A NOTE ON THE KRONECKER-WEYL
EQUIDISTRIBUTION THEOREM

J. BECK, W.W.L. CHEN, AND Y. YANG

ABSTRACT. We study the relationship between the discrete and the continuous
versions of the Kronecker—Weyl equidistribution theorem, as well as their possible
extension to manifolds in higher dimensions. We also investigate a way to deduce
in some limited way uniformity results in higher dimension from results in lower
dimension.

1. INTRODUCTION

There are two versions of the classical Kronecker—Weyl equidistribution theorem.

Let d be a fixed positive integer. If vy,...,v4,1 are linearly independent over Q,
then the vector v = (vy,...,vq) € R? is called a Kronecker vector, and the vector
v* = (v1,...,vq,1) € R is called a Kronecker direction. The continuous version

concerns the distribution of half-infinite geodesics with Kronecker directions in the
unit torus [0, 1)1 and much of this monograph concerns extensions of this version
from the unit torus [0,1)? to arbitrary finite polysquare translation surfaces.

On the other hand, the discrete version of the Kronecker-Weyl equidistribution
theorem concerns the distribution of half-infinite Kronecker sequences in the unit
torus [0,1)%. A natural first question is then to attempt to extend this version from
the unit torus [0, 1)? to arbitrary finite polysquare translation surfaces.

In general, for any fixed positive integer d, we consider the continuous problem
concerning the distribution of half-infinite geodesics with Kronecker directions in
finite polycube translation manifolds in d + 1 dimensions, as well as the discrete
problem of the distribution of half-infinite Kronecker sequences in finite polycube
translation manifolds in d dimensions. The following are natural questions:

Question 1. Is it true that, for any integer d > 1, any half-infinite geodesic with a
Kronecker direction in a finite polycube translation manifold in d + 1 dimensions is
uniformly distributed? If not, then under what condition can we guarantee uniform
distribution?

Question 2. Is it true that, for any integer d > 2, any half-infinite Kronecker
sequence in a finite polycube translation manifold in d dimensions is uniformly dis-
tributed? If not, then under what condition can we guarantee uniform distribution?

Question 3. The classical Kronecker—Weyl equidistribution theorem on the unit
torus has some time-quantitative extensions with explicit error terms. Under what
conditions can we establish time-quantitative uniformity in these more general set-
tings?

For Question 1, the Gutkin—Veech theorem [4, 5] answers the special case d = 1 in
the affirmative. However, for d = 2, we are currently not able to establish uniformity
results for half-infinite geodesics in a general finite polycube translation 3-manifold.

In this paper, we study the relationship between the discrete and the continuous
versions of possible non-integrable analogues of the Kronecker-Weyl equidistribution
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theorem concerning finite polysquare translation surfaces and some related finite
polycube translation 3-manifolds. In Section 2, we investigate a relationship between
the discrete version and the continuous version in the special case d = 2. Theorem 2,
a by-product of this study, gives an affirmative answer to the special case d = 2 of
Question 2. Then in Section 3, we develop a way to step up the problem by one
dimension, and this leads to various infinite classes of polycube translation manifolds
where half-infinite Kronecker sequences and half-infinite geodesics with Kronecker
directions are uniformly distributed.

2. A SIMPLE EQUIVALENCE PRINCIPLE

Before we go any further, it is appropriate that we understand what we mean by a
Kronecker sequence on a finite polysquare translation surface P. To properly define
a half-infinite Kronecker sequence vg + jv, j = 0,1,2,3,..., with starting point
vy and step vector v on a polysquare translation surface P, we need a supporting
half-infinite geodesic L(t), t > 0, with £(0) = v on P and a time step g € R, such
that the finite geodesic segment L£(t), 0 < t < g, is in the direction of the step vector
v and has length equal to |v|. Then v + jv = L(jg), j = 0,1,2,3,.... Clearly the
Kronecker sequence is half-infinite if and only if v is a non-pathological starting
point of a geodesic with direction v on P.

Suppose that P is a polysquare translation surface with s atomic squares, and
that M = P x [0,1) denotes the associated polycube translation 3-manifold which
is the cartesian product of P and the unit torus [0, 1).

