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Abstract. We study the relationship between the discrete and the continuous
versions of the Kronecker–Weyl equidistribution theorem, as well as their possible
extension to manifolds in higher dimensions. We also investigate a way to deduce
in some limited way uniformity results in higher dimension from results in lower
dimension.

1. Introduction

There are two versions of the classical Kronecker–Weyl equidistribution theorem.
Let d be a fixed positive integer. If v1, . . . , vd, 1 are linearly independent over Q,
then the vector v = (v1, . . . , vd) ∈ Rd is called a Kronecker vector, and the vector
v∗ = (v1, . . . , vd, 1) ∈ Rd+1 is called a Kronecker direction. The continuous version
concerns the distribution of half-infinite geodesics with Kronecker directions in the
unit torus [0, 1)d+1, and much of this monograph concerns extensions of this version
from the unit torus [0, 1)2 to arbitrary finite polysquare translation surfaces.

On the other hand, the discrete version of the Kronecker–Weyl equidistribution
theorem concerns the distribution of half-infinite Kronecker sequences in the unit
torus [0, 1)d. A natural first question is then to attempt to extend this version from
the unit torus [0, 1)2 to arbitrary finite polysquare translation surfaces.

In general, for any fixed positive integer d, we consider the continuous problem
concerning the distribution of half-infinite geodesics with Kronecker directions in
finite polycube translation manifolds in d + 1 dimensions, as well as the discrete
problem of the distribution of half-infinite Kronecker sequences in finite polycube
translation manifolds in d dimensions. The following are natural questions:

Question 1. Is it true that, for any integer d ⩾ 1, any half-infinite geodesic with a
Kronecker direction in a finite polycube translation manifold in d+ 1 dimensions is
uniformly distributed? If not, then under what condition can we guarantee uniform
distribution?

Question 2. Is it true that, for any integer d ⩾ 2, any half-infinite Kronecker
sequence in a finite polycube translation manifold in d dimensions is uniformly dis-
tributed? If not, then under what condition can we guarantee uniform distribution?

Question 3. The classical Kronecker–Weyl equidistribution theorem on the unit
torus has some time-quantitative extensions with explicit error terms. Under what
conditions can we establish time-quantitative uniformity in these more general set-
tings?

For Question 1, the Gutkin–Veech theorem [4, 5] answers the special case d = 1 in
the affirmative. However, for d = 2, we are currently not able to establish uniformity
results for half-infinite geodesics in a general finite polycube translation 3-manifold.

In this paper, we study the relationship between the discrete and the continuous
versions of possible non-integrable analogues of the Kronecker–Weyl equidistribution
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theorem concerning finite polysquare translation surfaces and some related finite
polycube translation 3-manifolds. In Section 2, we investigate a relationship between
the discrete version and the continuous version in the special case d = 2. Theorem 2,
a by-product of this study, gives an affirmative answer to the special case d = 2 of
Question 2. Then in Section 3, we develop a way to step up the problem by one
dimension, and this leads to various infinite classes of polycube translation manifolds
where half-infinite Kronecker sequences and half-infinite geodesics with Kronecker
directions are uniformly distributed.

2. A simple equivalence principle

Before we go any further, it is appropriate that we understand what we mean by a
Kronecker sequence on a finite polysquare translation surface P . To properly define
a half-infinite Kronecker sequence v0 + jv, j = 0, 1, 2, 3, . . . , with starting point
v0 and step vector v on a polysquare translation surface P , we need a supporting
half-infinite geodesic L(t), t ⩾ 0, with L(0) = v0 on P and a time step g ∈ R, such
that the finite geodesic segment L(t), 0 ⩽ t ⩽ g, is in the direction of the step vector
v and has length equal to |v|. Then v0 + jv = L(jg), j = 0, 1, 2, 3, . . . . Clearly the
Kronecker sequence is half-infinite if and only if v0 is a non-pathological starting
point of a geodesic with direction v on P .

Suppose that P is a polysquare translation surface with s atomic squares, and
that M = P × [0, 1) denotes the associated polycube translation 3-manifold which
is the cartesian product of P and the unit torus [0, 1).
A vector v = (v1, v2) ∈ R2 is said to be a Kronecker vector if v1, v2, 1 are linearly

independent over Q. We are interested in the distribution of a Kronecker sequence
v0 + jv, j = 0, 1, 2, 3, . . . , with starting point v0 on the polysquare translation
surface P .

