

G(s0;α1, α2;H) ⩾
u(b− a)H

4
+

∑
m∈Z3\{0}

Λ(C(f ;u);H;v;m),

where

Λ(C(f ;u);H;v;m) = |Ĩ1(m; C(f ;u))| |Ĩ2(m; C(f ;u))| |J̃ (m;v;H)|. (6.36)

As before in Section 5, the inequalities in Steps 1–3 are at this stage only formal
inequalities, as we have not considered the question of convergence. Write

Ξ(α1, α2) =
∑

Z3\{0}

Λ(C(f ;u);H;v;m), (6.37)

where v = (1, α1, α2). We shall use the first-moment method and analyze the average∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2,

and remove those directions (α1, α2) for which Ξ(α1, α2) is substantially larger than
the average. In this step, we do some further preparation.
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First of all, note that the estimates (6.24) and (6.25) are independent of a and b.
Combining these with (6.29) and (6.32), we obtain the bound

|Ĩ1(m; C(f ;u))| ⩽ c17min

{
1

|m3|1/2
, 1

}
. (6.38)

On the other hand, using (6.30), (6.31) and the inequality | sin y| ⩽ min{|y|, 1},
which holds for every y ∈ R, we obtain the bound

|Ĩ2(m; C(f ;u))| ⩽ 2min

{
u,

1

u(πm3)2

}
. (6.39)

Meanwhile, the estimate for the term |J̃ (m;v;H)| is given by (5.35). Furthermore,
sinceH is even, in view of (5.36), we may assume thatm∗ = (m2,m3) ∈ Z2\{(0, 0)}.

Finally, the definitions and estimates (5.37)–(5.41) concerning Zj and Ωj(m
∗; ℓ),

where j = 0, 1, 2, 3, . . . and ℓ = 0, 1, 2, 3, . . . , remain valid.

Step 5. Recall our comment in Step 1 that the complex exponential function

e2πih(x) = e2πi(m2x+m3f(x))

starts to exhibit increasing fluctuations if x is relatively far from any root x0 of the
equation m2 + m3f

′(x) = 0. If x0 is far from the interval [a, b], then the lack of
fluctuation near x0 is not a problem. However, it is a serious problem if x0 ∈ [a, b].

Motivated by this observation, we split the argument into two cases, the first of
which and some of its consequences are summarized by the following lemma.

Lemma 6.3. Suppose that (m2,m3) ∈ Z2 \ {(0, 0} and the condition

min
a⩽x⩽b

|m2 +m3f
′(x)| < 1

4
max{|m2|, |m3|}min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

(6.40)

is satisfied. Then
(i) m2m3 ̸= 0; and
(ii) the inequality xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

c18
⩽

∣∣∣∣m2

m3

∣∣∣∣ ⩽ c18 (6.41)

holds, where the constant c18 = c18(f ; a, b) > 1 depends at most on the function f in
the interval [a, b].

Proof. (i) If m2 = 0, then the inequality (6.40) becomes

|m3| min
a⩽x⩽b

|f ′(x)| < 1

4
|m3|min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

which is clearly absurd. If m3 = 0, then the inequality (6.40) becomes

|m2| <
1

4
|m2|min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

which is also clearly absurd. Thus m2m3 ̸= 0 as claimed.
(ii) Dividing both sides by m3 ̸= 0, the inequality (6.40) becomes

min
a⩽x⩽b

∣∣∣∣m2

m3

+ f ′(x)

∣∣∣∣ < 1

4
max

{∣∣∣∣m2

m3

∣∣∣∣ , 1}min

{
min
a⩽x⩽b

|f ′(x)|, 1
}
. (6.42)

Suppose first that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

m2

m3

= CL,
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where |CL| is large. Then using (6.2), the left and right sides of (6.42) are

min
a⩽x⩽b

∣∣∣∣m2

m3

+ f ′(x)

∣∣∣∣ = min
a⩽x⩽b

|CL + f ′(x)| ⩾ |CL| − max
a⩽x⩽b

|f ′(x)| ⩾ |CL| − c7

and

1

4
max

{∣∣∣∣m2

m3

∣∣∣∣ , 1}min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

=
1

4
|CL|min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

⩽
1

4
|CL|

respectively. Clearly xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|CL| − c7 >
1

