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Abstract. We study some new dynamical systems where the corresponding
piecewise linear flow is neither time reversible nor measure preserving. We create
a dissipative system by starting with a finite polysquare translation surface, and
then modifying it by including a one-sided barrier on a common vertical edge of
two adjacent atomic squares, in the form of a union of finitely many intervals. The
line flow in this system partitions the system into a transient set and a recurrent
set. We are interested in the geometry of these two sets.

1. Introduction

We continue our research into non-integrable systems concerning billiard flow in
polygons and solids as well as the related problem of geodesic flow on flat surfaces and
in flat manifolds. In the cases that we have studied thus far, the flow is piecewise
linear, time reversible and measure preserving. In particular, the last property
permits the application of the Birkhoff ergodic theorem, and this leads to uniformity
of the relevant orbits inside flow-invariant sets.

In this paper, we study some new dynamical systems where the corresponding
piecewise linear flow is neither time reversible nor measure preserving. Here the work
of Veech [9] concerning the 2-circle problem serves as our motivation. Related to
the 2-circle problem is a polysquare translation surface comprising 2 atomic squares,
modified by the introduction of some partial barriers on some edges of the squares.
The question then arises as to what may happen if these barriers are one-sided,
permitting flow in one direction but not the other. We show that these one-sided
barriers are responsible for the violation of both the time reversible and the measure
preserving properties.

Dynamical systems with such long term behaviour are said to be dissipative.
Intuitively, it means that the time evolution of the flow contracts the space-volume.

The Lorentz attractor, motivated by weather prediction and claiming that the
time evolution contracts the space-volume exponentially fast, is perhaps famous and
notorious with equal measure. It is the quintessential mathematical model of chaos
theory which has a huge literature. Thus it is somewhat unsatisfactory that little
has been proved with any mathematical rigour concerning the Lorentz attractor.

Our flat dissipative systems here are quite different, and exhibit slow contraction
of the space-volume, so we may use the term slow chaos. However, we are able to
carry out a rigorous mathematical discussion on these systems with precise proofs.

Time irreversibility is a very interesting property that brings one to the well
known Loschmidt paradox, or reversibility-irreversibility paradox, which serves as a
criticism of the so-called H-theorem of Boltzmann. Here a fundamental problem
of the proof of Boltzmann is circular reasoning and concerns an element of time
asymmetry artifically injected into an argument to establish time asymmetry.

The Loschmidt paradox is still fresh after 150 years, perhaps due to the lack of
any time irreversible mathematical model with a detailed theory providing theorems
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and proofs. We hope our work here will bring a little insight into this very intriguing
question.

We introduce a dissipative system P by starting first with a finite polysquare
translation surface, and then modifying it by including a one-sided barrier B on
a common vertical edge of two adjacent atomic squares, in the form of a union of
finitely many vertical intervals, and where a set A corresponding to B is chosen on
a different vertical edge on the same horizontal street that contains B. We consider
a flow moving from left to right. When a flow line with irrational slope hits the
barrier B from the left, it continues from the corresponding point of the set A. We
then observe that there are points on P that stay away from the flow line, apart
possibly from the early stages, and there are points on P with arbitrarily small
neighbourhoods that are visited by the flow line infinitely often as time goes to
infinity. The system P is thus divided into two subsets, and we are interested in the
structure of these two subsets which we call respectively the transient set and the
recurrent set.

We begin our investigation by considering in Section 2 the special case of the 2-
square torus, modified by the inclusion of a one-sided barrier on the common vertical
edge. We show that there is a simple reverse flow recipe which helps us investigate
this question, and that both the transient set and the recurrent set are finite unions
of polygons with total area 1 and with boundary edges that are either vertical or
parallel to the direction of the flow. We also explain how this problem also possesses
a form of cyclic symmetry.
We then proceed in Section 3 to investigate the corresponding problem with the

n-square torus modified in a similar way. Here we may lose the cyclic symmetry
which is crucial in the earlier investigation. Nevertheless we are able to establish
some partial results. Then in Section 4, we consider the more general problem of
starting with a polysquare translation surface, and use simple surfaces related to
the L-surface to illustrate some properties of the transient sets and the recurrent
sets. We show that each can take up a very large proportion of the system or a very
small proportion of the system, and that the recurrent set can be split into disjoint
components. We then make a thorough study of the case of the modified L-surface.

In Section 5, we study the problem of modified polysquare translation surfaces
in greater detail. Here we develop an extension process which is iterative and helps
us study more closely the recurrent set. We also use some important results of
Kakutani and Kac. However, the main question is whether this extension process is
finite, in which case we can conclude that both the transient set and the recurrent
set are finite unions of polygons and with boundary edges that are either vertical or
parallel to the direction of the flow.

Section 6 is devoted to the study of this question. We begin this investigation
by studying two special cases of the problem, one by making some assumptions on
the one-sided barrier and the other by making some assumption on the recurrent
set. We conclude our investigation by finally showing that the extension process is
indeed always finite, and this leads to the very nice description of the transient sets
and the recurrent sets.

2. Modification of the Veech model

Consider a modified billiard table comprising 2 atomic squares, with a one-sided
partial barrier of length b, where 0 < b < 1, on the common edge separating the
atomic squares, as shown in Figure 1. This barrier is one-sided in the sense that
when the billiard hits it from the left, as shown in the picture on the left, it rebounds
like normal billiard, whereas when the billiard hits it from the right, as shown in
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the picture on the right, it passes straight through. For simplicity, we have put this
one-sided barrier against the bottom edge, but it can be anywhere on the vertical
edge separating the atomic squares.

(0, 0) (1, 0)

(1, b)

(2, 1)

(0, 0) (1, 0)

(1, b)

(2, 1)

Figure 1: a modified billiard table

Note that the billiard flow in Figure 1, if not entirely horizontal or vertical, is a
4-direction flow. We can convert it into a 1-direction flow on some modified system
using the simple idea of König and Szücs [6] in 1913 that involves reflection across
a horizontal axis and across a vertical axis. This results in 1-direction flow on the
modified system as shown in Figure 2. However, we need to describe this 1-direction
flow very carefully.

(0, 0)

(4, 2)

(1, 1 − b)

(1, 1 + b)

(3, 1 − b)

(3, 1 + b)

Figure 2: a modified system corresponding to Figure 1

Figure 3 describes the flow on the modified system. The left side of the vertical
barrier on the left is identified with the right side of the vertical barrier on the right.
Thus a flow line that hits the left side of the vertical barrier on the left continues
in the same direction from the corresponding point on the right side of the vertical
barrier on the right. On the other hand, the left side of the vertical barrier on the
right is also identified with the right side of the vertical barrier on the right. Thus a
flow line that hits the left side of the vertical barrier on the right continues straight
through in the same direction. Indeed, the 1-direction flows indicated in Figure 3
correspond precisely to the billiard flows in Figure 1.

(0, 0)

(4, 2)

(1, 1 − b)

(1, 1 + b)

(3, 1 − b)

(3, 1 + b)

Figure 3: geodesic flow on the system in Figure 2

Note that the system in Figure 3 is modified from a surface, but is not a surface.
The left side of both the vertical barrier on the left and the vertical barrier on the
right are identified with the right side of the vertical barrier on the right, so there
is no pairwise identification of edges. The important point is that we can still study
1-direction flow on it, although this flow is not time reversible.