A vector v = (vy,v9) € R? is said to be a Kronecker vector if vy, vy, 1 are linearly
independent over Q. We are interested in the distribution of a Kronecker sequence
vo+ jgv, 7 = 0,1,2,3,..., with starting point vy on the polysquare translation
surface P.

A vector v* = (vy,v,1) € R3 is said to be a Kronecker direction if vy, vy, 1 are
linearly independent over Q. We are interested in the distribution of a half-infinite
geodesic L(t), t > 0, with starting point £(0) and direction v* in the associated
polycube translation 3-manifold M.

We have a simple equivalence principle relating half-infinite Kronecker sequences
and half-infinite geodesics with Kronecker direction.

Theorem 1. Suppose that P is a finite polysquare translation surface, and that
M =P x [0,1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0,1). Suppose also that v = (vy,vy) € R?
is a Kronecker vector, so that v* = (vy,vy,1) € R3 is a Kronecker direction. Then
the following two statements are equivalent:

(i) Every half-infinite Kronecker sequence vo + jv, j = 0,1,2,3,..., on P is
uniformly distributed.

(ii) Every half-infinite geodesic L(t), t > 0, with direction v* in M is uniformly
distributed.

Sketch of proof. ((ii) = (i)) The argument here is rather simple. Suppose that P
has s atomic squares. To establish (i), let S be a convex set in an atomic square
of P. Consider the first J terms of the Kronecker sequence, given by vg + jv,
j=0,1,...,J — 1. The number of terms of this finite sequence in S is given by

H{i=0,1,...,J —1:vg+jv €S},
with corresponding expectation given by
JA2(95)

Y

S
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where Ay denotes 2-dimensional Lebesgue measure. To establish uniformity of the
Kronecker sequence on P, we need to show that

JAa(S
|{j:0,1,...,J—1:wﬁ—jvESH/%—>1 as J — oo. (2.1)

Let L(t), t > 0, be a half-infinite geodesic with starting point £(0) = (v,0) and
direction v* on M. Let S* C M be obtained by sweeping the set S x {0} along
by the vector v*, so that A3(S*) = A2(5), where A3 denotes 3-dimensional Lebesgue
measure. Consider a finite geodesic segment L(t), 0 <t < T = J(v? + 02 + 1)Y/2.
Then the total length of the parts of this geodesic segment in S* is given by

HO<t<T:L(t) € S}
= W42+ D)V =01,...,.J—1:vo+jveS}, (2.2)
with corresponding expectation given by

TAs(S*)  J(v}+ 03+ 1)120(S) (2.3)
s s ' '
The set S* is a union of finitely many convex sets in atomic cubes of M. Suppose

that (ii) holds. Uniformity of the half-infinite geodesic in M then implies that

|{O<t<T:£(t)ES*}|/M—>1 as T — oo, (2.4)
S

It is clear that (2.1) follows immediately on combining (2.2)—(2.4).

((i) = (ii)) In [3, Section 3.4.1] or [1, Section 3.6], a result concerning uniformity of
a half-infinite geodesic is deduced from a result concerning uniformity of a sequence,
by an application of the Koksma inequality. Here we apply an analogous Koksma
inequality type argument. 0]

The Gutkin—Veech theorem gives uniformity to any half-infinite geodesic with
Kronecker direction on a finite polysquare translation surface. As a simple appli-
cation of Theorem 1, we establish the analogous result for half-infinite Kronecker
sequences.

Theorem 2. Any half-infinite Kronecker sequence vo + jv, j =0,1,2,3,..., on a
finite polysquare translation surface P is uniformly distributed.

Proof. Let M =P x [0,1) denote the associated polycube translation 3-manifold.
In view of Theorem 1, it suffices to show that every half-infinite geodesic L(t), t > 0,
with Kronecker direction in M is uniformly distributed. This latter condition is the
conclusion of Theorem 3. 0

The following result is [2, Theorem 3].