A vector v∗ = (v1, v2, 1) ∈ R3 is said to be a Kronecker direction if v1, v2, 1 are
linearly independent over Q. We are interested in the distribution of a half-infinite
geodesic L(t), t ⩾ 0, with starting point L(0) and direction v∗ in the associated
polycube translation 3-manifold M.

We have a simple equivalence principle relating half-infinite Kronecker sequences
and half-infinite geodesics with Kronecker direction.

Theorem 1. Suppose that P is a finite polysquare translation surface, and that
M = P × [0, 1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0, 1). Suppose also that v = (v1, v2) ∈ R2

is a Kronecker vector, so that v∗ = (v1, v2, 1) ∈ R3 is a Kronecker direction. Then
the following two statements are equivalent:

(i) Every half-infinite Kronecker sequence v0 + jv, j = 0, 1, 2, 3, . . . , on P is
uniformly distributed.

(ii) Every half-infinite geodesic L(t), t ⩾ 0, with direction v∗ in M is uniformly
distributed.

Sketch of proof. ((ii) ⇒ (i)) The argument here is rather simple. Suppose that P
has s atomic squares. To establish (i), let S be a convex set in an atomic square
of P . Consider the first J terms of the Kronecker sequence, given by v0 + jv,
j = 0, 1, . . . , J − 1. The number of terms of this finite sequence in S is given by

|{j = 0, 1, . . . , J − 1 : v0 + jv ∈ S}|,

with corresponding expectation given by

Jλ2(S)

s
,
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where λ2 denotes 2-dimensional Lebesgue measure. To establish uniformity of the
Kronecker sequence on P , we need to show that

|{j = 0, 1, . . . , J − 1 : v0 + jv ∈ S}|
/
Jλ2(S)

s
→ 1 as J → ∞. (2.1)

Let L(t), t ⩾ 0, be a half-infinite geodesic with starting point L(0) = (v0, 0) and
direction v∗ on M. Let S∗ ⊂ M be obtained by sweeping the set S × {0} along
by the vector v∗, so that λ3(S

∗) = λ2(S), where λ3 denotes 3-dimensional Lebesgue
measure. Consider a finite geodesic segment L(t), 0 ⩽ t ⩽ T = J(v21 + v22 + 1)1/2.
Then the total length of the parts of this geodesic segment in S∗ is given by

|{0 ⩽ t ⩽ T : L(t) ∈ S∗}|
= (v21 + v22 + 1)1/2|{j = 0, 1, . . . , J − 1 : v0 + jv ∈ S}|, (2.2)

with corresponding expectation given by

Tλ3(S
∗)

s
=
J(v21 + v22 + 1)1/2λ2(S)

s
. (2.3)

The set S∗ is a union of finitely many convex sets in atomic cubes of M. Suppose
that (ii) holds. Uniformity of the half-infinite geodesic in M then implies that

|{0 ⩽ t ⩽ T : L(t) ∈ S∗}|
/
Tλ3(S

∗)

s
→ 1 as T → ∞. (2.4)

It is clear that (2.1) follows immediately on combining (2.2)–(2.4).
((i)⇒ (ii)) In [3, Section 3.4.1] or [1, Section 3.6], a result concerning uniformity of

a half-infinite geodesic is deduced from a result concerning uniformity of a sequence,
by an application of the Koksma inequality. Here we apply an analogous Koksma
inequality type argument. □

The Gutkin–Veech theorem gives uniformity to any half-infinite geodesic with
Kronecker direction on a finite polysquare translation surface. As a simple appli-
cation of Theorem 1, we establish the analogous result for half-infinite Kronecker
sequences.

Theorem 2. Any half-infinite Kronecker sequence v0 + jv, j = 0, 1, 2, 3, . . . , on a
finite polysquare translation surface P is uniformly distributed.

Proof. Let M = P × [0, 1) denote the associated polycube translation 3-manifold.
In view of Theorem 1, it suffices to show that every half-infinite geodesic L(t), t ⩾ 0,
with Kronecker direction in M is uniformly distributed. This latter condition is the
conclusion of Theorem 3. □

The following result is [2, Theorem 3].

Theorem 3. Suppose that a polycube translation 3-manifold M is the cartesian
product of a finite polysquare translation surface P and the unit torus [0, 1). Then
any half-infinite geodesic in M with a Kronecker direction v∗ ∈ R3 is uniformly
distributed unless it hits a singularity.