The systems in Figures 3 and 4 are equivalent. The latter dynamical system
satisfies the following convention which we now adopt.
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(0, 0)

(2, 1)

(1, 1+b
2 )

(1, 1−b
2 )

Figure 4: a system equivalent to Figures 2 and 3

Convention. Henceforth we consider dissipative systems involving 1-direction flow
from left to right and with irrational slope α > 0. When the dissipative flow line
hits a one-sided barrier, it then continues from the corresponding point on the left
vertical edge of the system and in the same direction.

Consider the dissipative system P obtained from the 2-square torus modified by
the inclusion of a one-sided barrier which may include both, one or neither of the
endpoints (1, a) and (1, b), as shown in Figure 5. We see that the two distinct flow
line segments below the dotted line both continue along the bold flow line segment.
Thus any measure preserving property of the flow is violated by a factor of 2, and
so we cannot directly apply ergodic theory.

(0, 0)

(1, b)

(1, a)

(2, 1)

Figure 5: lack of measure preserving property

For the system P shown in Figure 5, the dissipative flow of fixed irrational slope

α > 0 can be described in terms of an operator T
(t)
α , where t ⩾ 0 denotes time.

Roughly speaking, this operator denotes advancing geodesic flow of the fixed slope
α by time t. More precisely, for any dissipative flow line L(t), t ⩾ 0, of the fixed
slope α, we write xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

T(t)
α (L(t1)) = L(t1 + t), t1 ⩾ 0.

In other words, the operator T
(t)
α advances the point L(t1) on the flow line to the

point L(t1 + t) after a further time t has elapsed.

Using this operator T
(t)
α , we can partition P into two subsets. To define these two

subsets, we use some concepts introduced by Birkhoff [2] for a very general class of
dynamical systems in 1927.

We say that a point P ∈ P is a wandering point of P if there exists an open
neighbourhood D = D(P ) of the point P and a finite threshold t0 ⩾ 0 such that
the intersection xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

D ∩T(t)
α (D) = ∅ for every t > t0; (2.1)

so that a dissipative flow line of slope α and starting from P is bounded away from
P after time t0. Furthermore, we say that a point P ∈ P is a non-wandering point
of P if it is not a wandering point of P .

The set W(P ;α) of all wandering points of P is called the transient set of P ,
and the set R(P ;α) of all non-wandering points of P is called the recurrent set or
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attractor of P . These two subsets of P are complements of each other, and give a
partition of P .

It follows easily from the definition that the transient set W(P ;α) is open and
that the recurrent set R(P ;α) is closed and invariant under dissipative flow of
slope α. These two subsets are illustrated in Figure 6 in the case of the modified
2-square torus in Figure 5. We emphasize in particular their dependence on the
fixed slope α of the flow under consideration. It is also worth noting that the
definition of wandering points and non-wandering points is given in terms of open

neighbourhoods of the points and their images under the operator T
(t)
α , and not in

terms of the points and dissipative flow lines that start from them.

W(P ; α)R(P ; α)

(0, 0)

(2, 1)

(1, a)

(1, b)

(0, a)

(0, b)

BA A

Figure 6: transient set and recurrent set

Figure 7 illustrates that any dissipative flow line of slope α that starts from a
point P ∈ R(P ;α) remains in the recurrent set R(P ;α), so that the recurrent set
R(P ;α) is invariant under dissipative flow of slope α.

bP

(0, 0)

(2, 1)

A B

bP

(0, 0)

(2, 1)

A B

Figure 7: invariance of the recurrent set under dissipative flow

Meanwhile, Figure 8 illustrates that any dissipative flow line of slope α that starts
from a point P ∈ W(P ;α) eventually moves into the recurrent set R(P ;α). Once
there, it clearly never returns to the transient set W(P ;α).

bP

(0, 0)

(2, 1)

A B

bP

(0, 0)

(2, 1)

A B

Figure 8: leaving the transient set to join the recurrent set

We comment here that the above definitions for W(P ;α) and R(P ;α) remain
valid for any system P that arises when a finite polysquare translation surface is
modified by the addition of a one-sided barrier on the common vertical edge of
2 atomic squares. However, we need to pay some attention to the existence of
pathological points. These are points P ∈ P where a dissipative flow line of slope
α that starts from the point P hits a singularity of P and becomes undefined. For
the modified 2-square torus in Figures 5 and 6, provided that we clearly indicate
whether the one-sided barrier includes either endpoint, then while these endpoints
are singularities, they are not pathological points because we have clear indication
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on how the flow line continues after hitting either of them. Pathological points do
not affect our argument, as they form a set of 2-dimensional Lebesgue measure 0.

Theorem 1. Consider dissipative flow of slope α, where α > 0 is irrational, on a
system P such as those shown in Figures 4–8, where the 2-square torus has been
modified with the inclusion of a one-sided barrier on the common vertical edge of
the atomic squares, in the form of a union of finitely many vertical intervals. For
the recurrent set R(P ;α) and the transient set W(P ;α), the following hold:

(i) Both sets are finite unions of polygons with total area 1 and with boundary
edges that are vertical or of slope α.
(ii) The recurrent set R(P ;α) is invariant under dissipative flow of slope α, and

every half-infinite dissipative flow line of slope α in the set R(P ;α) is uniformly
distributed in this set.

(iii) Every half-infinite dissipative flow line of slope α that starts from a point in
the transient set W(P ;α) eventually leaves the set, moves to the set R(P ;α) and is
uniformly distributed there.

Proof. We proceed in a number of steps.

Step 1. The pointwise definition of the recurrent set R(P ;α) does not provide any
hint on how we may explicitly construct and describe the set. Indeed, in the general
situation, this is a rather difficult problem. However, for the modified 2-square torus
under consideration, we consider a no-go zone N (P ;α) illustrated in Figure 9. This
is an open subset of P obtained by sweeping the barrier B without its endpoints by
the dissipative flow of slope α towards the right vertical edge of P .

N (P ; α)
A B

(0, 0)

(1, b)

(1, a)

(2, 1)

(0, 0)

(1, b)

(1, a)

(2, 1)

D

D′

Figure 9: the 2-square torus modified with one-sided barriers

We claim that N (P ;α) ⊂ W(P ;α); in other words, that every point of the set
N (P ;α) is a wandering point of P . Since N (P ;α) is open, every point of N (P ;α)
is contained in an open subset D ⊂ N (P ;α). To justify this claim, it suffices to
show that for every open subset D ⊂ N (P ;α), there exists t0 > 0 such that (2.1)
holds. Now let D′ denote the image of D on the right side of the one-sided barrier
B under projection in the direction (−1,−α), as illustrated in the picture on the
right in Figure 9. Then D′ is an open subinterval of B and

D′ ∩T(t)
α (D) = ∅ for every t > 0,

so that for every t0 satisfying 0 ⩽ t0 ⩽ (1 + α2)1/2,

T(t0)
α (D′) ∩T(t)

α (D) = ∅ for every t > (1 + α2)1/2.

It is not difficult to see that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

D ⊂
⋃

0⩽t0⩽(1+α2)1/2

T(t0)
α (D′).

It then follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

D ∩T(t)
α (D) = ∅ for every t > (1 + α2)1/2, (2.2)

justifying our claim.
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Step 2. We define the open set M(P ;B;α) to be the largest possible extension of
the no-go zone N (P ;α). To find this set, let A be an interval on the left vertical
edge of P , identical to the interval B that represents the one-sided barrier, as shown
in Figure 6. Consistent with the fact that the transient set W(P ;α) is open, we
assume that the interval B is open. This assumption is valid, since any deviation
from it affects only sets of 2-dimensional Lebesgue measure 0.