Theorem 3. Suppose that a polycube translation 3-manifold M is the cartesian
product of a finite polysquare translation surface P and the unit torus [0,1). Then
any half-infinite geodesic in M with a Kronecker direction v* € R? is uniformly
distributed unless it hits a singularity.

3. STEPPING UP PRINCIPLE

Theorem 2, concerning the distribution of half-infinite Kronecker sequences on P,
can be interpreted as a step-up from the Gutkin—Veech theorem, concerning the
distribution of half-infinite geodesics with Kronecker direction on P. In view of
the equivalence given by Theorem 1, the stepping-up result is Theorem 3, which
establishes the uniformity of a half-infinite geodesic with Kronecker direction on the
associated polycube translation 3-manifold M from the uniformity of a half-infinite
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geodesic with Kronceker direction on the finite polysquare translation surface P.
This represents a step-up in dimension in some restricted way.

In this section, we expand on this idea. We establish the following results which,
for simplicity, we state only in 2 and 3 dimensions. There are analogues in d and
d + 1 dimensions for every integer d > 3.

The discrete versions of these results concern the distribution of half-infinite Kro-
necker sequences on a finite polysquare translation surface P and the analogous
problem in the associated polycube translation 3-manifold M which is the cartesian
product of P and the unit torus [0, 1).

Theorem 4. Suppose that P is a finite polysquare translation surface, and that
M =P x[0,1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0,1). Suppose also that v € R? is the step
vector of a Kronecker sequence on P. Then the following statements are equivalent:

(i) Every half-infinite Kronecker sequence with step vector v on P is uniformly
distributed.

(ii) For any w € R such that w = (v,w) € R? is the step vector of a Kronecker
sequence on M, every half-infinite Kronecker sequence with step vector w in M 1is
uniformly distributed.

Theorem 5. Under the hypotheses of Theorem 4, the following statements are equiv-
alent:

(i) The v-shift on P is ergodic.

(i) For any w € R such that w = (v,w) € R? is the step vector of a Kronecker
sequence on M, the w-shift in M is ergodic.

The continuous versions of these results concern the distribution of half-infinite
geodesics with Kronecker direction on a finite polysquare translation surface P and
the analogous problem in the associated polycube translation 3-manifold M.

Theorem 6. Suppose that P is a finite polysquare translation surface, and that
M =P x[0,1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0,1). Suppose also that v € R? is a
Kronecker direction. Then the following statements are equivalent:

(i) Every half-infinite geodesic with direction v on P is uniformly distributed.

(i) For any w € R such that w = (v,w) € R? is a Kronecker direction, every
half-infinite geodesic with direction w in M is uniformly distributed.

Theorem 7. Under the hypotheses of Theorem 4, the following statements are equiv-
alent:

(i) Geodesic flow with direction v on P is ergodic.

(ii) For any w € R such that w = (v,w) € R® is a Kronecker direction, geodesic
flow with direction w in M is ergodic.

Remark. For Theorems 6 and 7, we already know that (i) and (ii) hold, in view of
the Gutkin—Veech theorem and Theorem 3, so only the analogues in d and d + 1
dimensions for integers d > 3 are new.

We concentrate our efforts on establishing Theorem 4. That (ii) implies (i) is
almost trivial, by projection from M to P. The converse is considerably harder.

Let w = (v, 09, w) € R3, where vy, vy, w, 1 are linearly independent over Q, and
consider the w-shift T, = T% (M) of geodesic flow in direction w in M = P x [0, 1).
We can consider two projections of T%,.

On the one hand, we can project the w-shift T} to the unit torus [0,1)3, simply
by taking every coordinate modulo 1, leading to the w-shift Ty, = Ty([0,1)3) in
the unit torus [0, 1) which is ergodic.
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On the other hand, we can project the w-shift T, to the polysquare translation
surface P, simply by dropping reference to the 3-rd coordinates throughout, leading
to the v-shift T% = T%(P) on P.

Lemma 3.1. Suppose that the condition (i) in Theorem 4 holds. Then the v-shift
T: =T (P) on P is ergodic.