3. Stepping up principle

Theorem 2, concerning the distribution of half-infinite Kronecker sequences on P ,
can be interpreted as a step-up from the Gutkin–Veech theorem, concerning the
distribution of half-infinite geodesics with Kronecker direction on P . In view of
the equivalence given by Theorem 1, the stepping-up result is Theorem 3, which
establishes the uniformity of a half-infinite geodesic with Kronecker direction on the
associated polycube translation 3-manifold M from the uniformity of a half-infinite
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geodesic with Kronceker direction on the finite polysquare translation surface P .
This represents a step-up in dimension in some restricted way.

In this section, we expand on this idea. We establish the following results which,
for simplicity, we state only in 2 and 3 dimensions. There are analogues in d and
d+ 1 dimensions for every integer d ⩾ 3.
The discrete versions of these results concern the distribution of half-infinite Kro-

necker sequences on a finite polysquare translation surface P and the analogous
problem in the associated polycube translation 3-manifold M which is the cartesian
product of P and the unit torus [0, 1).

Theorem 4. Suppose that P is a finite polysquare translation surface, and that
M = P × [0, 1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0, 1). Suppose also that v ∈ R2 is the step
vector of a Kronecker sequence on P. Then the following statements are equivalent:

(i) Every half-infinite Kronecker sequence with step vector v on P is uniformly
distributed.

(ii) For any w ∈ R such that w = (v, w) ∈ R3 is the step vector of a Kronecker
sequence on M, every half-infinite Kronecker sequence with step vector w in M is
uniformly distributed.

Theorem 5. Under the hypotheses of Theorem 4, the following statements are equiv-
alent:

(i) The v-shift on P is ergodic.
(ii) For any w ∈ R such that w = (v, w) ∈ R3 is the step vector of a Kronecker

sequence on M, the w-shift in M is ergodic.

The continuous versions of these results concern the distribution of half-infinite
geodesics with Kronecker direction on a finite polysquare translation surface P and
the analogous problem in the associated polycube translation 3-manifold M.

Theorem 6. Suppose that P is a finite polysquare translation surface, and that
M = P × [0, 1) denotes the associated polycube translation 3-manifold which is the
cartesian product of P and the unit torus [0, 1). Suppose also that v ∈ R2 is a
Kronecker direction. Then the following statements are equivalent:

(i) Every half-infinite geodesic with direction v on P is uniformly distributed.
(ii) For any w ∈ R such that w = (v, w) ∈ R3 is a Kronecker direction, every

half-infinite geodesic with direction w in M is uniformly distributed.

Theorem 7. Under the hypotheses of Theorem 4, the following statements are equiv-
alent:

(i) Geodesic flow with direction v on P is ergodic.
(ii) For any w ∈ R such that w = (v, w) ∈ R3 is a Kronecker direction, geodesic

flow with direction w in M is ergodic.

Remark. For Theorems 6 and 7, we already know that (i) and (ii) hold, in view of
the Gutkin–Veech theorem and Theorem 3, so only the analogues in d and d + 1
dimensions for integers d ⩾ 3 are new.

We concentrate our efforts on establishing Theorem 4. That (ii) implies (i) is
almost trivial, by projection from M to P . The converse is considerably harder.

Let w = (v1, v2, w) ∈ R3, where v1, v2, w, 1 are linearly independent over Q, and
consider the w-shift T∗

w = T∗
w(M) of geodesic flow in direction w in M = P×[0, 1).

We can consider two projections of T∗
w.

On the one hand, we can project the w-shift T∗
w to the unit torus [0, 1)3, simply

by taking every coordinate modulo 1, leading to the w-shift Tw = Tw([0, 1)
3) in

the unit torus [0, 1)3 which is ergodic.
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On the other hand, we can project the w-shift T∗
w to the polysquare translation

surface P , simply by dropping reference to the 3-rd coordinates throughout, leading
to the v-shift T∗

v = T∗
v(P) on P .

Lemma 3.1. Suppose that the condition (i) in Theorem 4 holds. Then the v-shift
T∗

v = T∗
v(P) on P is ergodic.