Reverse flow recipe. A given point P ∈ P satisfies P ∈ M(P ;B;α) if and only if
starting from P , an ordinary geodesic on the 2-square torus in the direction (−1,−α)
hits the open interval B before hitting the corresponding interval A on the left vertical
edge of P.

Using time-quantitative equidistribution of geodesic flow on the 2-square torus
in the form of the Koksma–Erdős–Turán version of the Weyl criterion, it follows
that for any given irrational number α > 0, there is a finite threshold T0(α) such
that starting from any point P and moving in the direction (−1,−α), this geodesic
segment hits B or A in time less than T0(α). Hence the set M(P ;B;α) is a finite
union of polygons with boundary edges that are vertical or of slope α. We shall
comment further on the finiteness of T0(α) in the Remark after the completion of
the proof of Theorem 1.

We claim that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

M(P ;B;α) ⊂ W(P ;α); (2.3)

in other words, that every point of the set M(P ;B;α) is a wandering point of P .
Since M(P ;B;α) is open, every point of M(P ;B;α) is contained in an open subset
D ⊂ M(P ;B;α). To justify this claim, it suffices to show that for every open subset
D ⊂ M(P ;B;α), there exists t0 > 0 such that (2.1) holds. An argument similar to
that in Part 1 leads to an analogue of (2.2), in the form

D ∩T(t)
α (D) = ∅ for every t > T0(α),

justifying the assertion (2.3).
Let Mc(P ;B;α) = P \ M(P ;B;α) denote the set of all points P ∈ P that are

not in M(P ;B;α). Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R(P ;α) ⊂ Mc(P ;B;α). (2.4)

The 2-cyclic symmetry of the system P then ensures that the sets M(P ;B;α) and
Mc(P ;B;α) have essentially the same projection on the unit torus [0, 1)2. It follows
that both sets have 2-dimensional Lebesgue measure 1.

Step 3. Let L(t), t ⩾ 0, denote any half-infinite dissipative flow line on P . We say
that a point P ∈ P is an infinite-time limit point of L if there exists a sequence
of time instances t1 < t2 < t3 < . . . such that ti → ∞ and L(ti) → P as i → ∞.
Furthermore, we say that the collection of all infinite-time limit points of L is the
infinite-time limit set of L. By definition, this set is invariant under dissipative flow
of slope α and so has 2-dimensional Lebesgue measure 0, 1 or 2. This cannot be
equal to 0, since its projection to the unit torus [0, 1)2 has 2-dimensional Lebesgue
measure 1. This cannot be equal to 2, since it does not contain points of N (P ;α).
Hence it has 2-dimensional Lebesgue measure 1.

Suppose now that L(t), t ⩾ 0, denotes any such half-infinite dissipative flow line
on P that starts from a point in the set Mc(P ;B;α), so that L(0) ∈ Mc(P ;B;α).
We claim that the entire dissipative flow line is disjoint from the set M(P ;B;α), so
that the set Mc(P ;B;α) is invariant under dissipative flow of slope α. Suppose, on
the contrary, that there exists t1 > 0 such that L(t1) ∈ M(P ;B;α). Then it follows
from the reverse flow recipe that there exists t0 < t1 such that L(t0) ∈ B. There are
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two possibilities: (i) If t0 > 0, then the dissipative flow of slope α cannot take L(0)
to L(t0), a contradiction. (ii) If t0 ⩽ 0, then it follows that L(0) ∈ M(P ;B;α), also
a contradiction. Thus the infinite-time limit set of L is a subset of Mc(P ;B;α).
Since both sets have 2-dimensional Lebesgue measure 1, they are essentially equal.

Step 4. The essentially 2-cyclic symmetry of the system P guarantees that the
sets M(P ;B;α) and Mc(P ;B;α) split up the system P in an essentially fair way.
More precisely, for every (x, y) ∈ [0, 1)2, apart from a set of 2-dimensional Lebesgue
measure 0, precisely one of the two points

(x, y) and (x+ 1, y)

lies in M(P ;B;α) while the other lies in Mc(P ;B;α). We next use Figure 6 to
guide our discussion.

Starting from anywhere within the set Mc(P ;B;α), the dissipative flow of slope
α moves within the set Mc(P ;B;α) which is the white part in Figure 6. When it
reaches the white part immediately to the left of B or the white part immediately
to the left of A on the right vertical edge, it then jumps back to A. The fair split of
P mentioned above implies that this jump is 1-to-1 and measure preserving. Thus
the dissipative flow of slope α restricted to the set Mc(P ;B;α) is both invertible
and measure preserving.

Suppose that we start from A and sweep it along by the dissipative flow of slope α.
Then this certainly contains in the left atomic square the twin of N (P ;α) in the
right atomic square, as illustrated in Figure 10.

N (P ; α)N (P ; α)
twin of

(0, 0)

(2, 1)

(1, a)

(1, b)

Figure 10: no-go zone and its twin

Furthermore, this flow returns to A infinitely many times in a 1-to-1 and measure
preserving way. Let R(P ;A;α) be the resulting subset of P , the construction of
which requires only finitely many zig-zaggings; see the Remark after the completion
of the proof of Theorem 1. It is also clear that

R(P ;A;α) ⊂ Mc(P ;B;α). (2.5)

Observe next that P is a square-covering system, so the projection of the dissipative
flow of slope α to the unit torus [0, 1)2 is ordinary integrable geodesic flow of slope α.
Since α is irrational, the dissipative flow of slope α modulo one is ergodic. It then
follows that any subset of P of positive 2-dimensional Lebesgue measure that is
invariant under the dissipative flow of slope α must have 2-dimensional Lebesgue
measure 1 or 2. The inclusion (2.5) then clearly implies that R(P ;A;α) must have
2-dimensional Lebesgue measure 1. This means that

R(P ;A;α) = Mc(P ;B;α), (2.6)

apart possibly from an exceptional set of 2-dimensional Lebesgue measure 0.
The measure preserving aspect then allows us to use the well known Poincare

recurrence theorem, and conclude that apart possibly from an exceptional set of
2-dimensional Lebesgue measure 0, every point in R(P ;A;α) is a non-wandering
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point and so lies in R(P ;α). Combining this observation with (2.4) and (2.6), we
conclude that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

R(P ;A;α) = Mc(P ;B;α) = R(P ;α),

apart possibly from exceptional sets of 2-dimensional Lebesgue measure 0.
On the other hand, the dissipative flow of slope α moves B first to the gray part

in Figure 6 which is N (P ;α). When it reaches the gray part immediately to the
left of B or the gray part immediately to the left of A on right vertical edge, it then
jumps to A. Thus every point of M(P ;B;α) is eventually moved to A by the flow.
Since both sets W(P ;α) and M(P ;B;α) have 2-dimensional Lebesgue measure 1,
it follows that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

W(P ;α) = M(P ;B;α),

apart possibly from an exceptional set of 2-dimensional Lebesgue measure 0.

Step 5. Uniformity in the recurrent set R(P ;α) is now established by projecting to
the unit torus [0, 1)2 and applying the results such as the Birkhoff ergodic theorem
and also unique ergodicity.

This completes the proof of Theorem 1. □

Remark. The finiteness of T0(α) in Step 2 of the preceding proof follows from the
fact that we are essentially considering geodesic flow in the unit torus [0, 1)2 in the
direction (−1,−α), and N (P ;α) is extended to M(P ;B;α) in a finite number of
zig-zaggings; i.e. a finite number of traverses between the opposite vertical edges of
atomic squares. We also use the following fact from diophantine approximation.