Sketch of proof. If a Kronecker sequence on P becomes undefined after finitely many
terms, then the supporting geodesic L(t), ¢t > 0, with starting point £(0) = vy and
direction v on P hits a singular point of P. The collection of singular points of P
clearly has 2-dimensional Lebesgue measure 0. Thus the collection of starting points
v that lead a Kronecker sequence to be undefined after finitely many terms also has
2-dimensional Lebesgue measure 0. Thus almost every point vy € P gives rise to
a half-infinite Kronecker sequence. Thus the condition (i) in Theorem 4 guarantees
that for almost every starting point vg, the half-infinite Kronecker sequence vo+ jv,
j =20,1,2,3,..., on P is uniformly distributed. Hence the visiting density of the
sequence in any Jordan measurable set A is given by Ao(A)/s.

Suppose, on the contrary, that the v-shift T3 on P is not ergodic. Then there
is a partition P = U; U Us, where the subsets U;,U; C P are T5-invariant, and
satisfy A\o(U;) > 0 and Ay(Us) > 0. Moreover, since the projection of T% to the
unit torus [0,1)2, simply by taking every coordinate modulo 1, leads to the v-shift
T, = Ty ([0,1)?) on the unit torus [0,1)? which is ergodic, there is a decomposition
P = M, U...UM; for some integer k satisfying 2 < k < s, where s is the number
of atomic squares in P, such that for every ¢« = 1,... k, the set M; is T%-invariant
and does not contain a proper T%-invariant subset, and Ao(M;) is a positive integer.
We say that the subsets M, ..., My are minimal.

We can find a Jordan measurable subset A C P such that

Ao (Ms)

5
Next we apply the Birkhoff ergodic theorem to both M; and Ms. The restriction of
the v-shift T3 to M; and to M, are both ergodic. In each case, the simplest form

of the ergodic theorem says that the time average is equal to the space average.
Then for almost every starting point vy € M, the visiting density of the Kronecker

1
/\Q(AﬂMl) < E and )\Q(Aﬁ Mg) >

sequence vo+jv, j =0,1,2,3,..., on P in the set A is equal to the relative measure
Ao(AN M) _ 1
Ao (M) 10’
while for almost every starting point vy € Ms, the visiting density of the Kronecker
sequence vo+7Jv, 7 =0,1,2,3,..., on P in the set A is equal to the relative measure
A(ANMy) 1
Ao (My) 2

Thus at least one of these is different from Ay(A)/s, leading to a contradiction. [J

Proof of Theorem 4. ((i) = (ii)) We need to prove that the w-shift T, in M is
ergodic. Suppose on the contrary that this is not the case. Then there exists a non-
trivial partition M = YW U S into a union of two T3, -invariant subsets W, S C M,
called White and Silver, say, each with integral measure and such that

1 g )\3(W),)\3(8) < S — 1,

where s is the number of atomic cubes in M and A3 denotes 3-dimensional Lebesgue
measure.
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Let Vi, ..., Y, denote the atomic cubes of M, and consider the projection of M
to the unit torus [0,1)3. Then for any point P € [0,1)3, there are precisely s points

PeYy, ..., P,e),
that have the same image P under this projection. Let
fw(P) = {Pi,....,PYOW| and fs(P) = [{Pi,...,P.} N S].
Then fyy and fs are positive integer valued functions defined on [0, 1)® such that
fw(P)+ fs(P)=s for almost every P € [0,1)3.

The w-shift Ty, in the unit torus [0, 1)3 is ergodic. Since the functions fyy and fs are
Ty -invariant, it follows from the Birkhoff ergodic theorem that they are constant
almost everywhere in [0,1)3. Then

fwH+fs=s and 1< fiy,fs<s—1. (3,1)

Let xyy denote the characteristic function of W in M. For every s € M, write
s = (x,2), where x € P and z € [0,1). The well known Fubini theorem implies that

/M Yow(s) ds = /P < /[O o) dz) D,

where the inner integral
P(x) = / w(x;2)dz
[0,1)

is well defined in the sense of Lebesgue for almost every x € P.

