UNIFORMITY IN CUBE-COVERING SYSTEMS
J. BECK, W.W.L. CHEN, AND Y. YANG

ABSTRACT. We establish various analogs of the Kronecker—Weyl equidistribution
theorem that can be considered higher-dimensional versions of results established
in our earlier investigation in [1] of the discrete 2-circle problem studied in 1969
by Veech [6]. Whereas the Veech problem can be viewed as one of geodesic flow
on a 2-dimensional flat surface, here we study geodesic flow in higher-dimensional
flat manifolds. This is more challenging, as the overwhelming majority of the
available proof techniques for non-integrable flat systems are based on arguments
in dimension 2. For higher dimensions, we need a new approach.

1. ANALOG OF THE VEECH 2-CIRCLE PROBLEM

We extend the idea of Veech [6] and our earlier work [1] to higher dimension.
First we 2-color the unit torus [0,1)? red and green in such a way that each of the
red and green parts is the union of finitely many polygons. Figure 1.1 shows two
examples, where the shaded part represents red and the white part represents green.
In particular, we assume that the green part has positive area.

b

Figure 1.1: examples of 2-colorings of the torus [0, 1)?

Observe that in the picture on the right, one of the red (shaded) parts does not
look like a polygon, but it is the union of finitely many polygons. A similar remark
applies to the green (white) part.

Next, we consider a 2-torus system as shown in Figure 1.2, where each square
represents the unit torus [0, 1)?, with identical 2-coloring.

left right
torus torus

Figure 1.2: a 2-torus system with identical coloring

Let v = (1, a1, ag) be a Kronecker vector, and let vy = (a1, as).
Let sq € [0,1)? be an arbitrary starting point, and consider the vo-shift sequence

S, =So+nvg, n=0,1,23,...,

in the unit torus [0, 1)?; in other words, modulo one. Assume that the point sq is on
the left torus. If s; is in the red (shaded) part, then we keep it on the left torus. If s;
is in the green (white) part, then we move it to the corresponding point on the right
torus. In general, s, is on a particular torus. If s,.; is in the red (shaded) part,
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then we keep it on the same torus. If s,y is in the green (white) part, then we move
it to the corresponding point on the other torus. Thus the sequence sy, sy, S9, S3, - . .
moves from one torus to the other whenever it hits the green part. The problem is
then to describe the distribution of this sequence in the union of the two tori, clearly
a parity problem motivated by the Kronecker-Weyl equidistribution theorem.

We can visualize this discrete 2-torus system on the plane as a simple continuous
system in 3-space. Figure 1.3 illustrates this observation in the case of the simpler
2-coloring in the picture on the left in Figure 1.1.

(1,1,1)

Y

(0,b,0) (2,0,1) »
(0,0,0) x

left right

Figure 1.3: 2-cube-b 3-manifold with repeated barriers

Here there are three yz-parallel square faces of the 2-cube solid, each of which is
in part a barrier, colored red (shaded), and in part a gate, colored green (white).
The latter is non-empty, and permits travel between the two cubes. For these two
cubes to form a 3-manifold, we have to guarantee that it is boundary-free. We use
boundary identification which is a modification of the boundary identification for the
torus [0,1)3. The two zy-parallel square faces with z = 0 are identified with the two
xy-parallel square faces with z = 1 by trivial perpendicular translation. The two xz-
parallel square faces with y = 0 are identified with the two xz-parallel square faces
with y = 1 by trivial perpendicular translation. The right side of the red (shaded)
rectangle on the yz-parallel square face with x = 0 is identified with the left side
of the red (shaded) rectangle on the yz-parallel square face with = = 1, while the
right side of the red (shaded) rectangle on the yz-parallel square face with = =1 is
identified with the left side of the red (shaded) rectangle on the yz-parallel square
face with x = 2. Finally, the green (white) rectangle on the yz-parallel square face
with = 0 is identified with the green (white) rectangle on the yz-parallel square
face with © = 2. For convenience, we refer to this as the 2-cube-b 3-manifold.

We thus have a flat 3-manifold, with euclidean metric almost everywhere, and
with boundary identification via perpendicular translation. Thus geodesic flow in
this 3-manifold is 1-direction linear flow. It moves rather like 1-direction geodesic
flow on the torus [0,1)3, and the novelty comes from the effect of the barriers.

There is clearly an equivalence between the discrete 2-dimensional 2-torus system
and this new continuous 3-dimensional 2-cube system. An infinite v(-shift sequence
is equidistributed on the 2-torus with the 2-coloring given in the picture on the left
of Figure 1.1 if and only if the corresponding half-infinite 1-direction geodesic with
direction vector v is equidistributed in the 2-cube-b 3-manifold.

Assume now that v = (1, a1, as) € R? is a Kronecker vector. Is it true that every
half-infinite 1-direction geodesic with direction vector v is equidistributed in any
2-cube-b 3-manifold with 0 < b < 17

It turns out that for every Kronecker vector v, there are infinitely many values
of the parameter b for which equidistribution fails. To explain this, we need to look
at the corresponding problem in lower dimension. The projection of the 2-cube-b
3-manifold to the zy-plane gives rise to the 2-square-b surface which arises from
the work of Veech [6]. Some of the anti-equidistribution results on such surfaces
obtained recently by the authors in [1] can be converted to anti-equidistribution
results on 2-cube-b 3-manifolds.
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For instance, let a; € (0,1/2) be irrational, and let b = 2a;. Then for every as
for which v = (1, a1, as) € R? is a Kronecker vector, every half-infinite 1-direction
geodesic with direction vector v violates equidistribution in the 2-cube-b 3-manifold.
For more details, see [1, Theorem 2.1].

The papers [1] and [6] contain some equidistribution results on the 2-square-b
surface. These, unfortunately, do not immediately lead to corresponding results on
the 2-cube-b 3-manifold. Nevertheless, using a different approach, we can establish
equidistribution for most half-infinite geodesics in the 2-cube-b 3-manifold. Further-
more, we can generalize the result to any 2-coloring of the unit torus [0,1)? where
each of the red and green parts is the union of finitely many polygons, and where the
green part has positive area. The richness of the possibilities to fix such 2-colorings
is particularly interesting.

Indeed, we can consider an n-torus system, with n copies of the unit torus [0, 1)?,
where n > 2 is an integer. This then leads to a flat 3-manifold, with euclidean metric
almost everywhere, and with boundary identification via perpendicular translation.
For instance, if we take n = 4 and use the 2-coloring of the torus [0,1)? as shown
in the picture on the right in Figure 1.1, then we have the 4-cube 3-manifold with
repeated barriers as shown in Figure 1.4.

)

L

Figure 1.4: a 4-cube 3-manifold with repeated barriers

Theorem 1. Let n > 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where the yz-parallel square faces have identical 2-coloring such that each
of the red and green parts is the union of finitely many polygons, and where the
green part has positive area. Then for almost every starting point and almost every
direction v = (1, a1, an) € R3, the corresponding half-infinite 1-direction geodesic is
equidistributed in M.

As a trivial corollary, we deduce that the half-infinite 1-direction geodesic spends
asymptotically the same amount of time in each one of the n cubes of the n-cube
3-manifold.

We remark that any polygon in the given 2-coloring can be replaced by a circle,
an ellipse, or any other piecewise smooth closed curve. It requires an extra analytic
discussion in the proof that we postpone to Section 6.

An immediate question that arises is whether we can extend Theorem 1 to include
every Kronecker direction v € R3.

By a grid type 2-coloring of the torus [0,1)?, we mean dividing the torus [0, 1)?
into m? subsquares in the natural way, where m is a positive integer, and coloring at
least one of the subsquares green and the remainder red, as illustrated in Figure 1.5.

Figure 1.5: grid type 2-coloring of the torus [0, 1)?
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Using a similar method, the authors can establish the following stronger conclusion
in this setting; see [2, Theorem 4].

Theorem 2. Let n > 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where the yz-parallel square faces have identical grid type 2-coloring, and
where the green part has positive area. Then every half-infinite 1-direction geodesic
with a Kronecker direction v = (1, a1, ) € R? is equidistributed in M.

Figure 1.6 shows the 2-cube box with a 2-coloring on the middle yz-parallel square
face such that each of the red (shaded) and green (white) parts is the union of finitely
many polygons, and where the green part has positive area. Consider billiard in this
2-cube box, where in addition to the square faces on the surface of the box, there are
additional barriers on the middle yz-parallel square face given by the parts colored
red. As usual, we consider the ideal case of a point billiard that bounces back at
any barrier, following the well-known rules of optical reflection.

(1,1,1)

Y

(2,0,1) B
(0,0,0) z

left right
Figure 1.6: 2-cube box with barriers in the middle

We are interested in the long term bahavior of the billiard orbit. We shall show
that Theorem 1 contributes to our understanding of such questions.

To establish equidistribution for such billiard orbits, we extend the idea of Konig
and Sziics [4] and apply 3-dimensional unfolding. This converts the billiard orbit
in this 2-cube box with barriers into a 1-direction geodesic in a boundary-free flat
3-manifold. The latter system is an 8-copy construction involving 16 cubes, and
results from three consecutive reflections across a plane.

The original 2-cube box with barriers in the middle is highlighted in bold in
Figure 1.7. We reflect it across the plane z = 2, then reflect the 2-copy union across
the plane y = 1, and finally reflect the 4-copy union across the plane z = 1 to obtain
an 8-copy union. Thus the original 2 x 1 x 1 box becomes a 4 x 2 x 2 box with two
repeated sets of barriers on the yz-parallel squares [0,2)? on the faces z = 1 and
xr = 3.

N

Y

|1 z
(0,0,0) B

(2,0,0)
Figure 1.7: unfolding the billiard orbit in a 2-cube box
with barriers in the middle

This box has boundary, and we turn it into a boundary-free flat 3-manifold with
boundary identification. First of all, the square faces on the boundary of this box
are identified by perpendicular translation. Next, let L and R denote respectively
the barriers on the square faces on the plane x = 1 and = = 3 respectively. The left
side of L is identified with the right side of R, while the right side of L is identified
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with the left side of R. For convenience, we refer to this special 3-manifold as the
2-cube-billiard 3-manifold.

Clearly 1-direction geodesic flow in the 2-cube-billiard 3-manifold is an 8-fold
cover of billiard flow in the 2-cube box with barriers.

We now remove the part [0, 1) x [0,2) x [0,2) on the left and join it instead to the
right to become [4,5) x [0,2) x [0,2), as shown in Figure 1.8.

(1,0,0) |Ll

(3,0,0)
Figure 1.8: cutting and pasting

Contracting the resulting 3-manifold by a factor 1/2 in each of the three directions,
we then obtain a 2-cube 3-manifold with repeated barriers that we have studied in
Theorem 1. The following result is then a corollary of Theorem 1 in the special case
n=2.

Theorem 3. Consider billiard in a special 2-cube box with barriers in the middle
square face joining the cubes given by a 2-coloring such that each of the red and
green parts is the union of finitely many polygons, and where the green part has
positive area. Then for almost every starting point and almost every initial direction
v = (L,a1,a2) € R® with vog = (o, ) € [—1,1)%, the corresponding half-infinite
billiard orbit is equidistributed in this special 2-cube boz.

Unfortunately, Theorem 1 does not seem to help in the case of more complicated
billiards with barriers.

Of course, there is no reason why the 2-coloring on the distinct yz-parallel square
faces of the n-cube 3-manifold should be the same, apart from possibly making the
problem a little simpler.

We know that if a geodesic hits an zy-parallel square face of M, then it jumps
to the corresponding point on the identified xy-parallel square face and continues in
the same direction, and if a geodesic hits an zz-parallel square face, then it jumps
to the corresponding point on the identified xz-parallel square face and continues in
the same direction.

Suppose now that a geodesic with direction v = (1,1, ay) hits a yz-parallel
square face at a point P. Then the continuation of the geodesic depends on the
coloring of the intersection point P. If P is green, then the geodesic continues on
its way in the same direction. If P is red, then we consider a directed line starting
from P in the direction (—1,0,0). This line will hit a red point P’ for the first time.
Then the geodesic continues from P’ in the same direction, as shown in Figure 1.9.

Figure 1.9: when a geodesic hits a red barrier

There is the pathological case that P’ = P, so that the geodesic continues on its
way as if P were green. To avoid such situations, we deem the point P to be colored
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green. This is some kind of automatic recoloring, but the following rule is a little
simpler.

Restriction on Red Coloring. On any line perpendicular to any given yz-parallel
square face of M, there are either no points colored red or at least 2 distinct points
colored red. Here we use the standard convention that the left-most yz-parallel
square face and the right-most yz-parallel square face are the same.

Instead of requiring perfect repetition of the 2-coloring on all the yz-parallel square
faces as in Theorem 1, we now impose the substantially weaker condition of local
repetition. More precisely, we require a small local repetition color-split neighborhood,
in the form of a line segment with the same local 2-coloring of red and green in the
two opposite side-neighborhoods. For illustration, see Figure 1.10, where the three
highlighted rectangles are in the same position within the square torus.