Irrational rotation lemma. Consider the irrational rotation sequence

s0 + nα, n = 0, 1, 2, 3, . . . ,

in the unit torus [0, 1), where α is irrational. For any fixed ε > 0, there is a finite
threshold N = N(α; ε) such that the union

N−1⋃
n=0

(s0 + nα− ε, s0 + nα + ε) = [0, 1)

for any starting point s0.

Proof. A fundamental result in diophantine approximation says that∣∣∣∣α− pk
qk

∣∣∣∣ < 1

qkqk+1

,

where pk/qk, k = 0, 1, 2, 3, . . . , is the sequence of convergents to α. Then∣∣∣∣ℓα− ℓpk
qk

∣∣∣∣ < ℓ

qkqk+1

⩽
1

qk+1

<
1

qk
, ℓ = 0, 1, 2, 3, . . . , qk. (2.7)

Furthermore, pk and qk are coprime, so that as ℓ runs through the numbers 1, . . . , qk,
ℓpk runs through a complete set of residues modulo qk. Choosing a positive integer
k such that the denominator qk > 1/ε, we see that the threshold N = N(α; ε) = qk
satisfies the requirements. □
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3. Extension of the modified Veech model

Theorem 1 can be extended to the case of the n-square torus modified by identical
one-sided barriers on the vertical edges of adjoining atomic squares, in the form of a
union of finitely many vertical intervals. Denote this system by P . Here Figure 11
illustrates P in the special case n = 4 and where the union consists of a single
vertical interval.

N (P ; α)

part of

N (P ; α)

part of

N (P ; α)

part of

(0, 0)

(1, b)

(1, a)

(2, b)

(2, a)

(3, b)

(3, a)

(4, 1)

(0, a)

(0, b)

A B1 B2 B3

Figure 11: the 4-square torus modified with one-sided barriers

Consider a dissipative flow line on P with irrational slope α > 0. When this flow
line hits the left side of any one-sided barrier B1, . . . , Bn−1, it then continues in the
same direction from the corresponding point on the vertical interval A on the left
vertical edge.

We can prove that the recurrent set R(P ;α) has area 1 and is a finite union
of polygons with boundary edges that are vertical or of slope α, and also that
the transient set W(P ;α) consists of n − 1 parts that are, apart from exceptional
sets of 2-dimensional Lebesgue measure 0, all equivalent to R(P ;α) modulo one.
Furthermore, every dissipative flow line with slope α in the recurrent set R(P ;α)
is uniformly distributed in this set. Moreover, every dissipative flow line with slope
α that starts from any point in the transient set W(P ;α) eventually leaves the set,
moves to the recurrent set R(P ;α) and is uniformly distributed there.
While we have considered one-sided barriers, there is still some sort of cyclic

symmetry, of great help so far. However, the situation becomes considerably more
complicated if this cyclic symmetry is also violated, as in the system illustrated in
Figure 12 concerning a modified n-square torus in the case n = 4.

(0, 0)

(1, b)

(1, a)

(4, 1)

Figure 12: a dissipative system while cyclic symmetry is violated

In this section, we establish the following simpler result.

Theorem 2 (weak area theorem). Given any ε > 0, there exists an irrational
number α > 0 and a positive integer n such that for some n-square torus which is
modified with the addition of a one-sided barrier, the time evolution of the dissipative
flow of slope α contracts the initial space-volume to less than ε-part. In other words,
denoting the modified n-square torus by P, the recurrent set R(P ;α) satisfies

λ2(R(P ;α))

n
< ε.

As usual, λ2 denotes the 2-dimensional Lebesgue measure.
In fact, we establish the following result from which Theorem 2 follows easily from

the details of the construction by the application of a linear transformation.



IRREVERSIBLE AND DISSIPATIVE SYSTEMS 11

Theorem 3 (small attractor theorem). Suppose that for an irrational number α > 0,
the continued fraction digits are unbounded. Then there exists an infinite sequence
of vertical intervals Bσ, σ = 1, 2, 3, . . . , with the following property. For every
σ = 1, 2, 3, . . . , let Pσ denote the unit torus modified by the addition of a vertical one-
sided barrier Bσ as illustrated in Figure 13, and consider the recurrent set R(Pσ;α)
under dissipative flow of slope α on Pσ. Then

λ2(R(Pσ;α)) → 0 as σ → ∞.

BσAσ

Figure 13: a one-sided barrier Bσ and its counterpart Aσ on the left vertical edge

Proof. For a one-sided vertical barrier Bσ in the torus [0, 1)2, let Aσ = Aσ(Bσ)
denote its counterpart on the left vertical edge of the torus, as shown in Figure 13.

We partition the unit torus into two polygonal regions M(Aσ) and M(Bσ) using
the reverse flow recipe involving the flow in the direction (−1,−α). This flow moves
every point of M(Aσ) to Aσ without hitting Bσ, and moves every point of M(Bσ) to
Bσ without hitting Aσ. It is easy to see that M(Aσ) is invariant under dissipative
flow of slope α, and that the dissipative flow of slope α moves M(Bσ) to M(Aσ).
Here the last point follows from the observation that the barrier-free geodesic flow
of slope α moves M(Bσ) to Aσ ∪Bσ, and the dissipative flow of slope α jumps from
Bσ to Aσ, after which it will never return to M(Bσ). Hence

R(Pσ;α) ⊂ M(Aσ),

if we ignore a possible exceptional set of 2-dimensional Lebesgue measure 0. Thus
to establish the small attractor theorem, it remains to show that M(Aσ) is less than
ε-part of the unit torus [0, 1)2 provided that the index σ is chosen appropriately.
Let n ⩾ 9 be an integer. For every integer i = 1, 2, 3, . . . , n, let

Vi =

{(
i

n
, y

)
: y ∈ [0, 1)

}
denote the vertical line segment of length 1 and x-coordinate equal to i/n in the unit
torus [0, 1)2. We consider a geodesic Lα on [0, 1)2, with irrational slope α > 0 and
starting from the point (0, β) on the left vertical edge of [0, 1)2. Then Lα intersects Vi

for the first time at the point (i/n, {β+iα/n}), and the collection of the intersection
points of Lα with Vi is given by(

i

n
,

{
β +

(i+ jn)α

n

})
, j = 0, 1, 2, 3, . . . .

These points partition Vi in a fairly regular fashion. More precisely, let qk = qk(α)
denote the denominator of the k-th convergent to the number α, where the integer
k is assumed to be sufficiently large. Consider the finite collection(

i

n
,

{
β +

(i+ jn)α

n

})
, j = 0, 1, 2, 3, . . . , qk − 1, (3.1)

of the first qk intersection points of Lα with Vi. Using the inequality (2.7) and the
inequality ∥γ1 − γ2∥ ⩽ |{γ1} − {γ2}|, where ∥γ∥ denotes the distance of γ from the
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nearest integer, we see that any two distinct points in (3.1) represented by j1 and
j2 satisfying 0 ⩽ j1 < j2 ⩽ qk − 1 have gap∣∣∣∣{β +

(i+ j1n)α

n

}
−
{
β +

(i+ j2n)α

n

}∣∣∣∣
⩾ ∥(j1 − j2)α∥ ⩾

∥∥∥∥(j1 − j2)pk
qk

∥∥∥∥− 1

qk+1

⩾
1

qk
− 1

qk+1

, (3.2)

since |j1 − j2| < qk and the pair pk, qk are coprime, so that (j1 − j2)pk is not
divisible by qk. Thus the y-coordinates of the points in the set (3.1) closely mimic
an arithmetic progression with gap 1/qk.
Consider next a subinterval I on the left vertical edge of [0, 1)2, with lower and

upper endpoints given respectively by

(0, β) and

(
0, β +

1

qk
− 1

qk+1

)
.