Consider now the projection of T%, to the polysquare translation surface P, re-
sulting in the ergodic v-shift T on P. Since the function v (x) is T}-invariant, it
follows from ergodicity that it has constant value almost everywhere on P. Thus it
follows from (3.1) that
Jw _s—1

<¢:?< 5 (3.2)

1
s

almost everywhere on P.

Since the invariant subset YW C M is measurable, it follows that for every €; > 0,
there exists a finite set of 3-dimensional axis-parallel rectangular boxes such that
their union B = B(W;e1) has the property that the symmetric difference

WAB=W\B)U(B\W)
has measure
As(W A B) < e;. (3.3)

We need the following simple technical result.
Let x5 denote the characteristic function of B in M.

Lemma 3.2. Let B be a finite union of axis-parallel rectangular boxes satisfying
(3.3). For every 5 > 0, there exists €3 > 0 and a finite set of disjoint azxis-parallel
rectangular bozes such that their union B* = B*(B;eq;e3) satisfies the following
conditions:

(i) The measure Ag(M \ B*) < e.

(il) We have x5(s') = x5(s") if the points s',s" € M belong to the same axis-
parallel rectangular box in the disjoint union B*.

(iii) The side lengths of each axis-parallel rectangular boz in the disjoint union B*
18 greater than e3.
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(iv) Let s denote the number of atomic squares of P. Then
Ao ({x eP:M{ze0,1): (x,2) € B} > 1 g;/Q}) > s — b2

Proof. We assume, without loss of generality, that every axis-parallel rectangular
box in the finite union B lies in the interior of an atomic cube of M, as illustrated in
the picture on the left in Figure 1, which only shows 2 of the 3 dimensions. For each
face of each axis-parallel rectangular box in an atomic cube of M, we extend it to an
axis-parallel special square face of area 1 in the same atomic cube, as illustrated by
the dashed lines in the picture on the right in Figure 1. We repeat this process for
every axis-parallel rectangular box in the finite union B. Suppose that A4 = A4 (B)
denotes the total number of distinct axis-parallel rectangular boxes in the union B.
Then there are at most 2.4” such distinct special square faces in each of the 3 axis-
parallel directions. It follows that there exists a number g4 = £4(B) > 0 such that
any special square face in an atomic cube has distance at least 4 from any other
parallel special square face in the atomic cube or from any parallel boundary square
face of the atomic cube. We now remove every point in M that lies a distance less
than €5 > 0 from some special square face in the atomic cube that contains that
point. Then the set of such points in M that are removed has measure at most
124 5, and is represented by the regions shaded in light gray in the picture on the
right in Figure 1.

F- E
- -4
F- B

Figure 1: idea behind the construction of the set B*

Let B* denote the remainder of M after these points are removed. Then B* is
clearly a finite union of disjoint axis-parallel rectangular boxes in M, where each
box is either contained in B or disjoint from B, so that the condition (ii) is satisfied.
Suppose now that 5 > 0 is chosen to satisfy

12</V€5 < &9 and 2e5 < £4. (34)

Then the first condition in (3.4) ensures that the condition (i) is satisfied, while
the second condition in (3.4) ensures that the side lengths of each axis-parallel
rectangular box in the union B* is greater than €3 = ¢4 — 2¢5, so that the condition
(iii) is satisfied.

To establish the condition (iv), note that it follows from the condition (i) and the
Fubini theorem that

/pm{z €10.1): (x,2) € B'}) dx < o, (3.5)
Let
£ = {x eP:nm{ze0,1): (x,2) & BY) > 5;/2} .

Then it follows from (3.5) that \o(E )éé/ ? < &y, from which the condition (iv) follows
immediately, since \y(P) = s. O

For almost every x € P, the set

UW;x)={z¢€]0,1): (x,2) € W}



8 BECK, CHEN, AND YANG

is measurable, and it follows from (3.2) that

1 _
D@m=

We consider Lebesgue measurable subsets Ua C [0,1), 0 = 1,...,s, of the unit
torus [0,1). In particular, we make the assumption that 0 < A\;(U;) < 1, where A\;
denotes 1-dimensional Lebesgue measure. Furthermore, for any real number v € R