= = =

Figure 1.10: different 2-colorings with local repetition

We emphasize that the local repetition color-split neighborhood must be present
on all the yz-parallel square faces of the n-cube 3-manifold. Naturally, we still need
2-colorings on each yz-parallel square face such that each of the red and green parts
is the union of finitely many polygons, and where the green part has positive area.
Furthermore, we also require that the Restriction on Red Coloring holds. Since
the 2-colorings on the different yz-parallel squares faces can now be different, this
represents substantially more freedom for the 2-colorings. In Figure 1.11, we have
a 4-cube 3-manifold with local repetition color-split provided by the triangular red
(shaded) regions at the corners of the yz-parallel squares faces. The positions of the
local repetition color-split neighborhood on the different yz-parallel squares faces
are indicated by the short thick lines.

| | |Lyl

Figure 1.11: a 4-cube 3-manifold with local repetition

The result that we can prove in this more general setting is not really weaker.

Theorem 4. Let n > 2 be an integer, and let M be any n-cube 3-manifold with
barriers, where each yz-parallel square face has a 2-coloring such that each of the
red and green parts is the union of finitely many polygons, and where the green part
has positive area. Suppose further that the Restriction on Red Coloring holds, and
that there is a local repetition color-split neighborhood on the yz-parallel square faces.
Then for almost every starting point and almost every direction v = (1, a1, o) € R3,
the corresponding half-infinite 1-direction geodesic is equidistributed in M.

As in Theorem 1, any polygon of the 2-colorings can be replaced by a circle, an
ellipse, or any other piecewise smooth closed curve.
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2. PREPARATION FOR THE PROOF OF THEOREM 4

We work with an equivalent discrete form of the problem.
For every integer i = 0,1,...,n — 1, let

U = {i} x [0,1)°
denote the i-th yz-parallel square face of M, and let

n—1
XO == U Uz
i=0
Since each yz-parallel square face has a 2-coloring, for every integeri = 0,1,...,n—1,
there exist two sets ¢, and &; such that

Since the collection of non-Kronecker vectors v = (1, a1, a3) € R? has measure
zero, we may therefore start our discussion by assuming that v is a Kronecker vector.
Let v = (1,1, a3) € R? be a Kronecker vector, and let vy = (a1, ). We define an
invertible transformation T = T, : X, — X, as follows.

For any point P = (i,y) € U; C Xy where y = (y,2) € [0,1)2, let

G+ 1{y+ve}), f P+v=_>i+1,{y+Vo}) € Y1,
T<P) B { (Z*, {y +yV0}>, lf P+V = (Z + 1, {§+V0}) - ‘%i-f—la (22>

where the addition in P + v is modulo n for the first coordinate and modulo 1 for
the remaining coordinates. Thus

{y +vo} = {y + ar} . {z + a2}), (2.3)

where 0 < {f} < 1 denotes the fractional part of a real number 5. Furthermore,
the value of 7* is determined by

i =max{j <i+1:(j,{y+vo}) € %}, (2.4)
with the convention that
i+1>i>i—1>...>1>0>n—-1>n—-2>...>i+2. (2.5)

Note that (2.4) and (2.5) are motivated by Figure 1.9, and Figure 2.1 illustrates the
special case when n = 4. If P + v is a red point, we then move from P + v in the
direction of the vector (—1,0,0) until we hit the first red point, and this red point
lies on the yz-parallel square face Ujx.

Figure 2.1: when P + v is red

Projecting the transformation T by ignoring the first coordinate, we obtain the
invertible transformation

TO = Tvo : [07 1)2 - [07 1)2 "y {y + VO}'

It is easy to see that T preserves the 2-dimensional Lebesgue measure \y. Our
goal is to establish that for almost every vector vy € [0,1]?, the transformation
T =T, : Xy — X is ergodic, where v = (1, vg). The basic idea is quite surprising,
as we prove ergodicity for this non-integrable system by taking advantage of the
split singularities.
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Remark. We are going to use Birkhoff’s well known pointwise ergodic theorem on
measure preserving transformations. Since we simply apply ergodic theory, we do
not expect the reader to have any serious expertise in the subject. Thus knowledge
of Lebesgue integral and basic measure theory suffices. The theorem concerns a
measure-preserving system (X, A, u, T). Here (X, A, 1) is a measure space, where
X is the underlying space, A is a o-algebra of subsets of X and p is a non-negative
o-additive measure on X with p(X) < oo, while T : X — X is a measurable map
which is measure-preserving, so that T™'A € A and u(T 'A) = u(A) for every
Ac A

Let L'(X, A, 1) denote the space of measurable and integrable functions in the
measure space (X, A, p). Then the general form of Birkhoff’s pointwise ergodic
theorem says that for every function f € L'(X, A, p), the limit

Jim 37 A(Tx) = £(x) (26)
§=0

exists for p-almost every x € X, where f* € L'(X, A, ) is a T-invariant measurable
function satisfying the condition

/deMZ/Xf*du-

A particularly important special case is if T is ergodic, when every measurable
T-invariant set A € A is trivial in the precise sense that p(A) =0 or u(A) = p(X).
This is equivalent to the assertion that every measurable T-invariant function is
constant p-almost everywhere.

If T is ergodic, then (2.6) simplifies to

m—1

Jm 3 (P = [ 1)

J=0

and the right-hand side of (2.6) is the same constant for p-almost every x € X.
The remarkable intuitive interpretation of (2.7) is that the time average on the
left hand side is equal to the space average on the right hand side.

3. PrROOF OF THEOREM 4

We focus on the particular measure-preserving system (X, A4, Ao, T), where A is
the family of Borel sets in X, A\ is 2-dimensional Lebesgue measure and T = T,.
We shall establish ergodicity by contradiction.

Step 1. Suppose on the contrary that T is not ergodic. Then there exists a non-
trivial measurable T-invariant subset Sy C X such that 0 < A2(Sp) < n. We try to
derive a contradiction.

Removing possibly a set of A\;-measure zero, we may assume that for every point
x € Xy, the point TY(x) is well defined for every integer j =1,2,3,....

Lemma 3.1. Consider the measure-preserving system (Xo, A, Ao, T), where T =T,
and v = (1,vq) is a Kronecker vector. For any T-invariant subset So C Xy, let the
multiplicity function Xs, of So be defined for every point P € [0,1)? by

Xso(P)={i=0,1,...,n—1: (i, P) € Sp}|.

Suppose further that Sy is a proper subset of Xy, so that Sy # 0 and Sy # Xo. Then
there exists an integer ko = 1,...,n — 1 such that Xs,(P) = ko for almost every
point P € [0,1)%, so that \2(Sp) = ko.
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Proof. Since v is a Kronecker vector, it follows that the vy-shift on the unit torus
[0,1)? is ergodic. Meanwhile, it is easy to check that the multiplicity function Yg, is
To-invariant. Thus Birkhoff’s ergodic theorem implies that xg, is constant almost
everywhere. Note that Yg, is integer valued and cannot be equal to 0 or n. This
completes the proof. O

Step 2. Given a point z € X, and a radius 0 < r < 1/2, let D(z;r) denote the
circular disk of radius r and center z. Clearly D(z;r) has area mr?. Note that
D(z;r) C Xy, due to the fact that X is a compact flat surface.

Since the non-trivial T-invariant subset Sy C X is measurable, it follows from
Lebesgue’s density theorem that for almost every z € Sy,

lim Xo(So N D(z;7))

r—0 7'rr2

)

whereas for almost every z € S§ = X \ S,

lim Ao (So N D(z;1))

=0.
r—0 7'['7”2

Let M be a large integer, and divide each of Uy, Uy, ..., U,_; into M? congruent
squares of area (1/M)? in the standard way. We refer to these small squares as
special (1/M)-squares. Thus there are precisely nM? special (1/M)-squares in Xj.

In view of Lebesgue’s density theorem, we formulate here and prove in Section 4
the following lemma for the hypothetical non-trivial measurable T-invariant subset
So C Xp.

Lemma 3.2. Let the real number e € (0,1) be arbitrarily small and fized, and let the
real number 1 > 0 be fivred. There exists a finite threshold mg = mo(So;e;€1) such
that for every integer M > my, there exist at least (1—e,)nM? special (1/M)-squares
Q@ in Xo such that either

M(500Q) | Al(S5nQ)
(1/M)? (1/M)?

Let N be a large even integer. Let F(N/2) denote the standard decomposition of
the unit torus [0,1)? into (N/2)? axis-parallel congruent small squares of common
side length 2/N such that the origin (0,0) is the vertex of a small square. For
8 = (61,02) € {0,1}2, let F5(N/2) denote the translation of F(N/2) modulo one
such that the vertex (0,0) moves to (61/N,dy/N). We refer to the small squares in
the four partitions F5(N/2), § € {0,1}?, as basic (2/N)-squares. It is not difficult to
see that any axis-parallel square B of side length 1/N in the unit torus is contained
in a basic (2/N)-square.

For every i = 0,1,...,n — 1, we replicate the families F5(N/2), § € {0,1}? on
the yz-parallel square face U; = {i} x [0,1)%. In other words, we write

Fs(N/2;i) = {i} x Fs(N/2), §€{0,1}* i=0,1,...,n—1.

For every § € {0,1}?, Lemma 3.2 with M = N/2 then gives the following.

Let the real number ¢ € (0,1) be arbitrarily small and fixed, and let the real
number £; > 0 be fixed. There exists a finite threshold my = mg(Sp; ;1) such
that for every § € {0,1}* and every even integer N > my, there exist at least

(1 — &1)n(N/2)? basic (2/N)-squares

Qe U Fs(N/2;1) (3.1)
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such that either

/\Q(SOOQ)>1_8 or )\Q(SOQQ)<€'

(2/N)? (2/N)?

We say that these sets ) satisfy the e-nearly zero-one law. The conclusion of this
step is that we have a lower bound for the number of such basic (2/N)-squares of
the form (3.1).

Step 3. To apply a version of the splitting method, first introduced in [2], we need
to make use of the local repetition color-split neighborhood &, with green part S¢
and red part Sg. As this color-split neighborhood is present on all the yz-parallel
square faces of the n-cube 3-manifold M, we assume, for simplicity, that S lies on
the unit torus [0,1)2.

We can clearly find within § a buffer zone By as shown in Figure 3.1. The length
of By is a constant ¢; depending only in S, while the width is 1/2N, where the
integer N is sufficiently large, with the color-split boundary splitting By into green
and red strips of width 1/4N.

E——

C1

Figure 3.1: buffer zone By within the local repetition color-split neighborhood &

The following result follows from simple geometric considerations.

Lemma 3.3. Let Ay C [0,1)% be an arbitrary azis-parallel square with side length
1/N and center c(Ap). Then for every t € [0,1)? such that c(Ay) +t € By, the set
Ag + t has substantial color-split in the sense that

1 1
- >
14N? 14N?

The extreme case of the above takes place when By is tilted at 45 degrees, with
the center ¢(Ap) of Ay at the corner, as shown in Figure 3.2.

/\2((A0 + t) N Sg) 2 and )\2((140 + t) N Sg)

Ag+t

C(Ao) +t

By

Figure 3.2: extreme case of substantial color-split

We need to show that such substantial color-splits occur quite frequently. We
shall establish in Section 5 the following result.

Lemma 3.4. Suppose that the integer N is even and sufficiently large. For every
pair so € [0,1)? and vy € [0,1]2, let F(so;vo; N?) denote the number of integers
j=0,1,..., N2 — 1 such that sq + jvo € By. Then for every e, > 0, there exists a
constant co > 0 such that

)\2({V0 € [O, 1)2 . F(SO;VO; NQ) 2 CQN}) 2 1— 9. (32)
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Step 4. Consider a (1/N)-square A on some yz-parallel square face U; of M. We see
from (2.1)—(2.5) that the image T(A) is then given by A+ v followed by appropriate
bounce-backs on those parts that hit red. If A 4 v hits both green and red, then
clearly the splitting of the image T(A) is caused by a color-split. For instance, in
Figure 3.3, the white square on the yz-parallel square face U; denotes A, the square
A + v experiences a color-split on the yz-parallel square face U,, and the image
T(A), indicated in black, is split between the yz-parallel square faces U; and Us.
Indeed, if the 2-coloring on the different yz-parallel square faces of M are identical,
then the only splitting of image is caused by a color-split.

Figure 3.3: a color-split

On the other hand, if the different yz-parallel square faces of M can have different
2-colorings, then there are other instances that cause splitting of the image T(A).
For instance, in Figure 3.4, for the white square A on the yz-parallel square face Us,
the square A + v is on the yz-parallel square face Uy, but then different parts have
different bounce-backs, and the image T(A) is split between the yz-parallel square
faces Uy and Usz. Although a color-split always leads to an image-split, this example
shows that the converse is not true.

Figure 3.4: an image-split that is not a color-split

It turns out that it is advantageous to consider another kind of splitting which
may or may not result in an image-split. For every i = 0,1,...,n — 1, let {i} x I';
denote the color-split boundaries of the 2-coloring on U;, so that I'; C [0,1)? is a
collection of straight edges. Consider the union

n—1
r=Jr,
1=0

and, for every i = 0,1,...,n — 1, replace {1} x I'; on U; by {i} x I', so that the
different yz-parallel square faces of M now have identical I'-splits. Although an
image-split is always a I'-split, the example in Figure 3.5 shows that the converse
is not true. Here, and also in Figures 3.3 and 3.4, the I'-splits are indicated by the
black line segments.