4
|CL|

if |CL| is sufficiently large in terms of the function f in the interval [a, b], so that
(6.42) fails. This establishes the upper bound in (6.41). Suppose next that

m2

m3

= CS,

where |CS| is small. Then the left and right sides of (6.42) are

min
a⩽x⩽b

∣∣∣∣m2

m3

+ f ′(x)

∣∣∣∣ = min
a⩽x⩽b

|CS + f ′(x)| ⩾ min
a⩽x⩽b

|f ′(x)| − |CS|

and

1

4
max

{∣∣∣∣m2

m3

∣∣∣∣ , 1}min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

=
1

4
min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

⩽
1

4
min
a⩽x⩽b

|f ′(x)|

respectively. Clearly xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

min
a⩽x⩽b

|f ′(x)| − |CS| >
1

4
min
a⩽x⩽b

|f ′(x)|

if |CS| is sufficiently small in terms of the function f in the interval [a, b], so that
(6.42) fails. This establishes the lower bound in (6.41). □

We also need to consider the case when the condition (6.40) is violated, so that
the opposite condition

min
a⩽x⩽b

|m2 +m3f
′(x)| ⩾ 1

4
max{|m2|, |m3|}min

{
min
a⩽x⩽b

|f ′(x)|, 1
}

(6.43)

is satisfied.
Accordingly, for every j = 1, 2, 3, . . . , write Zj = Z†

j ∪ Z‡
j , where

Z†
j = {(m2,m3) ∈ Zj : (6.40) holds},

Z‡
j = {(m2,m3) ∈ Zj : (6.43) holds}.

Step 6. Using (6.37) and taking into account that the identity (5.36) holds whenever
m∗ = (m2,m3) ̸= (0, 0), we now have the trivial upper bound∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2 ⩽ I1 + I2, (6.44)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1 =
∞∑
j=0

∞∑
ℓ=0

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2, (6.45)

I2 =
∞∑
j=0

∞∑
ℓ=0

∑
m∗∈Z‡

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2. (6.46)
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Lemma 6.4. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1 ⩽
c19
u1/2

, (6.47)

where the constant c19 = c19(f ; a, b) > 0 depends at most on the function f in the
interval [a, b].

Proof. Suppose that (m2,m3) ∈ Z†
j . It follows from (5.38) and (6.41) that

c202
j ⩽ min{|m2|, |m3|} ⩽ max{|m2|, |m3|} ⩽ 2j, (6.48)

where the constant c20 = c20(f ; a, b) > 0 satisfies 2c18c20 = 1.
If (α1, α2) ∈ Ωj(m

∗; 0), then it follows from (5.35), (6.36), (6.38) and (6.39) that

Λ(C(f ;u);H;v;m) ⩽
c17H

|m3|1/2
min

{
u,

1

u(πm3)2

}
. (6.49)

Using (5.41), (6.48) and (6.49), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;0)

Λ(C(f ;u);H;v;m) dα1 dα2

⩽ 4
∑

c202j⩽m2⩽2j

∑
c202j⩽m3⩽2j

λ2(Ωj(m
∗; 0))Λ(C(f ;u);H;v;m)

⩽ 28c17
∑

c202j⩽m3⩽2j

2j

m
1/2
3

min

{
u,

1

u(πm3)2

}
. (6.50)

Note next that∑
c202j⩽m3⩽2j

2j

m
1/2
3

min

{
u,

1

u(πm3)2

}
⩽

∑
c202j⩽m3⩽2j

2j

uπ2m
5/2
3

⩽
22j

uπ2(c202j)5/2
. (6.51)

Combining (6.50) and (6.51), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;0)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽
c21
u2j/2

, (6.52)

where the constant c21 = c21(f ; a, b) > 0 satisfies c21c
5/2
20 π

2 = 28c17. Note also that∑
c202j⩽m3⩽2j

2j

m
1/2
3

min

{
u,

1

u(πm3)2

}
⩽

u22j

(c202j)1/2
=
u23j/2

c
1/2
20

. (6.53)

Combining (6.50) and (6.53), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;0)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽ c22u2
3j/2, (6.54)

where the constant c22 = c22(f ; a, b) > 0 satisfies c22c
1/2
20 = 28c17.