Sketch of proof. If a Kronecker sequence on P becomes undefined after finitely many
terms, then the supporting geodesic L(t), t ⩾ 0, with starting point L(0) = v0 and
direction v on P hits a singular point of P . The collection of singular points of P
clearly has 2-dimensional Lebesgue measure 0. Thus the collection of starting points
v0 that lead a Kronecker sequence to be undefined after finitely many terms also has
2-dimensional Lebesgue measure 0. Thus almost every point v0 ∈ P gives rise to
a half-infinite Kronecker sequence. Thus the condition (i) in Theorem 4 guarantees
that for almost every starting point v0, the half-infinite Kronecker sequence v0+jv,
j = 0, 1, 2, 3, . . . , on P is uniformly distributed. Hence the visiting density of the
sequence in any Jordan measurable set A is given by λ2(A)/s.

Suppose, on the contrary, that the v-shift T∗
v on P is not ergodic. Then there

is a partition P = U1 ∪ U2, where the subsets U1, U2 ⊂ P are T∗
v-invariant, and

satisfy λ2(U1) > 0 and λ2(U2) > 0. Moreover, since the projection of T∗
v to the

unit torus [0, 1)2, simply by taking every coordinate modulo 1, leads to the v-shift
Tv = Tv([0, 1)

2) on the unit torus [0, 1)2 which is ergodic, there is a decomposition
P = M1 ∪ . . . ∪Mk for some integer k satisfying 2 ⩽ k ⩽ s, where s is the number
of atomic squares in P , such that for every i = 1, . . . , k, the set Mi is T

∗
v-invariant

and does not contain a proper T∗
v-invariant subset, and λ2(Mi) is a positive integer.

We say that the subsets M1, . . . ,Mk are minimal.
We can find a Jordan measurable subset A ⊂ P such that

λ2(A ∩M1) <
1

10
and λ2(A ∩M2) >

λ2(M2)

2
.

Next we apply the Birkhoff ergodic theorem to both M1 and M2. The restriction of
the v-shift T∗

v to M1 and to M2 are both ergodic. In each case, the simplest form
of the ergodic theorem says that the time average is equal to the space average.
Then for almost every starting point v0 ∈M1, the visiting density of the Kronecker
sequence v0+jv, j = 0, 1, 2, 3, . . . , on P in the set A is equal to the relative measure

λ2(A ∩M1)

λ2(M1)
<

1

10
,

while for almost every starting point v0 ∈M2, the visiting density of the Kronecker
sequence v0+jv, j = 0, 1, 2, 3, . . . , on P in the set A is equal to the relative measure

λ2(A ∩M2)

λ2(M2)
>

1

2
.

Thus at least one of these is different from λ2(A)/s, leading to a contradiction. □

Proof of Theorem 4. ((i) ⇒ (ii)) We need to prove that the w-shift T∗
w in M is

ergodic. Suppose on the contrary that this is not the case. Then there exists a non-
trivial partition M = W ∪ S into a union of two T∗

w-invariant subsets W ,S ⊂ M,
called White and Silver, say, each with integral measure and such that

1 ⩽ λ3(W), λ3(S) ⩽ s− 1,

where s is the number of atomic cubes in M and λ3 denotes 3-dimensional Lebesgue
measure.



6 BECK, CHEN, AND YANG

Let Y1, . . . ,Ys denote the atomic cubes of M, and consider the projection of M
to the unit torus [0, 1)3. Then for any point P ∈ [0, 1)3, there are precisely s points

P1 ∈ Y1, . . . , Ps ∈ Ys

that have the same image P under this projection. Let

fW(P ) = |{P1, . . . , Ps} ∩W| and fS(P ) = |{P1, . . . , Ps} ∩ S|.

Then fW and fS are positive integer valued functions defined on [0, 1)3 such that

fW(P ) + fS(P ) = s for almost every P ∈ [0, 1)3.

The w-shift Tw in the unit torus [0, 1)3 is ergodic. Since the functions fW and fS are
Tw-invariant, it follows from the Birkhoff ergodic theorem that they are constant
almost everywhere in [0, 1)3. Then

fW + fS = s and 1 ⩽ fW , fS ⩽ s− 1. (3.1)

Let χW denote the characteristic function of W in M. For every s ∈ M, write
s = (x, z), where x ∈ P and z ∈ [0, 1). The well known Fubini theorem implies that∫

M
χW(s) ds =

∫
P

(∫
[0,1)

χW(x; z) dz

)
dλ2,

where the inner integral xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ψ(x) =

∫
[0,1)