Figure 3.5: a I'-split that is not an image-split

The important point here is that if there is no I'-split, then there is no splitting
of any kind and in particular no color-split.
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For the splitting method to work, we need a substantial color-split in the local
repetition color-split neighborhood and a long color-split-free chain either side of it.
In view of the above observation, it therefore suffices to find a substantial color-split
in the local repetition color-split neighborhood and a long I'-split-free chain either
side of it. As the I'-split is identical on all the yz-parallel square faces of M, this
allows us to consider vo-flow on the unit torus [0, 1)? instead of geodesic flow in the
direction v in M.

To establish this, we shall show that the number of short I'-split-free chains is
small. More precisely, we have the following lemma which we prove in Section 4.
Before we can state the result, we first need some definitions.

Let Ay C [0,1)? be an arbitrary axis-parallel square of side length 1/N. Consider
the N? vq-shift images

Ay +jvy, j=0,1,...,N*—1, (3.3)

in [0,1)%. We say that a set {Ag + jvg : j € J}, where J is a subset of consecutive
integers in {0,1,..., N? — 1}, is [-split-free if (Ag + jvo) N T = 0 for every j € J.
Furthermore, we say that the set {Ag + jvo : j € J} is a I-split-free chain if it is
I'-split-free and not contained in a bigger I'-split-free set. It is convenient to define
the length of the I'-split-free chain to be |J| + 1.

Thus the sequence (3.3) decomposes into a subsequence of I'-split members, with
any two consecutive members of this subsequence possibly separated by a I'-split-free
chain in between.

For every axis-parallel square Ag C [0,1)? of side length 1/N, we can clearly write
Ap = Ap(so), where sy = ¢(Ap) is the center of Ay. Also, for every vector v = (1, vy),
where vy € R?, we can identify

v, vy and v'=_—
v
with each other. Clearly the collection of all vectors v*, where vy € R?, forms the
subset 8% = {(z,y,2) € S* : & > 0} of the unit ball S°.

Lemma 3.5. Let the real number eo € (0,1) be arbitrarily small and fized, and
let Ay C [0,1)% be an arbitrary axis-parallel square of side length 1/N that runs
uniformly over [0,1)?, in the sense that the center sy is uniformly distributed on
[0,1)%. Then there exists a positive absolute constant c3 such that for at least (1—ez)-
proportion of the pairs

(s0,v*) € [0,1)* x S7,

the sequence (3.3) in [0,1)? contains at most eoN T-split-free chains with length at
most c3e2N. The (1 — eq)-proportion is in terms of the product of the 2-dimensional
Lebesgue measure on [0,1)* and the normalized surface area measure on S2.

Step 5. The motivation for this step is not immediately obvious at this stage, but
we include it here for the sake of convenience. This will become clear in Step 7.

We establish in Section 4 the following result on clustering. It demonstrates that
the overwhelming majority of arithmetic progressions are not clustered.

Lemma 3.6. Let the real number o € (0,1) be arbitrarily small and fized. There
exists a finite constant C* = C*(g3) such that for any starting point sq in the unit
torus [0,1) and for at least (1 — eq)-proportion of the vectors vy € [0,1]2, every
axis-parallel square Q of side length 2/N in [0,1)? contains modulo one at most C*
elements of the arithmetic progression

SO+jV07 jZO,].,...,N2—1,
of N* terms. In particular, we can take C* =1+ 16/&,.
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Step 6. Here we combine our observations in Steps 3-5. Combining Lemmas 3.3,
3.4, 3.5 and 3.6, we see that there exists a set GD C [0,1]* of good directions
vo € [0,1]* with \2(GD) > 1 — 3e5 such that for every vy € GD, the conclusion of
Lemma 3.6 holds for any sy € [0,1)?, and there exists an axis-parallel square A} in
[0,1)? of side length 1/N such that the following two conditions hold:

(i) The sequence

Ay +jve, j=0,1,...,N*—1, (3.4)
in [0,1)* contains at least co N members which exhibit substantial color-split in the
local repetition color-split neighborhood &, in the sense that
b > 1
14N? ~ 14N?%

(ii) The sequence (3.4) has at most €3N short I'-split-free chains with length at
most c3e2N.
Combining (i) and (ii), we conclude that the sequence (3.4) has at least
coN — 269N — 2 S coN
2 ~ 3
pairs of consecutive long T-split-free chains of length at least c3e3 N, where each pair
is separated by a member of the sequence with substantial color-split in the local

repetition color-split neighborhood §. Here we require that €5 > 0 is chosen to be
arbitrarily small so that the inequality (3.5) holds.

)\2((146 + jV()) N Sg) 2 and )\2((148 + jV[)) N S%)

(3.5)

Step 7. To facilitate the use of the splitting method, we need to first demonstrate
the existence of a pair of consecutive long I'-split-free chains separated by Af+ jovo
with substantial color-split in the local repetition color-split neighborhood & and
such that both Aj + (jo — 1)vo and A + (jo + 1)vo are I'-split-free and satisfy the
e-nearly zero-one law. More precisely, we return to the n-cube 3-manifold M. Then
A} + jovo corresponds to an axis-parallel square A** of side length 1/N on some
yz-parallel square face U;, while Aj+ (jo — 1)vo and Aj + (jo + 1)vo correspond to
the squares A** — v and A* + v respectively. Then we claim that either

)\2(80 N (A** — V)) )\Q(SO N (A** — V))
AT =V LTE T T e o)

<e, (3.6)

and either

M(SoNA"+v) o SN (AT 4y) (3.7)

Ao (A** +v) Ao (A** +v)

To establish our claim, suppose, on the contrary, that for every pair of consecutive
long I'-split-free chains separated by Aj + jovo with substantial color-split in the
local repetition color-split neighborhood S, either (3.6) or (3.7) fails. Without loss
of generality, suppose that (3.7) fails, so that A** + v fails the e-nearly zero-one law.
Note that A** + v corresponds to the first member of a I'-split-free chain of at least
c3esN — 2 terms. Since the subset Sy C Xy is T-invariant, it follows that every set

T/(A*™ +v), 0<j<cesN—3, (3.8)

is an axis-parallel square of side length 1/N on a yz-parallel square face of M that
is I-split-free and fails the e-nearly zero-one law. Taking into consideration all pairs
of consecutive long I'-split-free chains, we see that there are at least

N
% (3e2N — 2)
such axis-parallel squares of the form (3.8) which fail the e-nearly zero-one law.

Each is contained in a basic (2/N)-square @ of the form (3.1) for some § € {0, 1}
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On the other hand, in view of Lemma 3.6, any basic (2/N)-square () contains at
most C* = C*(ey) such axis-parallel squares of the form (3.8) which fail the e-nearly
zero-one law. We conclude therefore that there are at least

CQN(C3€§N — 2)
3C*
distinct basic (2/N)-squares @Q of the form (3.1) for some § € {0,1}? which fail the

e-nearly zero-one law. Meanwhile, the conclusion from Step 2 is that the number of
such basic (2/N)-squares @ is bounded above by

N 2
481” <E> .

For any given g5 > 0, we can now choose £; > 0 sufficiently small in terms of the
other parameters to obtain a contradiction. This establishes the claim.

Step 8. We now apply the splitting method. Assume that A™ is an axis-parallel
square of side length 1/N on some yz-parallel square face of M, and that (3.6) and
(3.7) both hold. For every i =0,1,...,n—1, let A; C U; be the axis-parallel square
of side length 1/N that is in the same general position as A™*, and let

Bi—l = Az —v and Ci+1 = AZ + V.

Note that each A; falls within the local repetition color-split neignborhood S, with
local 2-coloring S¢ and Sy, and that each B;_; and each C;; is I'-split-free and so
monochromatic, and also e-nearly in Sy or e-nearly outside Sy.
For each i =0,1,...,n— 1, let B;_1(+) C B;_; be defined by
T(Bi—i(+)) = AiN Sy,
so that its image under T is precisely the green part of A;, and let
Bi_1(=) = Bi—1 \ Bi—1(+).

Suppose that C;y1 C 9.1, so that it is on the green part of U;;;. Then it follows
from the definition of T, as given by (2.1)—(2.5), that

Cip1 = TZ(Bi—1(+)) U TQ(Bi(_))-
Suppose that C;11 C %11, so that it is on the red part of U;,;. Corresponding to
(2.4) and using the convention (2.5), let

. :max{j <Z+1OJ C%]}

Then it follows from the definition of T, as given by (2.1)—(2.5), that

Cp = T*(Bi_1(+)) UT*(Bi(-)).
In either case, the two sets B;_1(+) and B;(—), and so also the two sets B;_; and B;,
are either both e-nearly in Sy or both e-nearly outside Sy. Thus the sets

Bo,...,Bn_l and CQ,...,Cn_l

are either all e-nearly in Sy or all e-nearly outside Sy. This contradicts the assertion
in Step 1 that Yg,(P) = ko for almost every point P € [0,1)? for some integer
ko < n.

We can guarantee e9 — 0 by taking N — oo. This establishes that T = T, is
ergodic, where v = (1, vy), for almost every v, € [0, 1]2.

Step 9. We can now use the standard technique of extending ergodicity to unique
ergodicity using functional analysis and Borel measures. This completes the proof
of Theorem 4.
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4. PROOF OF LEMMAS 3.2, 3.5 AND 3.6

Proof of Lemma 3.2. Since Sy is Lebesgue measurable, given any 6 > 0, there exists
a finite set of disjoint axis-parallel rectangles such that their union V' satisfies

/\Q(V \ S()) + )\2(50 \ V) < 4.
Suppose that 0 < \2(Sp) = 7 < n. Then
)\Q(V) >)\2(So)—5:7'—5 and )\Q(SSHV) <5,

where S§ = X \ Sp. Since V' is a finite union of disjoint axis-parallel rectangles,
there clearly exists a threshold t; = t1(V;d) such that the union V; of the special
(1/t)-squares @ contained in V' has measure

)\2(‘/1) > )\2(‘/) —0>T7T— 25,

provided that the integer ¢ > ¢;. Let B denote the set of special (1/t)-squares @ in
V) that satisfy
M(5NQ)
1/e2 =~
Then, provided that ¢ > ¢;(V;0), we have

C C C (& 6\|B|
0> Ma(SENV) = Xa(S5N1A) = D M(S5NQ) =D X(S5NQ) > T
QCW QeB
so that
ot*  egt?
Bl =%
if we choose § = e£1/6. Deleting the special (1/t)-squares ) € B, we see that V)
contains at least

&1 2 €1 2
—95— 2 > (-2 )
<T 24 6)75/(7 2)15 (4.1)
special (1/t)-squares @ such that
A2(56 N Q)
(1/1)?

It follows that, as long as the integer t > ¢1(V; d), the number of special (1/t)-squares
in X, that satisfy

A2(So N Q)
(1/t)?
is bounded below by (4.1). Repeating the same argument but replacing Sy by S§, we

obtain another threshold to = t5(V; §) such that, as long as the integer ¢ > t5(V;9),
the number of special (1/t)-squares in X, that satisfy

>1—¢ (4.2)

A2(So N Q)

—(1/75)2 (4.3)
is bounded below by

(n -7 — 82—1> t2 (4.4)

Combining the lower bounds (4.1) and (4.4), we see that, provided that an integer
M > max{t;,ts}, the number of special (1/M)-squares in X, that satisfy (4.2) or
(4.3) is bounded below by (n —e;)M?, and this completes the proof. O
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Proof of Lemma 3.5. Throughout this proof, the parameters C, Cs, Cs, . . . represent
positive absolute constants.

Let n = n(e2) > 0, to be fixed later.

Suppose that an integer j*, satisfying 0 < j* < nNN, is such that both Ay and
Ao + j*vo exhibit ['-split, but Ay + jvo for any integer j satisfying 0 < j < j* is
I'-split-free. This gives rise to a I-split-free chain of length j*, and we say that v
is a bad direction for Aj.

We now go to 3-space as follows. A discrete point sequence

so+jvo, Jj=0,1,...,N*—1,
in the torus [0,1)? defines a straight line
s+ tv € R,
where v = (1, vg). It follows that the sequence (3.3) leads to a sequence
A+jv, j=0,1,...,N*—1, (4.5)

in R?, where A = {xy} x Ag is an axis-parallel square of side length 1/N on some
plane x = xy where xy is an integer. The I'-split-free chain under consideration is
then characterized by a vector from the center of A to the centre of A+ j*v in R3.
Clearly the direction of any such vector is given by v, and the length is at most
V31N, where we assume that v/3nN > 1.

Let the integer m satisfy

2m=l < V3N < 2™ (4.6)

Our basic idea is straightforward. We consider all yz-parallel unit squares arising
from the lattice Z3, and extend I" to each in the usual way. Assume that A is a
[-split (1/N)-square on some yz-parallel unit square. Consider some other I'-split
(1/N)-square A* on some other yz-parallel unit square. If the center of A* is reached
from the center of A via a vector in the direction of v and of length at most 2™,
then A* determines a bad direction v for A. Theoretically, we can determine all
possible T-split (1/N)-squares A* on other yz-parallel unit squares, the centers of
which can be reached from the center of A via vectors of length at most 2™, leading
to a collection of bad directions for A. Carrying this out, however, is impossible
without more care.

Clearly every yz-parallel unit square has N? special (1/N)-squares obtained by
dividing the unit square into congruent squares with side length 1/N in the standard
way. Since the set I' is defined by the boundaries of a finite set of polygons, there
are at most C1 N special (1/N)-squares that exhibit I'-split in its interior or on part
of its boundary. We refer to these as I'-split special (1/N)-squares. We also say that
a special (1/N)-square on some yz-parallel unit square is ezceptional if it has T'-split
or it is in a 3 x 3 array of 9 special (1/N)-squares, at least one of which has T'-split.
Note that some of these 9 special (1/N)-squares may lie on neighboring yz-parallel
unit squares.