If (α1, α2) ∈ Ωj(m
∗; ℓ), where ℓ ⩾ 1, then it follows from (5.35), (5.40), (6.36),

(6.38) and (6.39) that

Λ(C(f ;u);H;v;m) ⩽
24c17H

π24ℓ|m3|1/2
min

{
u,

1

u(πm3)2

}
. (6.55)
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Using (5.41), (6.48), (6.51) and (6.55), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2

⩽ 4
∑

c202j⩽m2⩽2j

∑
c202j⩽m3⩽2j

λ2(Ωj(m
∗; ℓ))Λ(C(f ;u);H;v;m)

⩽
212c17
π22ℓ

∑
c202j⩽m3⩽2j

2j

m
1/2
3

min

{
u,

1

u(πm3)2

}
⩽

c23
u2ℓ2j/2

,

where the constant c23 = c23(f ; a, b) > 0 depends at most on the function f in the
interval [a, b], so that

∞∑
ℓ=1

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽
c23
u2j/2

. (6.56)

Meanwhile, using (6.53) instead of (6.51), we deduce that∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽
c24u2

3j/2

2ℓ
,

where the constant c24 = c24(f ; a, b) > 0 depends at most on the function f in the
interval [a, b], so that

∞∑
ℓ=1

∑
m∗∈Z†

j

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽ c24u2
3j/2. (6.57)

Let J† denote the largest non-negative integer such that

2j ⩽
1

u
,

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

2J
†
⩽

1

u
and 2J

†+1 >
1

u
. (6.58)

Combining (6.45), (6.52), (6.54), (6.56), and (6.57), we conclude that

I1 ⩽ c25u

J†∑
j=0

23j/2 +
c26
u

∞∑
j=J†+1

1

2j/2
, (6.59)

where the constant c25 = c25(f ; a, b) > 0 satisfies c25 = max{c22, c24} while the
constant c26 = c26(f ; a, b) > 0 satisfies c26 = max{c21, c23}. The inequality (6.47)
follows on combining (6.58) and (6.59). □

Lemma 6.5. We have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I2 ⩽ c27, (6.60)

where the constant c27 = c27(f ; a, b) > 0 depends at most on the function f in the
interval [a, b].

Proof. The proof is in three parts.

Part 1. Here we obtain new bounds for the term Ĩ1(m;C(f ;u)) in the case when
the inequality (6.43) holds. Indeed, combining (6.2) and (6.43), we obtain the lower
bound xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

min
a⩽x⩽b

|m2 +m3f
′(x)| ⩾ 1

4
min{c6, 1}max{|m2|, |m3|}. (6.61)
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We make use the simple identity

d

dx

(
e2πi(m2x+m3f(x))

2πi(m2 +m3f ′(x))

)
= e2πi(m2x+m3f(x)) +

im3e
2πi(m2x+m3f(x))f ′′(x)

2π(m2 +m3f ′(x))2
. (6.62)

Combining (6.62) and integration by parts, we obtain∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))f ′(x) dx+ i

∫ b−γ1

a+γ1

m3e
2πi(m2x+m3f(x))f ′′(x)

2π(m2 +m3f ′(x))2
f ′(x) dx

=

∫ b−γ1

a+γ1

d

dx

(
e2πi(m2x+m3f(x))

2πi(m2 +m3f ′(x))

)
f ′(x) dx

=

[
e2πi(m2x+m3f(x))

2πi(m2 +m3f ′(x))
f ′(x)

]b−γ1

a+γ1

+ i

∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))

2π(m2 +m3f ′(x))
f ′′(x) dx. (6.63)

Combining (6.32) and (6.63), we have

Ĩ1(m;C(f ;u)) = i Ĩ(1)
1 − i Ĩ(2)

1 + i Ĩ(3)
1 − i Ĩ(4)

1 , (6.64)

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ĩ(1)
1 =

2

b− a

∫ (b−a)/2

0

∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))

2π(m2 +m3f ′(x))
f ′′(x) dx dγ1, (6.65)

Ĩ(2)
1 =

2

b− a

∫ (b−a)/2

0

∫ b−γ1

a+γ1

m3e
2πi(m2x+m3f(x))f ′′(x)