We move I by using the splitting-free geodesic flow of slope α on [0, 1)2 so that the
horizontal distance covered is qk, and let S(I) denote the resulting strip in [0, 1)2.
In view of the inequality (3.2), we see that this strip S(I) is self-avoiding, and its
area is precisely xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

qk

(
1

qk
− 1

qk+1

)
= 1− qk

qk+1

.

Furthermore, let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Iν , ν = 1, 2, 3, . . . , nqk, (3.3)

denote the successive vertical intervals of intersection of S(I) with the line segments
Vi, i = 1, 2, 3, . . . , n, so that if ν = i + jn, where the indices i = 1, 2, 3, . . . , n and
j = 0, 1, 2, 3, . . . , qk − 1, then the interval Iν has lower endpoint given by (3.1).
Consider next a subcollection

Iν , ν = 1, 2, 3, . . . , [n1/2qk], (3.4)

of the collection of intervals (3.3), obtained in the early stage of the process in the
construction of the set S(I). This gives time-closeness but not space-closeness. The
total length of these intervals is at least

(n1/2 − 1)qk

(
1

qk
− 1

qk+1

)
> n1/2 − 2,

provided that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

qk+1 > n1/2qk. (3.5)

Hence there is some y0 ∈ (0, 1) such that at least n1/2 − 2 intervals in (3.4) contain
points with y-coordinates equal to y0. The y-coordinates of the lower endpoints of
these intervals are clearly contained in an interval of length less than 1/qk, so it
follows immediately from the pigeonhole principle that the y-coordinates of two of
these intervals Iν1 and Iν2 differ by at most 1/(n1/2−2)qk. Thus there are subintervals
I ′ν1 ⊂ Iν1 and I ′ν2 ⊂ Iν2 that contain precisely the same y-coordinates, with common
length satisfying

|I ′ν1| = |I ′ν2| ⩾ |I| − 1

(n1/2 − 2)qk
=

1

qk
− 1

qk+1

− 1

(n1/2 − 2)qk
>

1

qk
− 4

n1/2qk
,

provided that (3.5) holds and n ⩾ 9.
We may assume, without loss of generality, that ν1 < ν2. Clearly the reverse

α-flow, starting from the far end of S(I), namely Inqk , hits Iν2 before hitting Iν1 .
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We now let B = I ′ν2 and A = I ′ν1 , and let P denote the unit torus [0, 1)2 modified by
the inclusion of the one-sided barrier B. Then clearly the transient set has measure

λ2(W(P ;α)) ⩾
1

n
(nqk − n1/2qk)

(
1

qk
− 4

n1/2qk

)
> 1− 4

n1/2
,

so that the recurrent set has measure

λ2(R(P ;α)) <
4

n1/2
< ε,

provided that n ⩾ (4/ε)2. Naturally, since qk+1 > ak+1qk and the continued fraction
digits ak of α are unbounded, we can always find a sufficiently large integer k so
that (3.5) is satisfied.

Finally we can determine that the vertical line segment Vi, i = 1, 2, 3, . . . , n, that
contains the edge A to be the left vertical edge of the unit torus, and this completes
the proof. □

4. Modification of polysquare translation surfaces

We next consider modification of a polysquare translation surface by the inclusion
of a one-sided vertical barrier on part of a vertical edge. We look at some examples.

Example 4.1. Consider the horizontally reversed L-surface that is modified by
the inclusion of a one-sided barrier B of length b, where 0 < b < 1, as shown in
the picture on the left in Figure 14. Here we make the assumption that the slope
α > 0 of the dissipative flow satisfies α < b. Using the reverse flow recipe, we see
that the transient set is essentially the part of the system that is coloured gray,
and includes the entire top atomic square. Furthermore, if we modify the original
reverse L-surface by including extra atomic squares on top of the top atomic square,
as illustrated in the picture on the right in Figure 14, we see that these extra atomic
squares are all part of the transient set. This illustrates the possibility that the
transient set may make up the overwhelming majority of the system.

(0, 0)

(2, 1)

(2, 2)

(0, 0)

(2, 1)

(2, ℓ)

B B

Figure 14: horizontally reversed L-surface modified by the inclusion
of a one-sided barrier

Example 4.2. Consider the vertically reversed L-surface that is modified by the
inclusion of a one-sided barrier B of length b, where 0 < b < 1, as shown in the
picture on the left in Figure 15. Again we make the assumption that the slope α > 0
of the dissipative flow satisfies α < b. Using the reverse flow recipe, we see that the
transient set is essentially the part of the system that is coloured gray, and leaves
out the entire bottom atomic square. Furthermore, if we modify the original reverse
L-surface by including extra atomic squares below the bottom atomic square, as
illustrated in the picture on the right in Figure 15, we see that these extra atomic
squares do not form any part of the transient set. This illustrates the possibility
that the transient set may make up the overwhelming minority of the system.
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(2, 0)

(0, −1)

(0, −2)

(2, 0)

(0, −1)

(0, −ℓ)

B B

Figure 15: vertically reversed L-surface modified by the inclusion
of a one-sided barrier

Example 4.3. Consider two separate copies of the modified horizontally reversed
L-surface in Example 4.1, with identically placed one-sided barriers B1 and B2 of
length b, where 0 < b < 1, and glued together one on top of the other as shown in
Figure 16. Again we make the assumption that the slope α > 0 of the dissipative
flow satisfies α < b. Using the reverse flow recipe, we see that the transient set
is essentially the part of the system that is coloured gray. Clearly the recurrent
set in white is made up of two non-trivial subsets, each of which is invariant under
dissipative flow of slope α. Naturally the dissipative flow cannot take a point in
one of the invariant subsets of the recurrent set to anywhere in the other invariant
subset, so it follows that the dissipative flow on the recurrent set cannot possibly be
ergodic.

(0, 0)

(2, 4)

B1

B2

Figure 16: L-surfaces glued together and modified by the inclusion
of identical one-sided barriers

Consider the special case where we start with the L-surface and modify it with
the inclusion of a one-sided barrier on the vertical edge separating the two bottom
atomic squares, as shown in Figure 17.

(0, 0)

(2, 1)

(0, 2)

B

Figure 17: L-surface modified by the inclusion of a one-sided barrier

Denote such a modified system by P . Computer-generated pictures indicate that
the recurrent set R(P ;α) of P has area 1 or 2, and is a finite union of polygons with
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boundary edges that are vertical or of slope α. The pictures can be surprisingly
complicated, particularly if the barrier is short, or if it breaks into finitely many
pieces. This makes the problem rather interesting.

Meanwhile, the dissipative system P modulo one is the ordinary geodesic flow of
slope α in the unit torus [0, 1)2, and this is uniquely ergodic. This implies that if
the recurrent set R(P ;α) of P has area 1, then the dissipative flow of slope α there
is uniquely ergodic. On the other hand, if the recurrent set R(P ;α) of P has area 2,
then we do not know immediately whether the dissipative flow of slope α there is
also uniquely ergodic. In principle, the set R(P ;α) may contain an invariant subset
of area 1. This raises an interesting uniformity question.