We start with a fixed I'-split (1/N)-square A on some yz-parallel unit square.
Assume that the bad direction vector has length between 2! and 2¢, where the
positive integer ¢ < m.

(i) Clearly A + j*v is contained in a 3 x 3 array of 9 exceptional (1/N)-squares
contained in at most 4 distinct but adjoining yz-parallel unit squares. Each such
exceptional (1/N)-square contributes a set of bad directions for A with surface area

measure at most
1/N\?
o ()
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on S%.

(ii)+ The number of distinct yz-parallel unit squares reachable from the center of
A by a vector of length between 21 and 2° is at most Cy(2°)3.

(iii) The total number of exceptional (1/N)-squares on any yz-parallel unit square
is at most C3N.

Combining (i)—(iii), we see immediately that the total measure of bad directions
for A that are characterized by bad direction vectors of length between 2¢~! and 2°
is at most

22

It follows, in view of (4.6), that the total measure of bad directions for A that are
characterized by bad direction vectors of length up to n/NV is at most

1/N\? 2t
Cy (/—> - Cy(2°3 - C3N = Cig-

22
204— < 057]. (47)

Next, note that A is contained in a 3 x 3 array of 9 exceptional (1/N)-squares
contained in at most 4 distinct but adjoining yz-parallel unit squares. Recall that
the total number of exceptional (1/N)-squares on any yz-parallel unit square is at
most C3N. Let W(A(sg); v¥; N?) denote the number of T'-split-free chains in (4.5) of
the form

A+ v, A+ jov, 0< 71 < ja <7nN.

Then we have the inequality
/[ - /82 \II(AA(SO)7 V*; NQ) dv* dS() < CgN : 0577 = CGT]N (48)
0,1
Remark. An inequality of the form
/82 W(A(sp); v N?)dv* < Csp

for every A(s*) would be ideal, but cannot be deduced from the upper bound (4.7),
in view of the possibility that the integrand may exceed 1. Thus we need to average
over sy as well. The inequality (4.8) is valid with the integrand W(A(s*); v*; N?),
since if the sequence has more than one I'-split-free chain, the multiplicity is taken
care of by the parameter sy, as the terms of the sequence (4.5) correspond to N2
distinct values of sq.

Let ®(e2N;nN) denote the set of pairs (so, v*) € [0,1)® x S% such that the
sequence (4.5) has more than eo N T'-split-free chains with length at most n/N. Then
writing meas for the product measure, we have

meas(P(eoN;nN))eaN < /[ | / W(A(sg); v*; N?) dv* dsy. (4.9)
0,1)2 Js2
Combining (4.8) and (4.9), we conclude that
meas(®(eaN;nN)) < %;77'
The proof is now complete if we choose n = c3e3 with a suitable constant cs. 0

Proof of Lemma 3.6. For any integer k = 1,..., N2, write

2 2
Q(N, ]{Z) = {VO = (041,062) S [0, 1]2 : ||]€041H < N and ||k042H < N} . (410)
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It is not difficult to see that

oo - (o )U(%AN%%)UQ%J))Q,

so that
4\* 16
MOANE))=|—=] =—. 4.11
k) = () = 1 (a.11)
For every (aq, ay) € [0,1]%, consider the counting function
wy(a,ap) = {k=1,...,N?: (a1, 02) € QN;k)}|. (4.12)

Combining (4.10)-(4.12), we see that

1,1 N?
/ / wn (aq, ag) dag dag = Z X (QUN; k) = 16.
o Jo k=1

Given any €5 > 0, write
9 16
Qeg) = < (aq,a0) € [0,1]° : wy(ag, an) = -1
2

Since the function wy(aq, ag) is non-negative, we clearly have

1
16—/ / WN Odl,ag dCYldOQ —6)\2(Q< )),

so that A2(Q(e2)) < &y. It follows that
A2 ([0, 1%\ Q(e2)) > 1 — &9,
so that the collection of vectors
vo = (a1, ) € [0,112\ Q(e9) (4.13)

represents at least (1 — &5)-proportion of the set [0, 1]2.
We shall show that the lemma holds with the choice
16
cr=c (62) =14+ —

2

Suppose on the contrary that some axis-parallel square () with side length 2/N
contains modulo one more than 1+ 16/e5 elements of some sequence

so+jvo, j7=0,1,...,N*—1.
In other words, suppose that there exists a subset J C {0,1,..., N? — 1} with
|J| > 1+ 16/e2 such that
So+jvoEeQ, jeEJ
Let jo be the smallest element of J, and let
=J\ {Jo}-
It is not difficult to see that
Jc{k=1,...,N*: (a1,03) € QN; k)},

and so

16
wy(vo) = [J*| > —
2

This implies that v € (e2), contradicting (4.13). The lemma now follows. O
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5. ESTABLISHING LEMMA 3.4

In this section, we establish an intermediate result from which Lemma 3.4 follows
easily.

Lemma 5.1. Let the integer H be even and positive, and let A = A(uq,us;6) be
an arbitrary rectangle with side lengths 2u; and 2us, and tilted by an angle 6 in the
anticlockwise direction, where 0 < uy,us < 1/2. Let

F(SO;OQ,OQ;H) = |{j:0,1,...,H—1ZSo+j(Oél,Oé2) EAH

Then for any parameter k > 1, we have

H 1
A2 ({(041,042) € 10,1 : F(so;ou, a0, H) > el ’ﬁb(ul,UQ)}) =z1——,

2 K
where
Uq U2 216
P(ur,up) = 2% max{ 1/2° 1/2} T B 1 (5.1)
Uy Uy Uy U
Proof of Lemma 3.4. We take H = N2. For the buffer zone A = By, we have
1
= %, and  wuy = N
Then
H N
u”;? - 616 and  (uy, up) = s N2 4 s N/ (5.2)

for some positive absolute constants ¢, and c5. For large values of N, the right hand
side in (5.2) is much smaller than the left hand side. Thus given any €5 > 0, we can
choose a sufficiently large k = k(g5) > 1 to guarantee that the inequality (3.2) holds
for some constant ¢, satisfying 0 < ¢ < ¢1/16. O

Proof of Lemma 5.1. We proceed by a number of steps.

Step 1. We aim to give a good description of the term F'(sg; vy, o3 H).
Let £(a, az) denote the lattice in R? generated by the vectors

€ = (061,062, 1)7 € = (_17070)7 €3 = (07 _170)7

and consider the 3 X 3 matrix

(03] —1 0
M=(e e e )= a 0 -1 |, withdet(M)=1. (5.3)
1 0 0
Then, with n € Z3 expressed as column vectors, we have
£(Oél, 062) = {MII n e Zg} (54)
Writing B = (A —sg) X [0, H) C R?, we then have
F(so;aq,a9; H) = |L(a1,a2) N B = Z x5(Mn), (5.5)
nezs

where Y pg is the characteristic function of B.
We next use the Poisson summation formula, that under some mild condition on
a function f : R?* — R, we have

d fm)y =) / f(x)e 2mxm dx (5.6)

nez3 meZ3
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Applying this formula with f = yp, it follows from (5.5) and noting (5.3) that

F(so;an, a0, H) = Z xg(Mn) = Z / XB(MX)e—27rix.de
R3

nez3 meZ3

1 } : —2miM 1z } : —2miM 1z
— 1 z-m d — 1 zZ-m d . .
det(M) /112{3 xs(z)e ‘ /B ‘ ‘ 57)

ez’ mez3

Note, in particular, that for m = 0, we have
/ e 2mM e g, / e 2MM 7120 4y — \y(B) = Ay(A)H = duyuyH. (5.8)
B B

On the other hand, it is easy to see that the inverse matrix

0 0 1
]\471 = —1 0 (65} s
0 —1 (6]

so that M 'z = (23,2123 — 21, o2z — 29). Thus with v = (1, a;, ay), we have

M7 'z -m = zgmy + (123 — 21)ma + (023 — 29)m3
= —Z1M9 — ZoMg3 -+ 23(m1 + aymo + Oégmg)

= —21M9y — ZoMs3 + 23V - M. (5.9)

Then for every m € Z3\ {0}, we can write

/ e M Tlam gy — T(my A — s0) T (m;v; H), (5.10)
B
where
I(m; A — ) = / e?rilaimatzama) 4,1 4z, (5.11)
A-so
and
H _ | _ e—2niHvm
J(m;v; H) = /0 e AV dy — S yE— (5.12)
Write
z" = (z1,29) and m" = (mg, ms),
and let

A = p([—uy,u1] X [—ug, us)) +w C [0,1)%
where p denotes an anticlockwise rotation. Then
z" € A —sy = p([—ur,ur] X [—ug,us]) + w — sg
if and only if
/ ro

7 = (2, 2)) = p (2" — W +s0) € [—up,uy] X [—us, us).

Note that

7z =p '(z" —w+sy) ifandonlyif z*=pz +w—s.
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It then follows from (5.11) that

T o) = [

- * H / _ . *
esz m* J,% / e27r1(pz +w—sg)-m dz
[—u1,u1] X [~u2,u2]

A—sg
i — m* C
_ eQﬂ'l(W Sp)-m / e27r1pz m* 1,/
[—u1,u1] X [—u2,u2]
i — m* sl =1 *
_ eQm(w Sp)-m / eZmz p~lm dZ,, (513)
[—ur,ur] x[—uz,uz]

since pz' - m* = z'- p~'m* as the scalar product remains unchanged under identical
rotation for both constituent vectors. Furthermore, if p is anticlockwise rotation by
an angle 0, then

p'm* = p~(my, m3) = (mycosd + mzsin b, mz cos § — my sin ). (5.14)
Combining (5.13) and (5.14), we conclude that
T(m; A —sg) = XV T s 0;uy)Z(ms, —ma; 0; us), (5.15)

where

U1
. .
I<m2’ ms; 97 ul) _ / 627”Z1 (M2 cos B+m3 sin 0) dZi

Cy
= 2/ cos(2mz] (mg cos @ + m3sin9)) dz]
0

_sin(27muy (mg cos 6 + mgsin6)) (5.16)
N 7(mg cosf 4+ m3sin ) '

and

u2
1.7 _ .
I(mg’ —Mo; 0’ Ug) — / 627T1z2(m3 cos —my sin 0) dZé

s
u2
= 2/ cos(2m 2 (m3 cos§ — mysin0)) dz),
0

B sin(27ruQ(m3 cos ) — my sin 9)) (5 17)

m(m3 cos @ — my sin 6)

Finally, combining (5.7), (5.8), (5.10) and (5.15), we conclude that

F(so; a1, a9; H) — dujus H
= Z 2MW=S0) M T (10 g 0;uy )L (ms, —ma; 0;us) T (m; v H),  (5.18)

meZ3\ {0}

where the details for the various factors in the summand are given by (5.12), (5.16)

and (5.17).

Step 2. Here we contract the interval [0, H] in the third direction and average over
all contractions. More precisely, for every h € R satisfying 0 < h < H/2, consider
the smaller set

B(h) = (A —s) x [h, H—h) C B.
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Clearly, in view of an analog of (5.8), we have

H/2
F(So;Oél,Oém H/
n€Z3

2 " - amans 2 [ [
= — 4ugus(H — 2h dh—l——/ / e c™ Fmdg | dh
H J, e H J B(h)

mez3\ {0}

)(MII)) dh

YwrunH + / i > / —2miMlam gy | dp (5.19)
= Z2U1Uy - € v/ . .
H B(h)

meZ3\ {0}

For any m € Z?\ {0}, analogous to (5.10), we have

/ e 2MMTlam gy — T(m; A — s0)J (m; v; H: h) (5.20)
B(h)
where the first two directions are unaffected and
H—h o e—2mihvm _ e727ri(H7h)v-m
v H:h) — —2mizgvm g, 5.21
j(ma \2 ) ) /h € zZ3 2TV - m ’ ( )
so that
H/2 1 — 9e~mHvm + e 2miHv-m (1 _ e—TriHv-m)Q
H:h)dh = = —
0 J(m; v; ) (27iv - m)? 4r2(v-m)?
and so
~ H/2 (1 _ e—7riHv~m)2
J(m;v; H) = = J(m;v; H;h)dh = — (v ) (5.22)

Finally, combining (5.15), (5.19), (5.20) and (5.22), we conclude that
F(SQ; A, (9] H) — 2U1U2H
P Z MW =S0) M T (10 mig: 0;uy )L (s, —ma; 0 u2)j(m; v;H), (5.23)

meZ3\ {0}

the analog of (5.18).

Step 3. Here we also contract the rectangle [—uy,u1] X [—ug, us] in the first two
directions and average over all contractions. More precisely, for every ~; and 7
satisfying 0 < 71,72 < 1, consider the smaller set

A(v1,72) = p([—71ur, yiur] X [—y2us, yous]) +w C [0,1)%

and the corresponding smaller set
B(v1,72;h) = (A(v1,72) —so) x [h, H —h) C B(h) C B.