2π(m2 +m3f ′(x))2
f ′(x) dx dγ1, (6.66)

Ĩ(3)
1 =

2

b− a

∫ (b−a)/2

0

e2πi(m2(a+γ1)+m3f(a+γ1))

2π(m2 +m3f ′(a+ γ1))
f ′(a+ γ1) dγ1

=
2

b− a

∫ (a+b)/2

a

e2πi(m2(x)+m3f(x))

2π(m2 +m3f ′(x))
f ′(x) dx, (6.67)

Ĩ(4)
1 =

2

b− a

∫ (b−a)/2

0

e2πi(m2(b−γ1)+m3f(b−γ1))

2π(m2 +m3f ′(b− γ1))
f ′(b− γ1) dγ1

=
2

b− a

∫ b

(a+b)/2

e2πi(m2(x)+m3f(x))

2π(m2 +m3f ′(x))
f ′(x) dx. (6.68)

To study the integral Ĩ(1)
1 , note that∫ b−γ1

a+γ1

e2πi(m2x+m3f(x))

2π(m2 +m3f ′(x))
f ′′(x) dx =

∫ b−γ1

a+γ1

eiF (x)G(x) dx,

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F (x) = 2π(m2x+m3f(x)) and G(x) =
f ′′(x)

2π(m2 +m3f ′(x))
, (6.69)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F ′(x)

G(x)
=

4π2(m2 +m3f
′(x))2

f ′′(x)
= 4π2H(x),

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

H(x) =
(m2 +m3f

′(x))2

f ′′(x)
.

Using (6.3), (6.61) and (6.69), we deduce the lower bound∣∣∣∣F ′(x)

G(x)

∣∣∣∣ = 4π2|m2 +m3f
′(x)|2

|f ′′(x)| ⩾ c28(max{|m2|, |m3|})2,
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where the constant c28 = c28(f ; a, b) > 0 depends at most on the function f in
the interval [a, b]. Furthermore, the technical condition implies that we can apply
Lemma 6.2 to each of the at most c12 subintervals of [a+ γ1, b− γ1], and this leads
to the bound∣∣∣∣∫ b−γ1

a+γ1

e2π(m2x+m3f(x))

2πi(m2 +m3f ′(x))
f ′′(x) dx

∣∣∣∣ ⩽ c29
(max{|m2|, |m3|})2

,

where the constant c29 = c29(f ; a, b) > 0 depends at most on the function f in the
interval [a, b]. It then follows trivially from (6.65) that

|Ĩ(1)
1 | ⩽ c29

(max{|m2|, |m3|})2
. (6.70)

To study the integral Ĩ(2)
1 , note that∫ b−γ1

a+γ1

m3e
2πi(m2x+m3f(x))f ′′(x)

2π(m2 +m3f ′(x))2
f ′(x) dx =

∫ b−γ1

a+γ1

eiF (x)G(x) dx,

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F (x) = 2π(m2x+m3f(x)) and G(x) =
m3f

′(x)f ′′(x)

2π(m2 +m3f ′(x))2
, (6.71)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F ′(x)

G(x)
=

4π2(m2 +m3f
′(x))3

m3f ′(x)f ′′(x)
=

4π2

m3

H(x),

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

H(x) =
(m2 +m3f

′(x))3

f ′(x)f ′′(x)
.

Using (6.3), (6.61) and (6.71), we deduce the lower bound∣∣∣∣F ′(x)

G(x)

∣∣∣∣ = 4π2|m2 +m3f
′(x)|3

|m3| |f ′(x)| |f ′′(x)| ⩾ c30(max{|m2|, |m3|})2

where the constant c30 = c30(f ; a, b) > 0 depends at most on the function f in
the interval [a, b]. Furthermore, the technical condition implies that we can apply
Lemma 6.2 to each of the at most c12 subintervals of [a+ γ1, b− γ1], and this leads
to the bound∣∣∣∣∫ b−γ1

a+γ1

m3e
2πi(m2x+m3f(x))f ′′(x)

2π(m2 +m3f ′(x))2
f ′(x) dx

∣∣∣∣ ⩽ c31
(max{|m2|, |m3|})2

,

where the constant c31 = c31(f ; a, b) > 0 depends at most on the function f in the
interval [a, b]. It then follows trivially from (6.66) that

|Ĩ(2)
1 | ⩽ c31

(max{|m2|, |m3|})2
. (6.72)