We next illustrate a class of dissipative, or non-conservative, dynamical systems.
The restriction of the flow to the recurrent set gives rise to a nice conservative
measure preserving system, to which we may apply classical ergodic theory.

Consider the system P shown in Figure 18, where we start with the L-surface
and then modify it by including a one-sided barrier of length b as shown, with lower
endpoint (1, 0) and upper endpoint (1, b).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b

b

b b

(0, 3α − 2)

(0, 1 − α)
(0, 2α − 1)

(0, α)

(0, 1)
(0, 3α − 1)

(0, 2 − α)
(0, 2α)

(0, 1 + α)

(1, 2α)

(1, 1 + α)

(2, 3α − 2)

(2, α)

(α−1 − 1, 0) (2α−1 − 2, 0) (2α−1 − 1, 0)

(2α−1 − 1, 1)

(α−1 − 1, 2) (2α−1 − 2, 2)

(1, b)
(1, 2α − 1)

(1, α)

(1, 3α − 1)

(0, 0)

(0, 2)

(1, 1)

Figure 18: L-surface modified by the inclusion of a one-sided barrier

We consider dissipative flow of slope α on P , and make the further restrictions

2

3
< α <

3

4
and 0 < b < 2α− 1, (4.1)

so that Figure 18 represents reasonable ranges of the parameters b and α.
It is straightforward to check that the recurrent set R(P ;α) is represented by the

part of P in white, and it has area 2. The transient set W(P ;α) is represented by
the part of P in gray, and it has area 1.
We have highlighted in Figure 18 some critical points and line segments which

help us construct the relevant interval exchange transformation of the dissipative
flow of slope α on P .
Let E denote the union of the left vertical edges of the atomic squares of P . It is

not difficult to see that the intersection of E with the transient set W(P ;α) modulo
one is the unit interval [0, 1), while the intersection

V = E ∩ R(P ;α)

of E with the recurrent set R(P ;α) modulo one is also the unit interval [0, 1), but
with multiplicity 2.

As shown in Figures 18 and 19, the set V is the union of four vertical line segments
L1, L2, L3, L4, where

(1) L1 has endpoints (0, 0) and (0, α);
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(2) L2 has endpoints (0, 1) and (0, 2α);
(3) L3 has endpoints (0, 1 + α) and (0, 2); and
(4) L4 has endpoints (1, 2α− 1) and (1, 1).
We can make further subdivisions, as shown in Figures 18 and 19, where
(5) L1 is split into L1,1, . . . , L1,4 at the points (0, 3α−2), (0, 1−α) and (0, 2α−1);
(6) L2 is split into L2,1, . . . , L2,3 at the points (0, 3α− 1) and (0, 2− α); and
(7) L4 is split into L4,1, L4,2 at the point (1, α).

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b

b

b b

L1,1

L1,2

L1,3

L1,4

L2,1

L2,2

L2,3

L3

L4,1

L4,2

Figure 19: L-surface modified by the inclusion of a one-sided barrier

Consider the discrete transformation

Tα : V → V
which is the dissipative shift by the vector (1, α). It follows from Figure 19 that

Tα(L1,3) = L2,1, Tα(L2,3) = L1,1,
Tα(L1,4) = L2,2 ∪ L2,3, Tα(L4,1) = L1,2 ∪ L1,3,

Tα(L3) = L4,1, Tα(L4,2) = L1,4,
Tα(L1,1 ∪ L1,2) = L4,2, Tα(L2,1 ∪ L2,2) = L3.

(4.2)

There is a good reason for listing the information in (4.2) in this particular way, as
it is not difficult to see that each column in (4.2) leads to the projections

T∗([1− α, 2α− 1)) = [0, 3α− 2),
T∗([2α− 1, α)) = [3α− 2, 2α− 1),

T∗([α, 1)) = [2α− 1, α),
T∗([0, 1− α)) = [α, 1),

(4.3)

where T∗ represents the modulo one projection of the second coordinates of Tα.
It is clear from (4.3) that the images in each column covers the unit interval [0, 1)
precisely once, so the unit interval [0, 1) is covered twice.
We can also describe the interval exchange transformation Tα by the directed

graph in the picture on the left in Figure 20 or by the undirected graph in the
picture on the right in Figure 20, each constructed using the information given by
(4.2). In both graphs, the 10 vertices are the intervals

L1,1, L1,2, L1,3, L1,4, L2,1, L2,2, L2,3, L3, L4,1, L4,2, (4.4)

For the graph on the left, a directed edge L′ → L′′ from a vertex L′ to a vertex
L′′ indicates that there exist points P ′ ∈ L′ and P ′′ ∈ L′′ such that P ′′ = Tα(P

′).
For the graph on the right, an undirected edge L′L′′ between vertices L′ and L′′

indicates that there exist points P ′ ∈ L′ and P ′′ ∈ L′′ such that P ′′ = Tα(P
′) or

P ′ = Tα(P
′′). This undirected graph is sometimes known as the overlapping graph

of the interval exchange transformation. Clearly this is a connected graph.
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b

b

b

b

b

b

b

b
b b

L2,3L1,1

L3L4,1

L1,4

L2,2

L4,2

L1,2

L1,3 L2,1

b

b

b

b

b

b

b

b
b b

L2,3L1,1

L3L4,1

L1,4

L2,2

L4,2

L1,2

L1,3 L2,1

Figure 20: a directed graph and the overlapping graph

Remark. Figure 21 shows the recurrent set R(P ;α) as a parallelogram after we have
performed some fake surgery on the system P , where we simply take the various
pieces of the set and build a parallelogram like a jigsaw puzzle. Note, however, that
the two sides of the dotted line segment between the points (1, 1) and (2, 1+α) are
not neighbours.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b

(0, α)

(0, 1)

(0, 2α)

(0, 1 + α)

(1, 1)

(2, 1 + α)

(2, 3α)

(2, 3α − 2)

(2, 3α − 1)

(2, α)

(2, 2)

(2α−1 − 2, 0) (2α−1 − 1, 0)

(α−1 − 1, 2) (2α−1 − 2, 2)

(1, b)

(0, α − 1)

(0, 0)

(0, 2)

Figure 21: visualization of the recurrent set as a parallelogram

On the other hand, let us return to Figure 19. Elementary calculations show that
the part of the recurrent set R(P ;α) in the right atomic square has area equal to
2 − 2α, the part of the recurrent set R(P ;α) in the top atomic square has area
equal to 2 − α−1, while the part of the recurrent set R(P ;α) in the bottom left
atomic square has area equal to 2α + α−1 − 2. In the special case when α = 1/

√
2,

these three numbers are respectively roughly equal to 0.586, 0.586 and 0.828, none
of which is close to 2/3. This means that if the dissipative flow of slope α on the
recurrent set R(P ;α) is uniformly distributed, then the right atomic square and
the top atomic square are under-visited, whereas the bottom left atomic square is
over-visited.

Recall that the 2-cyclic symmetry of the system is a crucial ingredient in our
argument in Section 2 where we consider the modified 2-square torus. For the
dissipative system P obtained from the L-surface by the inclusion of a one-sided
barrier on the common vertical edge of the bottom atomic squares, one cannot
expect to have any such symmetry property. However, in the special case when
the barrier B and the slope α of the flow satisfy the special conditions (4.1), which
accounts for uncountably many cases, we can nevertheless recover some form of
symmetry which proves to be very useful.