Clearly, in view of an analog of (5.8), we have

H/2
F(so; o, 00; H H/ / / (Z XB(y172,h) Mn)) d~y; dvye dh

nez3

2 H/2 1 1
= ﬁ / / / 4’)’1’)/2161UQ(H — 2h> d’)/l d’}/g dh
0 0 0

o [H/2Z 11 -
+ T / / / / e 2MMem gz |y dy, dh,  (5.24)
0 o Jo B(v1,72,h)

meZ3\{0}
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where the first term

9 H/2 p1 pl H
77 / / / 47172U1U2(H - 2h) dyidy,dh = itz .
H J o Jo 2

For any m € Z? \ {0}, analogous to (5.10) and (5.20), we have
/ o FTMTIM dg = T(m; A1, 72) — 80)T (m; Vi H3 )
B(v1,72:h)

Then, analogous to (5.15), we have

I(m; A(’Yl, 72) - So) = e%i(w_so)'m*z(mz, mg; 0; 71“1)1(7713, —ma; 0; ’Y2U2)-

Simple calculations now give

1
I(mz,mg;G;ul)Z/ Z(ma, mg; 0;v1u1)dm
0

B /1 sin(27y,u1 (ms cos @ + mgzsin @)
—Jo m(my cos @ + mgsin 6)

dm

1 — cos(2muy (mg cos 6 + mgsin 9))

272uy (Mg cos @ + mg sin 6)?
_ sin®(muy (ma cos 0 4+ mzsin6))

72y (mg cos € + mg sin 0)?

and

1
I(m3,—m2;0;u2):/ I(m3;—m2;9§72u2)d72
0

B /1 sin(2myaus(ms cos @ — my sin 6))
—Jo 7(mg cos — mysinf)

dve

1 —cos(2muy(mz cos ) — mysind))

272ug(mg cos @ — my sin )2

sin?(mug(ms cos @ — mgy sin 6))

m2ug(mg cos @ — my sin )2

It now follows from (5.22) and (5.24)—(5.29) that

H
F(so;ar, a9 H) — UIZQ
> Y OO Ty my: 6; un)Z(mg, —ms; 05 us) T (m; v H),

meZ3\{0}
the analog of (5.18) and (5.23).
Step 4. It follows from (5.30) that

uruo H
F(so;on,00; H) > Lt

+ Y AB;ur,us; H;vim),
meZ3\{0}

where

A(B;uy, ug; H; v;m) = T(my, ms; 0;u)Z(ms, —ma; 0;u2)| T (m; v; H),

23

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

since it is clear from (5.28) and (5.29) that f(mg,mg; 0;uy) and f(mg, —ma; 6;uz)

are real and non-negative.
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The inequalities in Steps 1-3 are at this stage only formal inequalities, as we have
not considered the question of convergence. Write
E(a, ag) = Z A(O; uy, ug; H; vy;m), (5.32)
meZ3\{0}

where v = (1, a1, ap). We shall use the first-moment method and analyze the average

1 1
/ / =(aq, an) day da,
o Jo

and remove those directions (a1, ay) for which =Z(ay, ) is substantially larger than
the average. In this step, we do some further preparation.
First of all, the inequalities

~ 1
Z(mg, ms;0;u;) < min {ul, } (5.33)

72y (mg cos @ + mg sin 0)?

and

1
om0 < mind ' 5.34
(ms, —ms; 05 uz) < min {u2 m2us(ms cos § — my sin 0)? } ( )

follow on applying the inequality |siny| < min{|y|, 1}, which holds for every y € R,
to (5.28) and (5.29) respectively. Next, the inequality
~ B |1 _ efﬂ'iHv-m|2 H 92

T (m; v; H)| = 272H (v - m)? < min {57 m} (5.35)

follows on applying the inequality |1 — e'¥| < min{|y|, 2}, which also holds for every
y € R, to (5.22). Since we consider only those m # 0, it follows that in the trivial
case when m* = (mgy, m3) = (0,0), we must have m; # 0 and, since H is even, also

~ _ A—7miHv-m|2
_t—e °_

T mivi | = 5 ey~ (5.36)

Hence we can assume that m* = (mg, m3) € Z%\ {(0,0)}. We can write

Z2\{0,0} =J 2 (5.37)

as a disjoint union of subsets, where for every 7 =0,1,2,3,..., the subset
Z; ={m" = (mg,m3) € Z*\ {(0,0)} : 2771 < max{|my|, |ms|} < 27}
=72 N ([-27, 277\ [-2771, 27712, (5.38)

For every m* = (mgy, m3) € Zj, let
1
Q;(m*;0) = {(al,ag) €[0,1]?:|v-m]| < T for some m; € Z} , (5.39)
and for every integer ¢ > 1, let
-1 ¢

2 2
Q;(m*; ) = {(oq,ozg) €[0,1)*: - < |v-m| < T for some m, € Z}. (5.40)

We claim that the inequality

2€+5 22(-{—3—]’ 2€+6

holds for every m* = (mgy, m3) € Z; and every integer £ > 0.



UNIFORMITY IN CUBE-COVERING SYSTEMS 25

Suppose first of all that ¢ = 0. To estimate \y(€2;(m*;0)), we may assume that
|mo| < |ms|. Then for fixed mq, ay, mg, the variable ap € [0,1] must satisfy the
inequality

1 1
_ﬁ < my + ayme + Oégmg E (542)
and so falls into an interval of length
2 227
< .
ng H

Note next that the inequality (5.42) has no solution if
‘mﬂ > 2j+1 +
It follows that
4 2\ 2277 25 2370
+2
A2(€2,;(m";0)) < mln{<2J +1+ﬁ> ?,1} <m1n{H + — 773 ,1},
and this establishes (5.41) for £ = 0.
Suppose next that £ > 1. To estimate Ao(£2;(m*;¢)), we may assume again that

|ms| < |ms|. Then for fixed mq, ay, my, the variable ay € [0, 1] must satisfy one of
the inequalities

2@ 2671 22 1 14
—E <my 4+ agmeg + agms < —7 or 7 < mq + oa1mg + aoms < H (5 43)
and so falls into two intervals of total length
24 22+1—j
<
Hms = H

Note next that the inequalities in (5.43) have no solution if
. 2¢
‘mﬂ > 2/t + E

It follows that

s 9l+1\ Qf+1—j 2€+4 920+2—j
A2(Q;(m™;¢)) <min < (2 —|—1—|—— ,1 7 < min + 77 10

and this more than establishes (5.41) for every ¢ >

Step 5. For every (mg,ms) € Z;, we use the identity
(my cos § + my sin 0)® + (m3 cos 6 — mysin0)? = m3 + m3 (5.44)

to study the product f(mg, ms; 0; ul)i'(mg, —mea; 0;us).
Case 1: Assume that

min{ (mx cos 6 + mssin 0)?, (mz cos § — my sin §)*} < 2773, (5.45)
Then
max{ (ms cos § 4+ ms sin 0)?, (ms3 cos @ — my sin 6)?}
= (m3 + m3) — min{(my cos § + mzsin )%, (m3 cos @ — mysin 6)*}
> 2%72 173 5 92173 (5.46)

Since m* = (mq, m3) € Z;, it follows from (5.38) that the vector (ms, m3) has length
greater than 2771 while (5.45) shows that one of the two dot products

(mg, m3) - (cosf,sinf) and (mg,ms) - (—sinb, cosh)
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has size less than 2U~3)/2 which is substantially smaller than 27-' if j is large,
meaning that the vector (msg, m3) is nearly perpendicular to one of the two vectors
(cosf,sinf) and (—sinf, cosd) and nearly parallel to the other one, where nearly
parallel means that the angle in between is in the range 277/2, so

Z]T = {(ma,m3) € Z; : (5.45) holds}

is the set of points in Z? which fall into the dark shaded part in Figure 5.1, and we
have generous upper bound

2] < g0igil2 _ s (547
ms (cos @, sin )
A
(—siné, cos ) . ,
o1 55 2

Figure 5.1: the location of m* = (mgy, m3) € ZJT

For every m* = (mgy, m3) € Z;, it then follows from the bounds (5.33), (5.34) and
(5.46) that

T(ma, ms; 0; ur)I(ms, —mg; 0;us)

< m Uy Uz
X IMIN § U1U9g . B
" 2ug(ms cos 6 — my sin )2’ w2uy (Mg cos 6 + mg sin 6)2

. U1 Ug 1
< min § Uy, max § —, — 5533
Uy Uy | w222~

1
< min {u1u2,ﬁmaX{Z—:,Z—j}} . (5.48)

Case 2: Suppose that (5.45) fails, so that m* = (mq, m3) € Z} =2Z;\ Z]T. Then

min{(my cos 6 + mssin)?, (ms cos @ — mysin )?} > 2773, (5.49)

On the other hand, using the identity (5.44) and the inequality (5.38), we see that

m3 + m3
2

It then follows from the bounds (5.33), (5.34), (5.49) and (5.50) that

max{(my cos § + mssin )%, (ms cos @ — mysin 0)*} > >2%73 (5.50)

T(mg, mg; 0;u1)I(ms, —ma; 0;ug)

1
< min U1Us B .
h { " mhugug(meg cos 6 + ma sin 0)2(mg cos 6 — my sin 6)2

1 1
< min {u1u2, —} < min {u1u2, —} . (5.51)

iy ue2371-6 239 uqus
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Step 6. Using (5.32) and taking into account that the identity (5.36) holds whenever
m* = (mg, m3) = (0,0), we now have the trivial upper bound

1 pl
/ / E(ay, ) dog dag < J1 + Jo, (5.52)
0o Jo
where
=33 Y [ A Hivim)dades (559
7=0 =0 e € (m*;¢)
Ty = Z Z / A(0; uy,ug; H; v;m) day das. (5.54)
J=0 =0 pec 5 Q;(m*;¢)
Lemma 5.2. We have
~ Uy Ug
Jl g 223 max {W, 1—/2} . (555)
Uy U

Proof. (i) Suppose first that ¢ = 0. It follows from (5.31), (5.35) and (5.48) that for
every m* = (mg, m3) € ZJT and (o, a2) € Q;(m*;0), we have

H 1
0 < A(6;uy,uz; H;v;m) < Emin {ulu%ﬁmax{%,zj—j}}.

Combining this with (5.41) and (5.47), we deduce that

Z / A(0; uy,ug; H; v;m) dag dag
Q;(m*;0)

m"GZ;r
. H 1
< 210+3J/2)\2(Qj(m*; O))E min {uluQ, 525 nax {Z—:, Z—j}}
. 1
< 215+3/2 min {ulu%ﬁmax{Z—;,Z—j}} : (5.56)

We claim that
<. _ 1 Uy u up U
Z 2%/ min {UIUQ, o7 Tmax {u_17 U—Q}} < 2% max {1_}27 %} ‘ (5.57)
g 2 U uy’ T uy

To see this, let J denote the largest non-negative integer j such that

1 U1 Uo
< — —, =7, 5.58
U1U2 92 max { uy U } ( )
so that
1 1
227" < — max {ﬂ, %} and 222> —— max {12’ %} : (5.59)
U1 Us Ug " U U1U2 Uz Up

Then it follows from (5.58) and (5.59) that

Jt 1 Jt
; . U Uz i
2372 min { uyus, — max { —, — < uqus 233/2
9 22] Y
Uz Uy =0

J=0

1 3/4
< 2ugug ( max {ﬂ, %}) = 2max ul—}Q, u1_32 (5.60)
UUg Uz Uy Uq Uy
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and
> 1 UL U U U -
; . 1 U2 1 U2 —j
g 231/2 min UtUz, o= MAX § —, — <max] —, — g 9-9/2
. 2% Ug Uy Uy Uy )
j=Jt+1 j=JT+1

1 —1/4
4max{u1,u2} ( max{ﬂ,@}> = 4 max U1—}2,u1—32 . (5.61)
Uz Uy U2 Uz Uy Uy Uy

The inequality (5.57) follows on combining (5.60) and (5.61). Combining (5.56) and
(5.57) now leads to the inequality

zz/

172 1/2
eZT

A(O; uy, ug; H; v;m) dag dap < 2'® max e U (5.62)
Uy Uy

Q,;(m*;0)

(ii) Suppose next that £ > 1. It follows from (5.31), (5.35), (5.40) and (5.48) that
for every m* = (mg, m3) € Z;f and (a1, a2) € Q;(m*; ), we have

H 1 Uy U
0 < A(O;uy,us; Hyv;m) < o2¢ T0in {u1u2, 27 ax {u_:’ u_j}} ) (5.63)
Combining (5.41), (5.47) and (5.63), we deduce that

Z / A(0; uy, ug; H; v;m) dag da

m GZT (m36)

. H 1 U U
< 210F972 3, (Q;(m; g))ﬁ min {U1U27 2; thax {—17 —2}}
. 1 H 1 U U
10+35/2 . ; R : - o2
<2 J mln{—2£_8,22€}m1n{u1U2,22j maX{UQ,u1}},

Z Z / A(0; w1, u9; Hy; vim) doy dovs

so that

=1 meez 0 G0
. 1 Uy U > 1 H
10435/2 - L 12 § ind —  —
< 20T mln{u1u2,22j maX{UQ,m}} 2 m1n{2£8,2%}
. 1
< 219439/2 min  uyuy, — max u1’ U2 ) (5.64)
22 U U7

Combining (5.57) and (5.64) now leads to the inequality

ZZ Z/ A(0; uy,ug; H; v;m) dag das < 222max{u1—}2,£}.