To study the integrals Ĩ(3)
1 and Ĩ(4)

1 given by (6.67) and (6.68), note that∫ (a+b)/2

a

e2πi(m2(x)+m3f(x))

2π(m2 +m3f ′(x))
f ′(x) dx =

∫ (a+b)/2

a

eiF (x)G(x) dx,∫ b

(a+b)/2

e2πi(m2(x)+m3f(x))

2π(m2 +m3f ′(x))
f ′(x) dx =

∫ b

(a+b)/2

eiF (x)G(x) dx,

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F (x) = 2π(m2x+m3f(x)) and G(x) =
f ′(x)

2π(m2 +m3f ′(x))
, (6.73)
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so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F ′(x)

G(x)
=

4π2(m2 +m3f
′(x))2

f ′(x)
= 4π2H(x),

where xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

H(x) =
(m2 +m3f

′(x))2

f ′(x)
.

Using (6.3), (6.61) and (6.73), we deduce the lower bound∣∣∣∣F ′(x)

G(x)

∣∣∣∣ = 4π2|m2 +m3f
′(x)|2

|f ′(x)| ⩾ c32(max{|m2|, |m3|})2,

where the constant c32 = c32(f ; a, b) > 0 depends at most on the function f in the
interval [a, b]. Furthermore, the derivative H ′(x) is equal to

2m3f
′(x)f ′′(x)(m2 +m3f

′(x))− f ′′(x)(m2 +m3f
′(x))2

(f ′(x))2
,

where the denominator is non-zero and the numerator is equal to

f ′′(x)(m2 +m3f
′(x))(m3f

′(x)−m2).

Here, in view of (6.3), the factor f ′′(x) is non-zero, and the factors m2 + m3f
′(x)

and m3f
′(x)−m2 can each have at most one zero in [a, b]. Hence the interval [a, b]

is a union of at most 3 subintervals such that F ′(x)/G(x) is monotonic in each
subinterval. We can apply Lemma 6.2 to each of these subintervals, and this leads
to the bounds

|Ĩ(3)
1 | ⩽ c33

(max{|m2|, |m3|})2
and |Ĩ(4)

1 | ⩽ c33
(max{|m2|, |m3|})2

, (6.74)

where the constant c33 = c33(f ; a, b) > 0 depends at most on the function f in the
interval [a, b].
Combining (6.64), (6.70), (6.72) and (6.74), we obtain the bound

|Ĩ1(m;C(f ;u))| ⩽ c34
(max{|m2|, |m3|})2

, (6.75)

where the constant c34 = c34(f ; a, b) > 0 satisfies c34 = 4max{c29, c31, c33}.

Part 2. The idea is to combine the bound (6.75) for the term Ĩ1(m;C(f ;u)) with

our earlier bounds (6.39) for Ĩ2(m;C(f ;u)) and (5.35) for J̃ (m;v;H). However, we
need some care and make some refinement to the sets Zj, j = 0, 1, 2, 3, . . . , discussed
in Step 4 in Section 5 and defined by (5.38).

For every j = 0, 1, 2, 3, . . . and k = 0, 1, . . . , j, let

Zj,k =

{
{(m2,m3) ∈ Zj : 2

k−1 < min{|m2|, |m3|} ⩽ 2k}, if k ̸= 0,
{(m2,m3) ∈ Zj : 0 ⩽ min{|m2|, |m3|} ⩽ 1}, if k = 0,

(6.76)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|Zj,k| ⩽ 2j+k+3, (6.77)

and the set Zj can be written as a disjoint union

Zj =

j⋃
k=0

Zj,k.
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2k−1 2k

2j2j−1
m2

m3

Figure 6.2: the location of m∗ = (m2,m3) ∈ Zj,k

It then follows from (6.46) that

I2 =
∞∑
j=0

j∑
k=0

∞∑
ℓ=0

∑
m∗∈Zj,k

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2. (6.78)

Part 3. Suppose that (m2,m3) ∈ Zj,k, where k ̸= 0. It follows from (5.38) and
(6.76) that

2k−1 < min{|m2|, |m3|} < 2k and 2j−1 < max{|m2|, |m3|} < 2j. (6.79)

Suppose furthermore that (α1, α2) ∈ Ωj(m
∗; 0). Then it follows from (5.35), (6.36),

(6.39), (6.75) and (6.79) that

Λ(C(f ;u);H;v;m) ⩽
c34H

(max{|m2|, |m3|})2
min

{
u,

1

u(πm3)2

}
⩽

c34H

(max{|m2|, |m3|})2
min

{
u,

1

uπ2(min{|m2|, |m3|})2
}

⩽
c34H

22j−2
min

{
u,

1

uπ222k−2

}
.