(3.6)

and any o = 1,...,s, we consider the (—u)-translated copy of U,, given by
U,—u={{z—u}:2€U,}.
Let x1,...,xs € P be distinct points such that their images under projection

modulo 1 to the unit torus [0,1)? coincide. We now apply the following variant of
[2, Lemma 6.1] to the sets

Uy =UW;x1), ..., Us=UW;xy), (3.7)
so that for every o =1,...,s,
z €U, ifandonlyif (x,,2)eW.
Lemma 3.3. The set of values ug € [0, 1) for which the inequalities

MU A Uy =) = —MOD1 = ML), o=1,....s,  (3.8)

1
3252
hold simultaneously has Lebesque measure at least 1/2.

It then follows on combining (3.6)—(3.8) that the set of values ug € [0, 1) for which
the inequalities

1
— Z — =1,... .
)\1<U1A(Ug Uo)) = 3234’ o 17 , S, (3 9)
hold simultaneously has Lebesgue measure at least 1/2. Let
L (W;x1) = {up €10,1) : (3.9) holds for every 0 = 1,...,s} (3.10)

denote this set of such values of uy. Note that the condition (3.9) is equivalent to
the condition
1

)‘1({2 € [Oa 1) : XW(X17Z)XW(XU7 {Z + UO}) = O}) 2 @a

Let us revisit the disjoint union B* = B*(B;eq;e3) of axis-parallel rectangular
boxes. For each axis-parallel rectangular box in this union, we push each boundary
face inwards by a distance g4, where the parameter ¢ > 0, to be specified later,
satisfies

o=1,...,s. (3.11)

19
0<g6<§3,

where €3 is a lower bound of the side lengths of these axis-parallel rectangular boxes.
Then the resulting smaller axis-parallel rectangular box has volume which is at least
(1—2e4/e3)? times that of the original axis-parallel rectangular box. This means that
if B** = B**(B*;¢¢) is the disjoint union of these smaller axis-parallel rectangular
boxes, then using Lemma 3.2(i) and writing

6
e = £g + 0 (3.12)
€3
we have
. 286 % 286 3
)\3(8 ) 1—— )\3(6)2 1—— (8—82)
€3 €3

6 6
<1—§)(5—52)>S—€2—8—66=S—57- (3.13)
3
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Remark. Note that the eg-neighbourhood of every point in B** is contained in B*.

Observe that xg(s’) = xs(s”) if the points s’,s” € M belong to the same axis-
parallel rectangular box in the disjoint union B**, and that the side lengths of each
axis-parallel rectangular box in the disjoint union B** is greater than e3 — 2¢.
Furthermore, analogous to Lemma 3.2(iv), we have the inequality

Ao ({x eEP:M{z€]0,1):(x,2) € B*}) >1— 8;/2}> > 5 — 5;/2. (3.14)

For any x € P, let x1,...,x, € P be distinct points such that their images under
projection modulo 1 to the unit torus [0, 1)? coincides with the image of x under the
same projection. Then it follows from (3.14) that

Ao <{X eP:M{ze[0,1): (x4,2) € B*}) >1—er? for every o = 1, .. .,s})
> 5 —seyl”. (3.15)
For every ug € [0,1), let
(o) = Ao({x1 € P rug € S (Wix1)})

denote some relevant multiplicity of ug. Then
s
/ p(ug) dug :/Al(Y(W;Xl))dxl > Y
[0,1) P

in view of (3.10). This can be interpreted to say that the average multiplicity p(uo)
of up € [0,1) is at least s/2. Thus there exists a shift u, € [0,1) such that

p(ul) = Xo({x; € P ul € SWixy)}) = g

It also follows from (3.15) that with the exception of at most 36;/ ? part of x € P,

/2 part of the real numbers z € [0,1) are such that with x = x;,

at least 1 — 25;
(X0,2) € B, (%,,{z+uy})eB™*, o=1,...,s.

In order to derive a contradiction, we need a density analogue of [2, Lemma 6.2].
Here || 3|| denotes the distance of § € R to the nearest integer.