1/2
§=0 =1 ezt Uy Uy
(5.65)
The inequality (5.55) now follows on combining (5.53), (5.62) and (5.65). O
Lemma 5.3. We have
216
(TR T

Proof. (i) Suppose first that £ = 0. It follows from (5.31), (5.35) and (5.51) that for
every m* = (msq, m3) € Z; and (aq, a2) € Q;(m*;0), we have

H 1
0 < A(6;uy,uz; Hyv;m) < gmin {u1u2, —} : (5.67)

23]U1U2
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Note that it follows from (5.38) that |Z!| < 8 and ]Zi\ <47 for j > 1, and so
ER s (5.68)
for all j > 0. Combining this with (5.41) and (5.67), we deduce that

Z / A(0;uy, ug; Hyv;m) dog das
Q;

*eZ* 5 (m*30)

H 1
< 4j+2)\2<Q (m 0))5 min {U1U2, —}

23JU1U2

. 1

2§49 -
< 247 min {UIUQ, m} . (569)

We claim that

= 1 4

2% min {u1u2, . } < : (5.70)
2 P | S WP

To see this, let J* denote the largest non-negative integer j such that

1
S vy 5.71
Ur Uz By ( )
so that
1 1
27— and 22> (5.72)
uyus ujuy
Then it follows from (5.71) and (5.72) that
Jt 1 Ji
2] . 27
22 J min {'U,lUQ, m} < U U 22 J
7=0 7=0
1\ 2
uiu; u}/gu;/g
and
1 I < 1
Z 227 min < uqus, < Z —
23JU1U2 Uil 27
=Ji+1 j=Jt+1
2 2
< LT A — 5.74
X U s (u1u2) u}/gué/g ( )

Combining (5.73) and (5.74) leads to (5.70) which, together with (5.69), leads to
the inequality

211
Z Z / A(O; uy, ug; H; v;m) dog dag < NVONYER (5.75)

=0 mrez! Uy U
(i) Suppose next that ¢ > 1. It follows from (5.31), (5.35), (5.40) and (5.51) that

for every m* = (my, m3) € Z;E and (aq, a2) € Q;(m*;¢), we have

H 1
0 < A(O;u,ug; Hyv;m) < S22 min {u1u2, —} . (5.76)

23JU1U2
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Combining (5.41), (5.68) and (5.76), we deduce that

Z / A(O;uq,ug; Hy; v;m) dag da

m*EZi (m36)

H . 1
—— min < ujuy, ——
22(-2 ERD N

, 1 H 1
2j+4 :
< 29 mln{% o= 2}m1H{U,1U2,m},

< A H(Q;(m" 0))

so that

Z Z / A(0; w1, uo; Hy; vim) doy dovy

[EE— (m*36)
2j+4 s _ E i — s
< 2997 min {U1u2, 23ju1u2 } min {2[8’ 920—2 }
=1
, 1
NS min § UiUs, —23Ju1u2 ( )

Combining (5.70) and (5.77) now leads to the inequality
215
ZZ Z / A(0; up,ug; H; v;m) dag das < 515 (5.78)
§=0 =1 ezt Uy U
The inequality (5.66) now follows on combining (5.54), (5.75) and (5.78). O
It now follows from (5.52), (5.55) and (5.66) that

// (a1, ) doy dag < ap(u, ug),

where 1 (uy, us) is given by (5.1). Then for every real parameter x > 1, we have

Ao ({(a, a0) € [0,1]% : Z(a, ag) = kap(ug, uz)}) < % (5.79)

Step 7. It remains to justify all the steps. Choosing any real parameter K > 1, we
remove the set

B(k) = {(a1, a2) € [0,1)% : Z(ay, ) = Kap(ug, ug)}

of k-bad direction vectors vo = (aq, as) € [0,1]2. In view of the estimate (5.79), the
remaining set

&(k) = [0,1]*\ B(x)

of k-good direction vectors satisfies

No(B(R) > 1 — %

Furthermore, for every vy = (a1, @) € B(k), we have the identity

H/2
H/ // (ZXB'yl'th Mn))d%d%dh

€73

H/2 o
] //( / o2t d) iy dydh  (580)
H 73 (71,72,h)
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and the quantitative argument in Steps 4-6 shows that the infinite sum on the right
hand side of (5.80) is absolutely convergent. This justifies the use of the Poisson
summation formula and makes the argument precise.

This completes the proof of Lemma 5.1. 0

6. PIECEWISE SMOOTH BARRIERS

Recall that in Theorems 1 and 4, we have made a rather specific restriction on
the 2-coloring on the yz-parallel square faces of the n-cube 3-manifold, that each of
the red and green parts is the union of finitely many polygons. Here we investigate
how any polygon of the 2-colorings can be replaced by a circle, an ellipse, or any
other piecewise smooth closed curve.

Theorem 5. Letn > 2 be an integer, and let M be any n-cube 3-manifold with bar-
riers, where each yz-parallel square face has a 2-coloring such that each of the red and
green parts is the union of finitely many regions with edges that are piecewise smooth
closed curves, satisfying some mild technical requirements as stated in Lemma 6.1,
and where the green part has positive area. Suppose further that the Restriction on
Red Coloring holds, and that there is a local repetition color-split neighborhood on
the yz-parallel square faces. Then for almost every starting point and almost every
direction v = (1, a1, ap) € R3, the corresponding half-infinite 1-direction geodesic is
equidistributed in M.

Since the edges of a polygon have zero curvature, the buffer zone By within the
local repetition color-split neighborhood which is central to our argument can be
taken as a long and narrow rectangular color-split strip. To establish Theorem 5,
it is sufficient to deal with some buffer zone color-split strip which involves proper
bending, with non-zero curvature. We therefore need to establish a suitable analog
of Lemma 3.4. Clearly it suffices to establish a suitable analog of Lemma 5.1.

The first step is to describe such a strip with proper bending.

Let f : [a,b] — R be a monotonic and sufficiently smooth function. More precisely,
we require that its derivative f’ satisfies

min | f'(z)| >0,

z€[a,b]
the curvature is non-zero in [a, b], together with some mild technical requirements
on higher order derivatives which we shall describe later.

The strip with proper bending is then a u-neighborhood

C(f;u) =C(fia,byu) = {(z,y) €R* 1z € [a,b] and y € [f(z) —u, f(z) +u]} (6.1)

of a color-split curved edge

C(f) =C(fia,b) = {(z,y) ER* 12 € [a,0] and y = f()},

as illustrated in Figure 6.1.

a b *

Figure 6.1: the u-neighborhood C(f;u) of the color-split curved edge C(f)
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Clearly the u-neighborhood C(f;u) has area
Aa(C(f0)) = 2ulb — a).

We consider functions f : [a,b] — R that are 3-times continuously differentiable,

with positive constants cg,...,c11, depending at most on the function f in the
interval [a, b], such that
0<c¢= mln |f'(z)| € max |f'(z)| = ¢, (6.2)
z€la,b z€la,b]
0<08—m1n |f ()] < max |f"(x)| = co, (6.3)
z€la,b z€la,b]
0 < ¢10p = min |f”’(x)| < max | f" ()] = enr. (6.4)
z€la,b z€la,b]

We also require the function f to satisfy a mild technical condition, that there exists
a constant ¢12 = c12(f; a,b) > 0, depending at most on the function f in the interval
[a, b], such that for any integer pair (mq, m3) € Z?\ {(0,0)}, the interval [a, b] is the
union of at most ¢ subintervals such that the functions
(ma2 + myf'(2)) and M2t myf'(2))
f"(x) f'(@) (@)

are monotonic in each of the subintervals.

(6.5)

Lemma 6.1. Let f : [a,b] — R be a 3-times continuously differentiable function for
which the conditions (6.2)—(6.4) as well as the technical condition concerning the
functions (6.5) hold. For any even positive integer H, let

G(SO;QIJQQ;H) - |{j:O,1,...,H—1250+j(0[1,0(2) €C<f7u>}|7

where the u-neighborhood C(f;w) is defined by (6.1). Then for any parameter k > 1,
we have

b—a)H 1
A ({<a1,a2> € 0.1 Glspran, e ) > L= m/mu)}) >1-1,
where
Y(u) = ci3 (1fl/2 + 014) ; (6.6)
and the constants c13 = c13(f;a,b) > 0 and c14 = c14(f;a,b) > 0 depend at most on
the function f in the interval |a, b].

Remark. Note that (b — a)/2 and u play the roles of u; and uy in Lemma 5.1, and
that G(so; a1, az; H) is the analog of the counting function F(sg; vy, ae; H) there.
We also have non-zero curvature instead of rotation there.

Proof of Lemma 6.1. We proceed by a number of steps corresponding to those in
the proof of Lemma 5.1. We also use similar notation as much as possible.

Step 1. Here we give a good description of G(sg; a1, an; H). As before, we consider
the lattice L(ay, ay) defined by (5.3) and (5.4). Then writing

= (C(f;u) —so) x [0, H) C R?,
we then have

G(so; a1, ag; H) = |L(a, az) N Bl = ZXB Mm).

nez3

Applying the Poisson summation formula (5.6) with f = xp, we have, analogous to
(5.7), the formal identity

Glsoion.ani) = Y [ e ema, (6.7)

mezZ3
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Note, in particular, that for m = 0, we have

/Be_%Mlz'm dz = X3(B) = M\a(C(f;u))H = 2u(b — a)H. (6.8)

Then, using (5.9) and analogous to (5.10)-(5.12), for every m € Z?\ {0}, we can
write

/ e—27riM*1z~m dz = I(m, C(f7 u) _ So)j(m, v; H)’ (69)
B
where

Z(m;C(f;u) —sg) = / e?mizimatzms) 45z, (6.10)
(f5u)

and
1 — e—27TiHv~m

H
J(m;v;H) = / e BV 4y — (6.11)
0

2TV - m

To study the term (6.10), note from (6.1) that a typical point in C(f; u) is of the form
(x, f(z) +t), where = € [a,b] and —u <t < u. We therefore use the substitution

(21,22) = (, f(x) +t) —sp, with Jacobian f'(z),

so that, writing m* = (ms, m3), we have

b u
Z(m;C(f;u) —sg) = / / ezWi((z’f(”)H)_SO)'m*f’(x) dtdx

— —27rlso m* / / 2mi(x, f(x)+t)- f ({L‘) dt dx

= e 2MSom T (m; C(f;u)) Ty (m; C(f;u)), (6.12)
where
b
Zi(m; C(f;u)) :/ e2milmaztma f(©) £/ (1) dy (6.13)
and
Y oritm sin(2rums)
Zo(m;C(f;u)) = e MM dt = ———=, (6.14)
—u T™ms
provided that mg3 # 0. If mg = 0, then clearly
Zo(m; C(f;u)) :/ dt = 2u. (6.15)

The analysis of the integral (6.13) is complicated. However, the smoothness of
the function f makes it possible to have effective estimates. We observe that it is
possible to establish good estimates for complex exponential integrals whenever the
exponential function exhibits rapid fluctuations. The worst case scenario is when
the exponential function e>7(m22+m3f(2)) is almost constant in a small neighborhood
of some point xq € [a, b].

Let us consider some heuristics. Write h(z) = mox + msf(x). Then we have the
finite Taylor expansion

h(z) — h(zo) = ma(z — 20) +ms(f(x) — f(20))

(z — xo)gm:sf"(l'o) + (z — :co)3m3f”’(y)

= (z — xo)(my + mgf,(ifo)) + 92 6

(6.16)
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for some appropriate y between xy and x. Suppose further that there exists some
zo € [a,b] such that W' (xg) = mo + msf'(xg) = 0. Then for every z € [a,b], the
Taylor expansion (6.16) simplifies to

(z — $0)2m3f”($0) 4 (z — $0)3m3fm(y)
2 6

for some y € [a, b]. The Taylor expansions (6.16) and (6.17) show that the complex
exponential function

h(z) — h(zo) = (6.17)

e27rih(a:) _ e27ri(m217+m3f(z))

starts to exhibit increasing fluctuations if x is relatively far from x.

The estimation of fluctuating integrals is a well known general problem in number
theory and especially in the theory of the Riemann zeta-function. The following
result can be found in the treatise of Titchmarsh [5, Lemma 4.3] on the latter.

Lemma 6.2. Suppose that for real functions F' and G, the quotient F'(x)/G(x) is
monotonic in the interval [a,b], and |F'(x)/G(z)| = p > 0 for every x € [a,b]. Then

b 4
/ @G (z) da

< -
1
To estimate the integral (6.13), we consider the functions
F(z) = 2x(mox +msf(x)) and G(x)= f'(x)
in the interval [a, b]. Note that
F'(z)  2mn(ma+msf'(x)) 2mme
Gy~ Fl) )

and the derivative

+ 27mg, (6.18)

d F'(x) 2my f" ()

dr G(z)  (f'(2))?
has constant sign in [a, b], since f'(x) and f”(z) are continuous and non-zero in [a, b],
in view of (6.2) and (6.3). Hence the function (6.18) is monotonic in [a, b]. To apply
Lemma 6.2, we need to ensure that the function (6.18) is also bounded away from 0.
If no xp is in or near the interval [a, b] such that F'(zq) = 27(mq + msf’(xo)) = 0,
then we can find a good value for p in Lemma 6.2. However, we clearly have a
problem if there exists xy € [a, b] such that F'(z¢) = 27(ma + msf'(x0)) = 0.