Combining this with (5.41) and (6.77), we deduce that∑
m∗∈Zj,k

∫
Ωj(m∗;0)

Λ(C(f ;u);H;v;m) dα1 dα2

⩽
2j+k+9

H

c34H

22j−2
min

{
u,

1

uπ222k−2

}
=

211c34
2j

min

{
2ku,

4

uπ22k

}
. (6.80)

It is easily checked that the inequality (6.80) holds for k = 0 also.
Let K‡ denote the largest integer k such that

2ku ⩽
4

uπ22k
, equivalent to 2k ⩽

2

uπ
.

Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

2K
‡
⩽

2

uπ
<

1

u
and 2K

‡+1 >
2

uπ
, (6.81)
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and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

j∑
k=0

min

{
2ku,

4

uπ22k

}
⩽

K‡∑
k=0

2ku+
4

uπ2

(
1

2K‡+1
+ . . .+

1

2j

)
⩽ 2K

‡+1u+
8

uπ22K‡+1
< 4, (6.82)

in view of (6.81). It now follows from (6.80) and (6.82) that

∞∑
j=0

j∑
k=0

∑
m∗∈Zj,k

∫
Ωj(m∗;0)

Λ(C(f ;u);H;v;m) dα1 dα2 ⩽
∞∑
j=0

213c34
2j

⩽ c35, (6.83)

where the constant c35 = c35(f ; a, b) > 0 depends at most on the function f in the
interval [a, b].
Suppose next that (m2,m3) ∈ Zj,k, where k ̸= 0, and (α1, α2) ∈ Ωj(m

∗; ℓ), where
ℓ ⩾ 1. Then it follows from (5.35), (5.40), (6.36), (6.39), (6.75) and (6.79) that

Λ(C(f ;u);H;v;m) ⩽
2c34

(max{|m2|, |m3|})2
min

{
u,

1

u(πm3)2

}
2

π2H(v ·m)2

⩽
2c34H

22ℓ(max{|m2|, |m3|})2
min

{
u,

1

uπ2(min{|m2|, |m3|})2
}

⩽
2c34H

22ℓ22j−2
min

{
u,

1

uπ222k−2

}
.

Combining this with (5.41) and (6.77), we deduce that∑
m∗∈Zj,k

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2

⩽
2j+k+102ℓ

H

c34H

22ℓ22j−2
min

{
u,

1

uπ222k−2

}
=

212c34
2ℓ2j

min

{
2ku,

4

uπ22k

}
. (6.84)

It now follows from (6.82) and (6.84) that

∞∑
j=0

j∑
k=0

∞∑
ℓ=1

∑
m∗∈Zj,k

∫
Ωj(m∗;ℓ)

Λ(C(f ;u);H;v;m) dα1 dα2

⩽
∞∑
j=0

j∑
k=0

∞∑
ℓ=1

212c34
2ℓ2j

min

{
2ku,

4

uπ22k

}
⩽

∞∑
j=0

214c34
2j

⩽ 2c35. (6.85)

The desired inequality (6.60) follows on combining (6.78), (6.83) and (6.85). □

It now follows from (6.44), (6.47) and (6.60) that∫ 1

0

∫ 1

0

Ξ(α1, α2) dα1 dα2 ⩽ ψ(u),

where ψ(u) is given by (6.6). Then for every real parameter κ > 1, we have

λ2({(α1, α2) ∈ [0, 1]2 : Ξ(α1, α2) ⩾ κψ(u)}) ⩽ 1

κ
.

Step 7. We can now justify all the steps in a similar way as in Step 7 in Section 5.

This completes the proof of Lemma 6.1. □
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