Lemma 3.4. Let v = (vi,vy) € R? be a Kronecker vector, and let w € R be arbitrary
such that w = (vy,ve,w) € R? is a Kronecker vector. Let g > 0 be given. There
exists a finite sequence

1 <m(eg) < ... < my(eg)
of positive integers such that
Hmj<86)1)1|| < &g, ||mj(€6)112|| <eg, J= 1,..., k‘, (316)

and the finite sequence {m;(e¢)w}, j = 1,...,k, visits every subinterval of [0, 1)
with length cg.

Remark. Note that the number k = k(w;eg) of terms of the finite sequence may
depend on the choice of w and the value of &g.

Proof of Lemma 3.4. By the Kronecker density theorem, the sequence
Jw = j(v1, v, w), j=1,23,...,
modulo 1 is dense in the unit torus [0,1)%. Let
mi(g6), ma(gq), m3(g6), - - -
be the infinite subsequence of 1,2, 3, ... such that
{m;(ee)v1}, {m;(e6)va} € [0,66) U(1 —€6,1), j=1,2,3,....
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Clearly (3.16) holds. Also, the subsequence mj(eg)w, j = 1,2,3,..., modulo 1 is
dense in ([0,&6) U (1 —€6,1))? x [0,1) C [0,1)3. This implies that the sequence
{m;(es)w}, 7 =1,2,3,..., is dense in [0, 1).

Next, let the integer n satisfy n > 2/e5. We now partition the unit torus [0, 1)
into n short intervals Iy, ..., I, of length 1/n in the standard way. Then for every
i =1,...,n, there exists an integer k; such that the finite sequence

{mj(£6)w}, j = 1,...,]@7
visits I;. Let k = max{ky,...,k,}. Then the finite sequence

{m;(es)w}, j=1,...,k, (3.17)
visits every interval Iy,...,I,. Now, since 1/n < g¢/2, every subinterval of [0, 1)
with length €4 must contain at least one of the intervals I, ..., I,, so is visited by
the finite sequence (3.17). O

It follows that there exists jo = jo(ug) satisfying 1 < jo < k such that
Imy (e6)vill < g6, |Imyjo(ge)vall <e6,  [Imy,(e6)w — ugll < 6. (3.18)

Remark. For a fixed point x € P, we can visualize the set {(x,2) : z € [0,1)} as
a circle over the point x, since [0, 1) is the unit torus. For any point (x,z) on this
circle, we have T% (x, 2) = (x + v, {z + w}). It follows that the image of the circle
under the transformation T%, is a circle {(y, 2’) : 2 € [0,1)} over the point y = x+v.
Clearly, this new circle is rotated from the original circle by a quantity w and its
position on P is translated from the original position by a vector v. This action
is repeated multiple times when we apply the transformation T7, successively. Our
proof of Theorem 4((i)=>(ii)) is based on a combination of this fact with Lemmas
3.2-3.4.

Let us continue the discussion prior to Lemma 3.4. For at least s/2 — ssé/ 2 part

of the points x € P, we have uj € .(W);x), and that for at least 1 — 25;/2 part of
the real numbers z € [0, 1), writing x = x;, we have

(x,2) € B, (X,,{z+uyy})eB”, o=1,...,s. (3.19)

We say that the points in (3.19) form a good (s + 1)-tuple, in the sense that they
all belong to B**.
Let

Q=(x2)=(x1,2), Qo= s {z+uy}), o=1,...,s,
be such a good (s+1)-tuple, and consider the new point Q* = (T%,)"0 (Q), obtained
from @ by m;, successive applications of the transformation TY,, where jj is chosen
so that the inequalities (3.18) hold. Since the subset W C M is invariant under the
transformation T% , it follows that x(Q) = xw(Q").

On the other hand, as observed in the Remark above, the image of the circle
{(x,2) : z €]0,1)} under the transformation (T}, )™ is a circle {(y, 2') : 2/ € [0,1)}
with some particular y = x; + m; v € P. It then follows from (3.18) that the
coordinates of y are eg¢-close to the corresponding coordinates of x,,, for a particular
oo =1,...,s, and the last coordinate of Q* is g¢-close to {z+up}. Since Q,, € B**, it
follows from the Remark after (3.13) that @),, and Q* are in the same axis-parallel
rectangular box in the disjoint union B*, and so x5(Qs,) = x5(Q*), in view of
Lemma 3.2(ii).