The following is the worst case scenario. Suppose that z¢ € (a,b). Let § > 0 be

a small parameter, to be specified later, such that a < g —d < o+ 90 < b. Then

b
Tu(miC(fiw) = [ emimee o) () ds

= 2 (m; C(f3u) + 0 (m; C(f5w)) + 2 (m; C(f; ), (6.19)

where

) .
70 (m; C(f; 0)) = / 2rilmamsf ) (1)

270+6

7% (m; C(f;u)) = / erilmar sl @) (1) dur,
ro—9
b

T miC(fi) = [ @) o) da.

CEO+(5
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For the integral Ifo)(m; C(f;u)), we have the trivial estimate
T (m0; € )] < 28 mae | ()] = 2ez6, (6.20)
in view of (6.2). For the integral If”(m; C(f;u)), we use the Taylor expansion
F'(xo + 9) = 2m(mg + msf'(xo + 9))
= 2m(mg + my f'(x0)) + 2mms (5f”(:£0) +

e (57t + P00

for some y, € (z9, 9+ 6). Since F'(x)/G(zo) = 0 and F'(z)/G(x) is monotonic in
la, b], it follows that for every x € [xy + 6, b], we have

52f”’(y+))
2

F'(x) F/($o+5)‘ 2m|ms| ‘ 5 52f’”(y+)
G(z) |~ | G(zo +9) | f'(zo + 0)| 2
271"7713‘ " 62’f/,/(y+)‘
> ol (g1l - T) . (621

For the integral I{_)(m; C(f;u)), we use the Taylor expansion
F'(xg — 0) = 2m(mg + my f'(xo — 0))
= 27r(m2 + mgf/(xo)) + 27’(7713 (—(Sf”(.iEo) +

e (o + “L00)

for some y_ € (xg — 9, x¢). Since F'(zg)/G(z9) = 0 and F’'(x)/G(x) is monotonic in
[a, b], it follows that for every x € [a, xy — §], we have

)

Fl(a)| | Flao=0)| _ 2mlmal oo 8f"(y)
‘G(w) g G($o—5)'_|f’($o—5)| o (o) 2 ‘
27T|m3‘ "] — 52|fm(y*>’
> el (b1 ) - L), (6.22)

Combining (6.2)—(6.4), (6.21) and (6.22), we conclude that for any = € [a, zo — d] or
any = € [xo + 0, b], we have the lower bound

F'(x 27 |m c1102
’G((x)) > |C7 d <Cs5— 1; )20156|m3|,

provided that 0 < § < ¢4, where ¢15 = ¢15(f;a,0) > 0 and ¢16 = c16(f;a,b) > 0
are constants depending at most on the function f in the interval [a,b]. Using this
bound, Lemma 6.2 then gives the estimates

4
I (m;C(f;u))| < : 6.23
70 i) € (6.23)
Combining (6.19), (6.20) and (6.23), we arrive at the estimate
8
IZ, (m; C(f; )| < 2640 + a (6.24)

c56)ms|  |mg|'/?

if we choose § in the range of |ms|™'/2, where the constant c;; = ci7(f;a,b) > 0
depends at most on the function f in the interval [a, b].
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The above analysis and the estimate (6.24) are only valid provided that ms # 0.
If m3 = 0, then (6.13) becomes

n(miC(fiu) = [ " () e,
and it follows from (6.2) that |Z;(m;C(f;u))| < (b — a)cy. For convenience, we can
choose ¢17 = ¢17(f; a,b) > 0 sufficiently large so that
7 = (b—a)er.
Then
|Zy(m; C(f;u))| < a7 (6.25)

We emphasize again that the above represents the worst case scenario. Of course,
the estimates (6.24) and (6.25) remain valid if mgy + mgsf'(z) # 0 for any x € [a, b].
Combining (6.7)—(6.9) and (6.12), we conclude that

G(so;aq,00; H) —2u(b — a)H
= > e L (m; C(f; u) T (m; C(f; )T (m; vi H),
meZ3\{0}

where estimates for the various factors in the summand are given by (6.11), (6.14),
(6.15), (6.24) and (6.25).

Step 2. Here we mimic Step 2 in Section 5, contract the interval [0, H] in the third
direction and average over all contractions in a similar manner. We then conclude,
analogous to (5.23), that

G(so; ar, a2 H) —u(b — a)H
> Y e O™ (myC(fu) o (m; C(f; w)) T (s v H),
mez3\{0}
where the factor J (m;v; H) is given by (5.22).

Step 3. Here we also contract the intervals [a,b] and [f(x) — u, f(x) +u] in C(f; u)
and average over all contractions. More precisely, for every v, and 7, satisfying
0<7 < (b—a)/2and 0 < 72 < 1, consider the smaller set

A(v1,72) =C(fia+ 71,0 — 7372u)
={(z,y) eR* 12 € [a+y,b—m] and y € [f(2) — 2u, f(2) + 12ul}-
Then, analogous to (5.24) and (5.25), we have

u(b—a)H
4

4 H/2 r1 p(b—a)/2 .
> = “2mMTEm g | dy, dy, dh,
<b—a>H/o // 2 /B ¢ S

meZ3\{0} (v1,72,h)
(6.26)

G(So;ahO@;H) -

where

B(m1,72,h) = (A(71,72) —s0) x [h, H = h),

and, analogous to (5.26), we have

/ o PN g — T(m; A, 52) — 80)T (m;v; H3 ). (6.27)
B(’Yl,’YQ,h)
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Here J(m;v; H; h) is given by (5.21) and

I(m; A(’Yla 72) - So) = ef%iso'm*zl(m; A(’Yh 72))22(m; A(’Yl, 72)), (6-28)
where
b—m1 )
Tu(mi Ay, ) = [ e (o) da (6.20)
a+v1
and
Y2 U . 3 2
To(m; A, 7)) = / geris g — THETIaS), (6.30)
—72u (U
provided that mg3 # 0. If mg = 0, then clearly
Zo(m; A(v1,72)) = 272u. (6.31)
Write
» (b—a)/2 pb—m
Zi(m; C(f;u) / / e2milmartmsl(®) £ (1) da dy, (6.32)
b —a a+v1
and

You
(m C(f;u)) / / e?™Mms 4t dry,
You

! sin(27mypums) 2 sin?(mums)
= —————dypy=—-—-"
0 ™ms u(mwms)?

, (6.33)

provided that mg3 # 0. If mg = 0, then clearly

You 1
(m C(f;u) / / dt dy, = / 2vu dy, = u. (6.34)
Yau

It now follows from (5.22) and (6.26)—(6.34) that
u(b—a)H
4
> Y e O™ L (miC(fu) o (m; C(f; w)) T (my v H). (6.35)
meZ3\ {0}

Step 4. It follows from (6.35) that

G(So;ahaz;H) -

b—
G(so; a1, 09, H) > ———— ub—a) Z A(C ); H;v;m),
meZ3\{0}
where

AC(f;u); Hyvim) = [T, (m; C(f5w))| [Zo(m; C(f; )| [T (ms v H). - (6.36)
As before in Section 5, the inequalities in Steps 1-3 are at this stage only formal
inequalities, as we have not considered the question of convergence. Write
S(ar,a2) = Y AC(fiu); H;vim), (6.37)
z3\{0}

where v = (1, ay, ap). We shall use the first-moment method and analyze the average

1 1
/ / E(Ozl, 042) dOél dCYQ,
0 0

and remove those directions (av, a) for which Z(ay, ) is substantially larger than
the average. In this step, we do some further preparation.
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First of all, note that the estimates (6.24) and (6.25) are independent of a and b.
Combining these with (6.29) and (6.32), we obtain the bound

171 (m; C(f; u))] gcnmin{m,l}. (6.38)

On the other hand, using (6.30), (6.31) and the inequality |siny| < min{|y|,1},
which holds for every y € R, we obtain the bound

- ' 1
Meanwhile, the estimate for the term |7 (m;v; H)| is given by (5.35). Furthermore,
since H is even, in view of (5.36), we may assume that m* = (my, m3) € Z*\{(0,0)}.
Finally, the definitions and estimates (5.37)-(5.41) concerning Z; and €;(m*; ¢),
where j =0,1,2,3,... and £ =0,1,2,3,..., remain valid.

Step 5. Recall our comment in Step 1 that the complex exponential function

o2mih(z) _ (2mi(moatmsf(x))

starts to exhibit increasing fluctuations if x is relatively far from any root xy of the
equation mao + msf'(x) = 0. If zo is far from the interval [a,b], then the lack of
fluctuation near xg is not a problem. However, it is a serious problem if xq € [a, b].
Motivated by this observation, we split the argument into two cases, the first of
which and some of its consequences are summarized by the following lemma.

Lemma 6.3. Suppose that (mq, m3) € Z*\ {(0,0} and the condition

X

: 1 : :
[min, |ma + maf'(z)] < ) max{|mas|, |ms|} min { min, |/ (x)], 1} (6.40)
1s satisfied. Then

(i) mams # 0; and
(ii) the inequality

1
< 172] < e (6.41)

~
C18 ms

holds, where the constant c1g = c13(f;a,b) > 1 depends at most on the function f in
the interval [a, b].

Proof. (i) If my = 0, then the inequality (6.40) becomes
. 1 : :
sl i, |70} < gl min { i, 1701}

which is clearly absurd. If mg = 0, then the inequality (6.40) becomes

b x

1
Ima| < Z|m2] min{ minb|f’(x)|, 1}

which is also clearly absurd. Thus mems # 0 as claimed.
(ii) Dividing both sides by ms # 0, the inequality (6.40) becomes

<imax{)%§ ,1}min{min \f/(;c)y,l}. (6.42)

alz<b

min
a<z<b

4 )

Suppose first that
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where |Cp| is large. Then using (6.2), the left and right sides of (6.42) are

. ma ’ . / /
e — > _ > _
Join | + f(2)| = min [Cp + f(2)] 2 [Co] = max |f(2)] > |CL] — e
and
! 72| 1 L i F/@), 1} = 7Culmin { min |7()], 1] < 7]Cx
4max m3 5 min arillgb s = 4 L min 125512[) L

respectively. Clearly
1
Cr] = er > 71C4]

if |C| is sufficiently large in terms of the function f in the interval [a, b], so that
(6.42) fails. This establishes the upper bound in (6.41). Suppose next that

— = CS?
msg
where |Cg| is small. Then the left and right sides of (6.42) are
min, —3+f( z)| = min |Cs + f'(2)| > min |f ()] - |Cs
and
Tmax ] 72) 1 i § min 1)1 = Fmind min |71 < G min 1)

respectively. Clearly

min |f(z)] — |Cs| > ~ win |f'(2)]

a<z<b 4 a<z<b

if |Cg| is sufficiently small in terms of the function f in the interval [a,b], so that
(6.42) fails. This establishes the lower bound in (6.41). O

We also need to consider the case when the condition (6.40) is violated, so that
the opposite condition

1
min |mg + maf’(z)| > 1max{|m2|, |m3|}min{ gligb|f,<x)|71} (6.43)

a<z<b

is satisfied.
Accordingly, for every 7 =1,2,3,..., write Z; = ZJT U Z]j-", where

Z]T = {(mg,m3) € Z; : (6.40) holds},
ZjE = {(mg,m3) € Z; : (6.43) holds}.
Step 6. Using (6.37) and taking into account that the identity (5.36) holds whenever

*

m* = (may, m3) # (0,0), we now have the trivial upper bound

/ / (v, ) dayg day < Ty + T, (6.44)

where

31:‘ Z Z / AC(f;u); Hyv;m) dag das, (6.45)

32:‘ Z Z / AC(f;u); H; v;m) doy das. (6.46)
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Lemma 6.4. We have

C19

0 < (6.47)

where the constant cig = c19(f;a,b) > 0 depends at most on the function f in the
interval |a, b].