χW(x; z) dz

is well defined in the sense of Lebesgue for almost every x ∈ P .
Consider now the projection of T∗

w to the polysquare translation surface P , re-
sulting in the ergodic v-shift T∗

v on P . Since the function ψ(x) is T∗
v-invariant, it

follows from ergodicity that it has constant value almost everywhere on P . Thus it
follows from (3.1) that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

s
⩽ ψ =

fW
s

⩽
s− 1

s
(3.2)

almost everywhere on P .
Since the invariant subset W ⊂ M is measurable, it follows that for every ε1 > 0,

there exists a finite set of 3-dimensional axis-parallel rectangular boxes such that
their union B = B(W ; ε1) has the property that the symmetric difference

W △B = (W \ B) ∪ (B \W)

has measure xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ3(W △B) < ε1. (3.3)

We need the following simple technical result.
Let χB denote the characteristic function of B in M.

Lemma 3.2. Let B be a finite union of axis-parallel rectangular boxes satisfying
(3.3). For every ε2 > 0, there exists ε3 > 0 and a finite set of disjoint axis-parallel
rectangular boxes such that their union B∗ = B∗(B; ε2; ε3) satisfies the following
conditions:

(i) The measure λ3(M\B∗) < ε2.
(ii) We have χB(s

′) = χB(s
′′) if the points s′, s′′ ∈ M belong to the same axis-

parallel rectangular box in the disjoint union B∗.
(iii) The side lengths of each axis-parallel rectangular box in the disjoint union B∗

is greater than ε3.
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(iv) Let s denote the number of atomic squares of P. Then

λ2

({
x ∈ P : λ1({z ∈ [0, 1) : (x, z) ∈ B∗}) > 1− ε

1/2
2

})
> s− ε

1/2
2 .

Proof. We assume, without loss of generality, that every axis-parallel rectangular
box in the finite union B lies in the interior of an atomic cube of M, as illustrated in
the picture on the left in Figure 1, which only shows 2 of the 3 dimensions. For each
face of each axis-parallel rectangular box in an atomic cube of M, we extend it to an
axis-parallel special square face of area 1 in the same atomic cube, as illustrated by
the dashed lines in the picture on the right in Figure 1. We repeat this process for
every axis-parallel rectangular box in the finite union B. Suppose that N = N (B)
denotes the total number of distinct axis-parallel rectangular boxes in the union B.
Then there are at most 2N such distinct special square faces in each of the 3 axis-
parallel directions. It follows that there exists a number ε4 = ε4(B) > 0 such that
any special square face in an atomic cube has distance at least ε4 from any other
parallel special square face in the atomic cube or from any parallel boundary square
face of the atomic cube. We now remove every point in M that lies a distance less
than ε5 > 0 from some special square face in the atomic cube that contains that
point. Then the set of such points in M that are removed has measure at most
12N ε5, and is represented by the regions shaded in light gray in the picture on the
right in Figure 1.

Figure 1: idea behind the construction of the set B∗

Let B∗ denote the remainder of M after these points are removed. Then B∗ is
clearly a finite union of disjoint axis-parallel rectangular boxes in M, where each
box is either contained in B or disjoint from B, so that the condition (ii) is satisfied.
Suppose now that ε5 > 0 is chosen to satisfy

12N ε5 < ε2 and 2ε5 < ε4. (3.4)

Then the first condition in (3.4) ensures that the condition (i) is satisfied, while
the second condition in (3.4) ensures that the side lengths of each axis-parallel
rectangular box in the union B∗ is greater than ε3 = ε4 − 2ε5, so that the condition
(iii) is satisfied.

To establish the condition (iv), note that it follows from the condition (i) and the
Fubini theorem that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∫

P
λ1({z ∈ [0, 1) : (x, z) ̸∈ B∗}) dx < ε2. (3.5)

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

E =
{
x ∈ P : λ1({z ∈ [0, 1) : (x, z) ̸∈ B∗}) ⩾ ε

1/2
2

}
.