In Figure 22, the recurrent set R(P ;α) of area 2 is in white and the transient set
W(P ;α) of area 1 is in gray. Like in Figure 6 for the modified 2-square torus, they
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split the left side of the barrier B and the left side of the corresponding interval A
in an essentially fair way.

BA A

gray

whitegray

white

Figure 22: some form of symmetry

The dissipative flow of slope α moves B first to the gray part in Figure 22 which
is W(P ;α). When it reaches the gray part immediately to the left of B or the gray
part immediately to the left of A on right vertical edge, it then jumps to A. Thus
every point of W(P ;α) is eventually moved to A by the flow.
Starting from anywhere within the set R(P ;α), the dissipative flow of slope α

moves within the white part in Figure 22 which is the set R(P ;α). When it reaches
the white part immediately to the left of B or the white part immediately to the
left of A on the right vertical edge, it then jumps back to A. The fair split of left
side of the barrier B and the left side of the corresponding interval A implies that
this jump is 1-to-1 and measure preserving. Thus the dissipative flow of slope α
restricted to the set R(P ;α) is both invertible and measure preserving. Starting
from A and sweeping it along by the dissipative flow of slope α, this flow returns to
A infinitely many times in a 1-to-1 and measure preserving way.

However, since the recurrent set R(P ;α) has area 2, we cannot simply project to
the unit torus [0, 1)2 and make use of the integrable geodesic flow there of irrational
slope α, as in the case of the modified 2-square torus.

Observe from (4.2) and (4.3) that the y-coordinates of the endpoints of the 10
subintervals in (4.4) modulo 1 are {−α}, 0, {α}, {2α}, {3α}.
For any irrational number α > 0 and integer s ⩾ 2, suppose that the endpoints

of the participating intervals modulo 1 of the interval exchange transformation Tα :
[0, s) → [0, s) have values xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

{−α}, 0, {α}, {2α}, . . . , {ℓ0α}, (4.5)

where ℓ0 is a fixed positive integer, and that Tα modulo one acts as the α-shift in
the unit torus [0, 1). Then the ℓ0 + 2 points in (4.5) divide the unit torus [0, 1)
into ℓ0 + 2 critical subintervals. Lifting these critical subintervals in [0, 1) to [0, s),
we arrive at s(ℓ0 + 2) critical subintervals in [0, s). If S0 ⊂ [0, s) is a non-trivial
measurable Tα-invariant subset, then S0 must be a union of some of these s(ℓ0 +2)
critical subintervals.

We now use the case s = 2 and ℓ0 = 3 of the following result which can be proved
by a straightforward application of the method of [1, Lemma 4.1].

Lemma 4.1. If the overlapping graph of the s(ℓ0 + 2) critical subintervals of the
interval exchange transformation Tα : [0, s) → [0, s) is connected, then Tα is ergodic.
Furthermore, Tα is uniquely ergodic.

The special case (4.1) of the modified L-surface turns out to be a lucky case where
we can determine the recurrent set R(P ;α) and the transient set W(P ;α) without
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too much difficulty. The situation may be significantly different if the conditions
(4.1) are not satisfied. Consider the case of the system P as illustrated in Figure 23,
where b = 0.8 and α = 1/

√
2. Here we start from B and sweep out a no-go zone

which is the gray polygon with a vertical side on B. We then extend it by the strip
with left edge between (0, b) and (0, 1), noting that any flow that reaches any point
between (1, b) and (1, 1) eventually reaches A. We can then further extend the no-go
zone to the part of P in gray.

b

bb

b

b

b

b

b

b

b

(2, 1)

(2, b)
(2, α)

(0, b)

(0, 1)

(0, b + α)

(0, 1 + α)

(1, b + α)

(1, 1 + α)

(α−1 − 1, 2)

(1 + α−1(1 − b), 0)

A AB

Figure 23: the L-surface modified by the inclusion of a one-sided barrier

It remains true that any dissipative flow of slope α that reaches the gray part
immediately to the left of B or the gray part immediately to the left of A on the right
vertical edge continues from immediately to the right of A on the left vertical edge,
but there is no guarantee that this is part of the recurrent set R(P ;α). Figure 24
shows a further extension of the no-go zone. There is a subinterval of B which
is gray immediately to the left and it is also gray immediately to the left of the
corresponding subinterval of A. This leads to an extension of the no-go zone which
is shown in dark gray. Clearly the set M(P ;B;α) is a proper subset of the transient
set W(P ;α), and the recurrent set R(P ;α) is a proper subset of the set R(P ;A;α).

b

bb

b

b

b

b

b

b

b

(2, 1)

(2, b)
(2, α)

(0, b)

(0, 1)

(0, b + α)

(0, 1 + α)

(1, b + α)

(1, 1 + α)

(α−1 − 1, 2)

(1 + α−1(1 − b), 0)

A AB

graygray

Figure 24: a further extension of the no-go zone

Another interesting observation is illustrated by Figure 25 which highlights part
of the recurrent set R(P ;α).
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b

bb

b

b

b

b

b

b

b

(2, 1)

(2, b)
(2, α)

(0, b)

(0, 1)

(0, b + α)

(0, 1 + α)

(1, b + α)

(1, 1 + α)

(α−1 − 1, 2)

(1 + α−1(1 − b), 0)

A B
part of

R(P ; α)

Figure 25: part of the recurrent set

We see from Figure 24 that both trapezoids in dark gray in Figure 25 are part of
the set M(P ;B;α), hence part of the transient set W(P ;α). These two trapezoids
have the same projection on to the unit torus [0, 1)2. Since the projection of the
dissipative flow of slope α to the unit torus [0, 1)2 is integrable geodesic flow of
slope α which is uniformly distributed if α is irrational, it follows that the white
trapezoid in the bottom left atomic square in Figure 25 must be part of the recurrent
set R(P ;α).

It is clear from Figure 24 that the reverse flow recipe does not work in this case
and does not lead to the recurrent set R(P ;α). However, Figure 25 clearly gives a
non-trivial open subset of the recurrent setR(P ;α), so the recurrent setR(P ;α) can
be obtained by sweeping this open subset along by the dissipative flow of slope α,
and the construction is complete in a finite number of zig-zaggings; see the Remark
after the proof of Theorem 1. The recurrent set R(P ;α) is then a finite union of
polygons with boundary edges that are vertical or of slope α.
Again, we are lucky in this case, as the recurrent set R(P ;α) has area 1, and

uniformity follows from the uniformity of geodesic flow of slope α in the unit torus
[0, 1)2 if α is irrational.

We emphasize again that in this case, the set M(P ;B;α) is a proper subset of
the transient set W(P ;α), and the recurrent set R(P ;α) is a proper subset of the
set R(P ;A;α).

As for determining the transient set W(P ;α), Figure 24 gives the first step of an
extension process through which we can grow the dark gray strip. We discuss this
in the next section where we attempt to obtain a generalization of Theorem 1 to
modifications of arbitrary finite polysquare translation surfaces.

Whereas for the 2-square torus or the L-surface, the choice of the interval A follows
naturally from the one-sided barrier B, this is no longer the case if we start with a
polysquare translation surface.

Figure 26 shows that in the case of a translation surface comprising 5 atomic
squares in the form of a cross and where edge identification comes from perpendicular
translation, there is more than one choice for the interval A. The only requirement is
that A lies on a different vertical edge on the same horizontal street that contains B.
If some of the edge identifications do not come from perpendicular translation, the
situation looks rather more complicated. Figure 27 shows two equivalent dissipative
systems with the interval A on the vertical edge v2, while Figure 28 shows two
equivalent dissipative systems with the interval A on the vertical edge v4.
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Figure 26: dissipative systems modified from polysquare translation surfaces
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Figure 27: dissipative systems modified from polysquare translation surfaces
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Figure 28: dissipative systems modified from polysquare translation surfaces

In the next section, we establish the following result.