Proof. Suppose that (msq, m3) € Z;. It follows from (5.38) and (6.41) that
2027 < min{|ma|, |ms|} < max{|ma|, |ms|} < 27, (6.48)

where the constant cog = co0(f;a,b) > 0 satisfies 2¢1gc90 = 1.
If (o, a2) € ;(m*;0), then it follows from (5.35), (6.36), (6.38) and (6.39) that

Cl7H . 1
‘m3’1/2 min {U, W} . (649)

Using (5.41), (6.48) and (6.49), we deduce that

Z / . C(f;u); H;v;m)da; das

m*EZT

<4 )] > Aa(2;(m*;0)AC(f;u); H; vim)

2027 <M2 <27 2029 <M3<29

27 1
8 §
< 2 C17 1/2 min {U W} . (650)

2027 <m3<27 1173

AC(f;u); H;v;m) <

Note next that

2J 1 2J 2%
Z 5 min {u W} S Z 52 S un (029 )5/2 (6.51)

2027 <m3<29 73 2029 <m3<27 uming

Combining (6.50) and (6.51), we deduce that

Z /Q C(f;u); H;vim)dag das < 022;/2, (6.52)

m*ez] 5 (m”i0)

where the constant co; = ¢21(f; a,b) > 0 satisfies 02103627?2 = 28¢;7. Note also that

> 27 1 . u2% u23/? (6.53)
min u, - == . .
mi? Tu(mmg)? | T (c029)V2 0 Cl2

2029 <m3<2I 3

Combining (6.50) and (6.53), we deduce that

Z / C(f;u); H;v;m)da; dag < < cpou2¥/?, (6.54)
Q,

m*ez] 5(m*50)

where the constant cey = co2(f; a,b) > 0 satisfies cggc%z = 28¢;7.
If (a1, 0) € Q;(m*;¢), where ¢ > 1, then it follows from (5.35), (5.40), (6.36),
(6.38) and (6.39) that

2'cirH . 1
A(C(f,u),H,mm) < WH’HH {U,W} . (655)
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Using (5.41), (6.48), (6.51) and (6.55), we deduce that

> / C(f;u); H;v;m) day day

m*EZT (m [)

<4 Y D> (Q(m* 0)AC(f;u); H; v;m)
2029 <Ma<27 2029 <Mm3<29

212017 2j 1 Ca3
S w22t Z i i " u(mmsz)? S u2¢21/2’

2027 <m3<27 773

where the constant co3 = co3(f;a,b) > 0 depends at most on the function f in the
interval [a, b], so that

Z > / C(f;u); H;vim) dey das < 022]3/2 (6.56)

=1 mrez!
Meanwhile, using (6.53) instead of (6.51), we deduce that
23j/2
> / );H;V;m)dalda2<%,
m* EZT (m* Z)

where the constant coq = co4(f; a,b) > 0 depends at most on the function f in the
interval [a, b], so that

Z Z / ;u); H;v;m) dag das < Coqu23/2. (6.57)

= lmEZT

Let JT denote the largest non-negative integer such that

1

20 < =
u

Y

so that
1
and 271> = (6.58)

u

Combining (6.45), (6.52), (6.54), (6.56), and (6.57), we conclude that

.
27" <

SN

Jt )
J1 < casu E 23]/2 —+ 7 E W, (659)
J=0 j=Jt+1

where the constant cos = co5(f;a,b) > 0 satisfies co5 = max{cag, a4} while the
constant cog = co6(f;a,b) > 0 satisfies cos = max{co1, c23}. The inequality (6.47)
follows on combining (6.58) and (6.59). O

Lemma 6.5. We have

Ja < e, (6.60)
where the constant car = co7(f;a,b) > 0 depends at most on the function f in the
interval |a, b].
Proof. The proof is in three parts.
Part 1. Here we obtain new bounds for the term Z; (m; C(f;u)) in the case when

the inequality (6.43) holds. Indeed, combining (6.2) and (6.43), we obtain the lower
bound

1
min |mg + maf'(x)] > Zmin{CG, 1} max{|ma|, |ms|}. (6.61)

a<z<b
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We make use the simple identity
i ( eQﬂi(m2x+m3f(l’)) ) _ e27ri(m2x+m3f(ac)) im3627n(m2m+m3f f/l( )
dz \ 2mi(ma + ms f'(z)) 21 (mg + ms f'(x))?
Combining (6.62) and integration by parts, we obtain

b—m1 ) b—m 2mi(mox+ms f(z)) £
/ e27r1(m2:r+m3f(m))f/(x) de + 1/ mse : f g-’f) f/<x> dx
a+v a+y1 27T(m2 +ms f (ZE))

/‘b'Yl d ( e?ﬂi(mg:{:—‘rmgf(:c)) ) f/( ) q
= - : xT)axr
at+m dz 27r1(m2 + mgf’(x))

eQTri(m2$+m3f(ac)) b=m1 b—m eQﬂi(m2m+m3f($))
_ {2 j / f/(a;)} +i / 5 :
mi(mg +msf'(x)) atm aty 2m(m2 +maf'(z))

Combining (6.32) and (6.63), we have

L(m; C(f;u) =iy =i +iZY —iZ{",
where
(b—a) b—1 27r1 (maz+msf(x)) ”
x)dx dy,
1 b—a/o /Jm 2m(my + ms f'(x ))f( ) "
(b—a)/2  pb—m1 ms e27r1(m2x+m3f z)) f//( ) .
x)dx dvy,
Y b—a/ /+71 21 (mg + msf'(x))? flwydedn
~ 9 (b—a)/2 2mi(ma(aty)+msf(atm)) ,
T a+ d
! b—a/o 2”(m2+m3f’(@+71))f( o
9 (a+b)/2  g2mi(ma(x)+msf(x)) ,
- _° d
b—a /a 2m(mg + ma f'(x)) fle)dz,
_ 9 (b=a)/2 2mi(ma(b—y1)+msf(b—1))
F@ _ / '(b—)d
1 b—a J, 27T(m2+m3f'(b—’71))f( ) dn

9 /b e2mi(ma(z)+ms f(z)) ) d
_ z)dx.
b (a+b)/2 27T(m2 + me/(x))

To study the integral f{l), note that

b—71 e27ri(m21+m3f(z)) b=y
/ )>f”(x) dr = / @G (z) de,

aty 2m(ma 4+ mg f'(x

+71
where
) W
F(ZB) = 27T(m2x + m3f<x)) and G(:C) = 27T(7TL2 T m;;f’(x))’

so that

F'(z)  4Am*(mg+msf'(x))* 2

G(z) () .
where

(m2 + myf'(z))?
f"(x)

Using (6.3), (6.61) and (6.69), we deduce the lower bound

'F’(f) _ A may + ma f' (@)

H(z) =

> cos(max{|ms|, ms|})?,

G(x) /" ()]

[ (z) du.

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)
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where the constant cog = cos(f;a,b) > 0 depends at most on the function f in
the interval [a,b]. Furthermore, the technical condition implies that we can apply
Lemma 6.2 to each of the at most ¢;5 subintervals of [a + 1, b — 71|, and this leads
to the bound

b—y1 eQw(m2m+m3f(l7)) Ca9
: f(z)dx| <
/a+71 2mi(mg + msf'(x)) @) b

where the constant cog = co9(f;a,b) > 0 depends at most on the function f in the
interval [a, b]. It then follows trivially from (6.65) that

(max{[mal, [ms|})?’

C29

f(l) < '
B S naxmal, a2

(6.70)

To study the integral ff), note that

/vb’n mgeZWi(mszrmgf(x))f// (IL‘)
atn  2m(mg +mgf(2))?

b—71
f(x)dz = / HF@G(2) d,

+71

F(z) = 2n(myx + msf(z)) and G(z) = QW(’Z;’; ﬁlﬁ ;,‘8))2, (6.71)

so that
F'(z)  Ar*(mg+mgf'(x))®  4n®
G(z)  maf(2)f'(x)  my

where
(mo +msf'(x))?
f'(@) " (x)

Using (6.3), (6.61) and (6.71), we deduce the lower bound
F'(x)|  4x*|mg 4+ maf'(z)
Glz) | |ma| [/ ()] [f"(2)]
where the constant csg = ¢30(f;a,b) > 0 depends at most on the function f in
the interval [a,b]. Furthermore, the technical condition implies that we can apply

Lemma 6.2 to each of the at most ¢;5 subintervals of [a + v;,b — 1], and this leads
to the bound

/b—'n m3e27ri(m21+m3f(m))f//(x) f/(x) 4l < 31
a+7 27T(m2 + mgf/(l'))Q h

(max{|ma|, |ms|})*’
where the constant c3; = ¢31(f;a,b) > 0 depends at most on the function f in the
interval [a, b]. It then follows trivially from (6.66) that

H(z) =

> cso(max{|mal, [ms|})?

C31

(2
271 < Gl Tl o
To study the integrals ffg) and f{@ given by (6.67) and (6.68), note that
(a+0)/2 - g2mi(ma(@)+msf(a) B (a+d)/2 P(z)
[ oy @ [ G
b milma@rmaf(@) b
/(a+b)/2 2m(ma + msf’(ﬂf))f () do = /(a+b)/2e "G(a)da,
where
F(z) = 2n(myz + maf()) and Gla) = ——L ) (6.73)

27r(m2 + m3f/($)) ’
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so that
F'(z) _ 4m*(my +myf'(x))”
G(z) f'(x)

= 47?H (),

where
(my +mgf'(x))?
f'(x)
Using (6.3), (6.61) and (6.73), we deduce the lower bound
' ()| _ Ar?my + msf'(2)?

G(z) |f'(@)]

where the constant csy = c32(f;a,b) > 0 depends at most on the function f in the
interval [a, b]. Furthermore, the derivative H'(z) is equal to

2ms f'(x) f" () (ma + ms f'(x)) = f"(2)(ma + ms f'(x))”
(f'(x))> ’

where the denominator is non-zero and the numerator is equal to

[ (@) (ma +ms f'(x)) (ms f'(x) — ma).

Here, in view of (6.3), the factor f”(x) is non-zero, and the factors msy + msf'(z)
and mgf’(x) — mg can each have at most one zero in [a, b]. Hence the interval [a, 0]
is a union of at most 3 subintervals such that F'(x)/G(x) is monotonic in each
subinterval. We can apply Lemma 6.2 to each of these subintervals, and this leads
to the bounds

H(x) =

> cgo(max{|mo, |m3]})2,

7] < 5 and [T}V

(max{[mal, [ms]}) 27 (6.74)

| <
(max{[mal, [ms]})
where the constant c33 = c33(f;a,b) > 0 depends at most on the function f in the
interval [a, b].
Combining (6.64), (6.70), (6.72) and (6.74), we obtain the bound

|Z, (m; C(f;u))] < Gl T (6.75)

where the constant cgq = ¢34(f;a,b) > 0 satisfies ¢34 = 4 max{cag, 31, 33}

Part 2. The idea is to combine the bound (6.75) for the term Z; (m; C(f;u)) with

our earlier bounds (6.39) for Z,(m; C(f;u)) and (5.35) for J (m;v; H). However, we
need some care and make some refinement to the sets Z;, 7 = 0,1, 2,3, ..., discussed
in Step 4 in Section 5 and defined by (5.38).

For every 7 =0,1,2,3,...and k =0,1,...,7, let

z {(mg,m3) € Z; 281 < min{|may|, |ms|} < 2%}, if k #0, (6.76)
PEA A(mag, ms) € Z : 0 < min{|masl, |ms|} < 1}, if k=0, '
so that
23] < 2443, (6.77)

and the set Z; can be written as a disjoint union

J
zi =z
k=0
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ms

Figure 6.2: the location of m* = (mq, m3) € Z;

It then follows from (6.46) that

S ZZZ /Q‘(m*.z) AC(f;w); Hy v;m) dog dav,. (6.78)

Part 3. Suppose that (mq,ms3) € Z;j, where k # 0. It follows from (5.38) and
(6.76) that

281 < min{|ma|, |ms|} <28 and 277! < max{|mal|, |ms|} < 27. (6.79)

Suppose furthermore that (ay, ) € Q;(m*;0). Then it follows from (5.35), (6.36),
(6.39), (6.75) and (6.79) that
034H

. 1
(max{[ma|, [ma| D2 {“ u(wmgv}
634H

1
< min 4 u, -
(max{|ma|, ms]})? { um?(min{|ma|, |m3|})2}
< 634H . 1
= 9252 1IN U, um222k=2 (-

Combining this with (5.41) and (6.77), we deduce that

AC(fiu); Hyv;m) <

Z / AC(f;u); Hyv;m) day dag
Q;(m*;0)

m*Eijk
2Hk+ o H 1 Meg, . 4
< 7 92— Min {U, u7r222k2} = —5; win {2 u, m} ) (6.80)

It is easily checked that the inequality (6.80) holds for & = 0 also.
Let K* denote the largest integer k such that

4
2P < —or,  equivalent to PR g—
um2 um

Then

2 1 2
< = <2 and 281> 2 (6.81)
uTm u uT
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and

1 1
§ k E k

u7r2 2J
k=0
8

Ki41

in view of (6.81). It now follows from (6.80) and (6.82) that
2 2%¢yy
ZZ Z / AC(f;u); H; v;m)dag das < Z — < ¢35, (6.83)
: (m*; —

where the constant ¢35 = c35(f;a,b) > 0 depends at most on the function f in the
interval [a, b].

Suppose next that (mq, m3) € Z;, where k # 0, and (o, a2) € Q;(m*; £), where
¢ > 1. Then it follows from (5.35), (5.40), (6.36), (6.39), (6.75) and (6.79) that

2 . 1 2
AC(f;u); Hyvim) < = 3 min {u al } oy

(max{|mal, ms]} mmg)? V- m)?

< 2034H . { 1 }
NS min < u, "
2% (max{|ma|, [ms]})? um?(min{[mol, [ms|})?

< 2634H . ]_
= 9209252 I Q U, um2922k=2 (-

Combining this with (5.41) and (6.77), we deduce that

Z / ;u); Hyv;m) dag dag
(m*;0)

mEZk

2]+k+102€ 034H . 1 212634 . N 4
ST H pope™ {u uw?Q%—?}: 202 mm{2 “W} (6.84)

It now follows from (6.82) and (6.84) that

DN / C(f:w): H vim) day da

j=0 k=0 (=1 m*€Z, me)

212034 k 4 > 214034
S ZZZ 2095 min § 2%u 7T22k < Z — < 2635- (685)

2J
3=0

The desired inequality (6.60) follows on combining (6.78), (6.83) and (6.85). [
It now follows from (6.44), (6.47) and (6.60) that

// (v, ) dag dagy < ¥(u),

where 1 (u) is given by (6.6). Then for every real parameter £ > 1, we have

A({(, a2) € 0,17 : E(ay, a0) > rtb(u)}) < .

K
Step 7. We can now justify all the steps in a similar way as in Step 7 in Section 5.

This completes the proof of Lemma 6.1. 0
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