Then it follows from (3.5) that λ2(E)ε1/22 < ε2, from which the condition (iv) follows
immediately, since λ2(P) = s. □

For almost every x ∈ P , the set

U(W ;x) = {z ∈ [0, 1) : (x, z) ∈ W}
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is measurable, and it follows from (3.2) that

1

s
⩽ λ1(U(W ;x)) =

fW
s

⩽
s− 1

s
. (3.6)

We consider Lebesgue measurable subsets Uσ ⊂ [0, 1), σ = 1, . . . , s, of the unit
torus [0, 1). In particular, we make the assumption that 0 < λ1(U1) < 1, where λ1
denotes 1-dimensional Lebesgue measure. Furthermore, for any real number u ∈ R
and any σ = 1, . . . , s, we consider the (−u)-translated copy of Uσ, given by

Uσ − u = {{z − u} : z ∈ Uσ}.
Let x1, . . . ,xs ∈ P be distinct points such that their images under projection

modulo 1 to the unit torus [0, 1)2 coincide. We now apply the following variant of
[2, Lemma 6.1] to the sets

U1 = U(W ;x1), . . . , Us = U(W ;xs), (3.7)

so that for every σ = 1, . . . , s,

z ∈ Uσ if and only if (xσ, z) ∈ W .

Lemma 3.3. The set of values u0 ∈ [0, 1) for which the inequalities

λ1(U1 △ (Uσ − u0)) ⩾
1

32s2
λ1(U1)(1− λ1(U1)), σ = 1, . . . , s, (3.8)

hold simultaneously has Lebesgue measure at least 1/2.

It then follows on combining (3.6)–(3.8) that the set of values u0 ∈ [0, 1) for which
the inequalities xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ1(U1 △ (Uσ − u0)) ⩾
1

32s4
, σ = 1, . . . , s, (3.9)

hold simultaneously has Lebesgue measure at least 1/2. Let

S (W ;x1) = {u0 ∈ [0, 1) : (3.9) holds for every σ = 1, . . . , s} (3.10)

denote this set of such values of u0. Note that the condition (3.9) is equivalent to
the condition

λ1({z ∈ [0, 1) : χW(x1, z)χW(xσ, {z + u0}) = 0}) ⩾ 1

32s4
, σ = 1, . . . , s. (3.11)

Let us revisit the disjoint union B∗ = B∗(B; ε2; ε3) of axis-parallel rectangular
boxes. For each axis-parallel rectangular box in this union, we push each boundary
face inwards by a distance ε6, where the parameter ε6 > 0, to be specified later,
satisfies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 < ε6 <
ε3
2
,

where ε3 is a lower bound of the side lengths of these axis-parallel rectangular boxes.
Then the resulting smaller axis-parallel rectangular box has volume which is at least
(1−2ε6/ε3)

3 times that of the original axis-parallel rectangular box. This means that
if B∗∗ = B∗∗(B∗; ε6) is the disjoint union of these smaller axis-parallel rectangular
boxes, then using Lemma 3.2(i) and writing

ε7 = ε2 +
6sε6
ε3

, (3.12)

we have xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

λ3(B∗∗) ⩾

(
1− 2ε6

ε3

)3

λ3(B∗) ⩾

(
1− 2ε6

ε3

)3

(s− ε2)

⩾

(
1− 6ε6

ε3

)
(s− ε2) ⩾ s− ε2 −

6sε6
ε3

= s− ε7. (3.13)
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Remark. Note that the ε6-neighbourhood of every point in B∗∗ is contained in B∗.

Observe that χB(s
′) = χB(s

′′) if the points s′, s′′ ∈ M belong to the same axis-
parallel rectangular box in the disjoint union B∗∗, and that the side lengths of each
axis-parallel rectangular box in the disjoint union B∗∗ is greater than ε3 − 2ε6.
Furthermore, analogous to Lemma 3.2(iv), we have the inequality

λ2

({
x ∈ P : λ1({z ∈ [0, 1) : (x, z) ∈ B∗∗}) > 1− ε

1/2
7

})
> s− ε

1/2
7 . (3.14)

For any x ∈ P , let x1, . . . ,xs ∈ P be distinct points such that their images under
projection modulo 1 to the unit torus [0, 1)2 coincides with the image of x under the
same projection. Then it follows from (3.14) that

λ2

({
x ∈ P : λ1({z ∈ [0, 1) : (xσ, z) ∈ B∗∗}) > 1− ε

1/2
7 for every σ = 1, . . . , s

})
> s− sε

1/2
7 . (3.15)

For every u0 ∈ [0, 1), let

µ(u0) = λ2({x1 ∈ P : u0 ∈ S (W ;x1)})
denote some relevant multiplicity of u0. Then∫

[0,1)

µ(u0) du0 =

∫
P
λ1(S (W ;x1)) dx1 ⩾

s

2
,

in view of (3.10). This can be interpreted to say that the average multiplicity µ(u0)
of u0 ∈ [0, 1) is at least s/2. Thus there exists a shift u∗0 ∈ [0, 1) such that

µ(u∗0) = λ2({x1 ∈ P : u∗0 ∈ S (W ;x1)}) ⩾
s

2
.