Recall that uf € . (W;x) for at least s/2 — 35%/2 part of the points x € P. This
and the condition (3.11) together imply that

M(dz € [0,1) w1, 20w G {2+ 3) = 0) >
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and this is equivalent to

Mz € [0,1) : w(Q) # 00(Qe))) > 5 (3.20)
Consider now the three relations
(@) = xw(Q),  x8(Qs) = x5(Q%),  xw(Q) # xw(Qay),
which clearly imply the two relations
XW(QO’O) 7é XW(Q*>7 XB(QU()) = XB(Q*)
It follows that
Xw(Qoy) # x8(Qoy)  or  Xw(QF) # x5(Q"). (3.21)

Intuitively speaking, (3.21) represents two negligible cases, with total measure less
than €1, in view of (3.3), which contradict the substantial constant lower bound in
(3.20) if £y > 0 is sufficiently small. To make this precise, we need to study more
closely the various parameters.

We have uf € 7 (W;x) for at least s/2 — sa%ﬂ part of the points x € P. Using
(3.20), we deduce that for at least

1 1/2
5ol 2e, (3.22)
part of the real numbers z € [0, 1), the points
Qoo = (Xop, {2 +ug}) and Q" = (T3,)™0(Q) = (T5,)™° (x4, 2) (3.23)

exhibit the property (3.21). It follows from (3.22) that the 3-dimensional Lebesgue
measure of the points @ = (x3,2) € M such that the points (3.23) exhibit the

property (3.21) is at least
s 1/2 1 1/2
(3-+") (32— — 2/ ) ’ (324)

where €7 is given by (3.12).

On the other hand, the property (3.21) is exceptional, and (3.3) implies that the
quantity in (3.24) is less than 2¢;. We emphasize the fact that the choice of the
parameter £; is independent of the choices of the other parameters e, e3, 6. Thus
we can make 7 in (3.24) arbitrarily small independently of the fixed value of &;.
It is therefore easy to specify the parameters 1,9, €3, so that the value of the
quantity in (3.24) is greater than 2¢q, leading to a contradiction.

The contradiction establishes the ergodicity of the w-shift in M.

The last step is to extend ergodicity of the w-shift in M to unique ergodicity
by using the standard argument in functional analysis. This is possible, since the
projection of M to the unit torus [0, 1) leads to unique ergodicity there. 0

REFERENCES

[1] J. Beck, W.W.L. Chen, Y. Yang. Non-Integrable Dynamics: Time-Quantitative Results (World
Scientific, 2024).

[2] J. Beck, W.W.L. Chen, Y. Yang. Uniformity of geodesic flow in non-integrable 3-manifolds
(preprint, 45 pp.).

[3] J. Beck, M. Donders, Y. Yang. Quantitative behavior of non-integrable systems I. Acta Math.
Hungar. 161 (2020), 66-184.

[4] E. Gutkin. Billiards on almost integrable polyhedral surfaces. Ergodic Theory Dynam. Systems
4 (1984), 569-584.

[6] W.A. Veech. Boshernitzan’s criterion for unique ergodicity of an interval exchange transforma-
tion. Ergodic Theory Dynam. Systems 7 (1987), 149-153.



12 BECK, CHEN, AND YANG

DEPARTMENT OF MATHEMATICS, HILL CENTER FOR THE MATHEMATICAL SCIENCES, RUT-
GERS UNIVERSITY, PiscaTawAy NJ 08854, USA
Email address: jbeck@math.rutgers.edu

SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES, FACULTY OF SCIENCE AND ENGI-
NEERING, MACQUARIE UNIVERSITY, SYDNEY NSW 2109, AUSTRALIA
Email address: william.chen®mg.edu.au

SCHOOL OF SCIENCE, BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, BEIJING
100876, CHINA
Email address: yangyx@bupt.edu.cn