It also follows from (3.15) that with the exception of at most sε
1/2
7 part of x ∈ P ,

at least 1− 2ε
1/2
7 part of the real numbers z ∈ [0, 1) are such that with x = x1,

(xσ, z) ∈ B∗∗, (xσ, {z + u∗0}) ∈ B∗∗, σ = 1, . . . , s.

In order to derive a contradiction, we need a density analogue of [2, Lemma 6.2].
Here ∥β∥ denotes the distance of β ∈ R to the nearest integer.

Lemma 3.4. Let v = (v1, v2) ∈ R2 be a Kronecker vector, and let w ∈ R be arbitrary
such that w = (v1, v2, w) ∈ R3 is a Kronecker vector. Let ε6 > 0 be given. There
exists a finite sequence xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1 ⩽ m1(ε6) < . . . < mk(ε6)

of positive integers such that

∥mj(ε6)v1∥ < ε6, ∥mj(ε6)v2∥ < ε6, j = 1, . . . , k, (3.16)

and the finite sequence {mj(ε6)w}, j = 1, . . . , k, visits every subinterval of [0, 1)
with length ε6.

Remark. Note that the number k = k(w; ε6) of terms of the finite sequence may
depend on the choice of w and the value of ε6.

Proof of Lemma 3.4. By the Kronecker density theorem, the sequence

jw = j(v1, v2, w), j = 1, 2, 3, . . . ,

modulo 1 is dense in the unit torus [0, 1)3. Let

m1(ε6),m2(ε6),m3(ε6), . . .

be the infinite subsequence of 1, 2, 3, . . . such that

{mj(ε6)v1}, {mj(ε6)v2} ∈ [0, ε6) ∪ (1− ε6, 1), j = 1, 2, 3, . . . .
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Clearly (3.16) holds. Also, the subsequence mj(ε6)w, j = 1, 2, 3, . . . , modulo 1 is
dense in ([0, ε6) ∪ (1 − ε6, 1))

2 × [0, 1) ⊂ [0, 1)3. This implies that the sequence
{mj(ε6)w}, j = 1, 2, 3, . . . , is dense in [0, 1).
Next, let the integer n satisfy n > 2/ε6. We now partition the unit torus [0, 1)

into n short intervals I1, . . . , In of length 1/n in the standard way. Then for every
i = 1, . . . , n, there exists an integer ki such that the finite sequence

{mj(ε6)w}, j = 1, . . . , ki,

visits Ii. Let k = max{k1, . . . , kn}. Then the finite sequence

{mj(ε6)w}, j = 1, . . . , k, (3.17)

visits every interval I1, . . . , In. Now, since 1/n < ε6/2, every subinterval of [0, 1)
with length ε6 must contain at least one of the intervals I1, . . . , In, so is visited by
the finite sequence (3.17). □

It follows that there exists j0 = j0(u
∗
0) satisfying 1 ⩽ j0 ⩽ k such that

∥mj0(ε6)v1∥ < ε6, ∥mj0(ε6)v2∥ < ε6, ∥mj0(ε6)w − u∗0∥ < ε6. (3.18)

Remark. For a fixed point x ∈ P , we can visualize the set {(x, z) : z ∈ [0, 1)} as
a circle over the point x, since [0, 1) is the unit torus. For any point (x, z) on this
circle, we have T∗

w(x, z) = (x + v, {z + w}). It follows that the image of the circle
under the transformation T∗

w is a circle {(y, z′) : z′ ∈ [0, 1)} over the point y = x+v.
Clearly, this new circle is rotated from the original circle by a quantity w and its
position on P is translated from the original position by a vector v. This action
is repeated multiple times when we apply the transformation T∗

w successively. Our
proof of Theorem 4((i)⇒(ii)) is based on a combination of this fact with Lemmas
3.2–3.4.

Let us continue the discussion prior to Lemma 3.4. For at least s/2 − sε
1/2
7 part

of the points x ∈ P , we have u∗0 ∈ S (W ;x), and that for at least 1− 2ε
1/2
7 part of

the real numbers z ∈ [0, 1), writing x = x1, we have

(x, z) ∈ B∗∗, (xσ, {z + u∗0}) ∈ B∗∗, σ = 1, . . . , s. (3.19)

We say that the points in (3.19) form a good (s + 1)-tuple, in the sense that they
all belong to B∗∗.

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Q = (x, z) = (x1, z), Qσ = (xσ, {z + u∗0}), σ = 1, . . . , s,

be such a good (s+1)-tuple, and consider the new point Q∗ = (T∗
w)

mj0 (Q), obtained
from Q by mj0 successive applications of the transformation T∗

w, where j0 is chosen
so that the inequalities (3.18) hold. Since the subset W ⊂ M is invariant under the
transformation T∗

w, it follows that χW(Q) = χW(Q∗).
On the other hand, as observed in the Remark above, the image of the circle

{(x, z) : z ∈ [0, 1)} under the transformation (T∗
w)

mj0 is a circle {(y, z′) : z′ ∈ [0, 1)}
with some particular y = x1 + mj0v ∈ P . It then follows from (3.18) that the
coordinates of y are ε6-close to the corresponding coordinates of xσ0 for a particular
σ0 = 1, . . . , s, and the last coordinate of Q∗ is ε6-close to {z+u∗0}. Since Qσ0 ∈ B∗∗, it
follows from the Remark after (3.13) that Qσ0 and Q∗ are in the same axis-parallel
rectangular box in the disjoint union B∗, and so χB(Qσ0) = χB(Q

∗), in view of
Lemma 3.2(ii).

Recall that u∗0 ∈ S (W ;x) for at least s/2− sε
1/2
7 part of the points x ∈ P . This

and the condition (3.11) together imply that

λ1({z ∈ [0, 1) : χW(x1, z)χW(xσ0 , {z + u∗0}) = 0}) ⩾ 1

32s4
,
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and this is equivalent to

λ1({z ∈ [0, 1) : χW(Q) ̸= χW(Qσ0)}) ⩾
1

32s4
. (3.20)

Consider now the three relations

χW(Q) = χW(Q∗), χB(Qσ0) = χB(Q
∗), χW(Q) ̸= χW(Qσ0),

which clearly imply the two relations

χW(Qσ0) ̸= χW(Q∗), χB(Qσ0) = χB(Q
∗).

It follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

χW(Qσ0) ̸= χB(Qσ0) or χW(Q∗) ̸= χB(Q
∗). (3.21)

Intuitively speaking, (3.21) represents two negligible cases, with total measure less
than ε1, in view of (3.3), which contradict the substantial constant lower bound in
(3.20) if ε1 > 0 is sufficiently small. To make this precise, we need to study more
closely the various parameters.

We have u∗0 ∈ S (W ;x) for at least s/2 − sε
1/2
7 part of the points x ∈ P . Using

(3.20), we deduce that for at least xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

32s4
− 2ε

1/2
7 (3.22)

part of the real numbers z ∈ [0, 1), the points

Qσ0 = (xσ0 , {z + u∗0}) and Q∗ = (T∗
w)

mj0 (Q) = (T∗
w)

mj0 (x1, z) (3.23)

exhibit the property (3.21). It follows from (3.22) that the 3-dimensional Lebesgue
measure of the points Q = (x1, z) ∈ M such that the points (3.23) exhibit the
property (3.21) is at least xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx(s

2
− sε

1/2
7

)(
1

32s4
− 2ε

1/2
7

)
, (3.24)

where ε7 is given by (3.12).
On the other hand, the property (3.21) is exceptional, and (3.3) implies that the

quantity in (3.24) is less than 2ε1. We emphasize the fact that the choice of the
parameter ε1 is independent of the choices of the other parameters ε2, ε3, ε6. Thus
we can make ε7 in (3.24) arbitrarily small independently of the fixed value of ε1.
It is therefore easy to specify the parameters ε1, ε2, ε3, ε6 so that the value of the
quantity in (3.24) is greater than 2ε1, leading to a contradiction.

The contradiction establishes the ergodicity of the w-shift in M.
The last step is to extend ergodicity of the w-shift in M to unique ergodicity

by using the standard argument in functional analysis. This is possible, since the
projection of M to the unit torus [0, 1)3 leads to unique ergodicity there. □
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