Theorem 4. Consider dissipative flow of slope α, where α > 0 is irrational, on a
system P, where a finite polysquare translation surface has beem modified with the
inclusion of a one-sided barrier B on the common vertical edge of two neighbouring
atomic squares, in the form of a union of finitely many vertical intervals, and where
a set A corresponding to B has been chosen on a different vertical edge on the same
horizontal street that contains B. Then the recurrent set R(P ;α) and the transient
set W(P ;α) can be constructed by an extension process on the no-go zone N (P ;α).
Furthermore, if this process is finite, then both sets R(P ;α) and W(P ;α) are finite
unions of polygons with boundary edges that are vertical or of slope α.

5. Extension process and polygons

We make use of two well known results in ergodic theory. Suppose that (X,B, µ) is
a probability space, so that µ(X) = 1, and T is a measure preserving transformation
on X. For any measurable subset S ⊂ X with positive measure µ(S) > 0, since the
Poincare recurrence theorem guarantees infinite recurrence for µ-almost every x ∈ S
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to the set S, it is meaningful to define the first return time for any such x ∈ S. This
is given by the integer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

nS(x) = inf{n ⩾ 1 : Tn(x) ∈ S},
and clearly it is finite for µ-almost every x ∈ S.
The first result is due to Kakutani [5] in 1943, and concerns an induced map of

T on S.

Lemma 5.1. Suppose that (X,B, µ) is a probability space, so that µ(X) = 1, that
T is an invertible measure preserving transformation on X, and that S ⊂ X is a
measurable subset with positive measure µ(S) > 0. Then the induced map

T|S : S → S : x 7→ TnS(x)(x),

valid for µ-almost every x ∈ S, is a measure preserving transformation on the
induced measure space (S,B ∩ S, µS).

The second result is due to Kac [4] in 1947, and concerns the average value of the
first return time to S.

Lemma 5.2. Suppose that (X,B, µ) is a probability space, so that µ(X) = 1, that
T is a measure preserving transformation on X, and that S ⊂ X is a measurable
subset with positive measure µ(S) > 0. Suppose further that T is ergodic in the
space (X,B, µ). Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx∫

S

nS(x) dµ = 1. (5.1)

In other words, the average value of the first return time to the set S is equal to the
reciprocal of the measure µ(S) of S.

Proof of Lemma 5.1. Note first of all that both nS : S → N and T|S : S → S are
well defined and measurable mappings. For every integer n ⩾ 1, let

Sn = {x ∈ S : nS(x) = n} (5.2)

denote the collection of points x ∈ S that return to S for the first time at the n-th
application of the transformation T. By definition, the sets Sn, n = 1, 2, 3, . . . , are
pairwise disjoint. Furthermore, we have

S1 = S ∩T−1S, S2 = (S ∩T−2S) \ S1, S3 = (S ∩T−3S) \ (S1 ∪ S2),

and in general xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sn = (S ∩T−nS) \
⋃

1⩽m<n

Sm, n = 1, 2, 3, . . . .

Any measurable subset A ⊂ S can be expressed as a disjoint union in the form

A =
∞⋃
n=1

(A ∩ Sn),

so it follows immediately that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

µ(A) =
∞∑
n=1

µ(A ∩ Sn). (5.3)

On the other hand, since T is invertible and so 1-to-1, the image T|SA can be
expressed as a disjoint union in the form

T|SA =
∞⋃
n=1

T|S(A ∩ Sn),
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so it follows immediately that

µ(T|SA) =
∞∑
n=1

µ(T|S(A ∩ Sn)) =
∞∑
n=1

µ(Tn(A ∩ Sn)), (5.4)

where in the last step, we use the key fact that for every fixed n = 1, 2, 3, . . . , if a
subset B ⊂ Sn is measurable, then T|SB = TnB. Finally, since T is invertible and
preserves µ, it follows that

∞∑
n=1

µ(Tn(A ∩ Sn)) =
∞∑
n=1

µ(A ∩ Sn). (5.5)

It now follows on combining (5.3)–(5.5) that µ(T|SA) = µ(A), and completes the
proof. □

Proof of Lemma 5.2. For every n = 1, 2, 3, . . . , the set Sn defined by (5.2) clearly
satisfies xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sn = Sn,0 = S ∩T−1Sc ∩ . . . ∩T−(n−1)Sc ∩T−nS,

where Sc = X \S denotes the complement of the set S in X. Furthermore, for every
n = 1, 2, 3, . . . and every k = 1, . . . , n− 1, write

Sn,k = TkSn = TkS ∩Tk−1Sc ∩ . . . ∩Tk−n+1Sc ∩Tk−nS. (5.6)

We first show that the sets

Sn,k, n = 1, 2, 3, . . . , k = 0, 1, . . . , n− 1, (5.7)

are pairwise disjoint. To justify this claim, consider first the sets Sn,k′ and Sn,k′′ ,
where 0 ⩽ k′ < k′′ ⩽ n− 1. Then it follows from (5.6) that

Sn,k′ ⊂ Tk′S and Sn,k′′ ⊂ Tk′Sc,

and so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sn,k′ ∩ Sn,k′′ ⊂ Tk′S ∩Tk′Sc = ∅.
Suppose next that n′ < n′′, k′ = 0, 1, . . . , n′ − 1 and k′′ = 0, 1, . . . , n′′ − 1. Then it
follows from (5.6) that

Sn′,k′ ⊂ Tk′S ∩Tk′−n′
S and Sn′′,k′′ ⊂ Tk′′−1Sc ∩ . . . ∩Tk′′−n′′+1Sc.

If k′ ⩽ k′′ − 1, then clearly Sn′′,k′′ ⊂ Tk′Sc, and so

Sn′,k′ ∩ Sn′′,k′′ ⊂ Tk′S ∩Tk′Sc = ∅.
On the other hand, if k′ > k′′ − 1, then −k′ ⩽ −k′′. Since n′ < n′′, it follows that
n′ − k′ < n′′ − k′′, and so k′ − n′ ⩾ k′′ − n′′ +1. Then clearly Sn′′,k′′ ⊂ Tk′−n′

Sc, and
so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Sn′,k′ ∩ Sn′′,k′′ ⊂ Tk′−n′
S ∩Tk′−n′

Sc = ∅.
Thus the sets (5.7) are pairwise disjoint as claimed. We therefore have

µ

(
∞⋃
n=1

n−1⋃
k=0

Sn.k

)
=

∞∑
n=1

n−1∑
k=0

µ(Sn,k). (5.8)

Since T is measure preserving, it follows from (5.6) that µ(Sn,k) = µ(Sn) for every
k = 0, 1, . . . , n− 1. Combining this with (5.2), we deduce that

∞∑
n=1

n−1∑
k=0

µ(Sn,k) =
∞∑
n=1

nµ(Sn) =
∞∑
n=1

∫
Sn

nS(x) dµ. (5.9)
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The Poincare recurrence theorem now gives
∞⋃
n=1

Sn = S.

Since this is clearly a pairwise disjoint union, it follows that
∞∑
n=1

∫
Sn

nS(x) dµ =

∫
S

nS(x) dµ. (5.10)

Finally, the pairwise disjoint union xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

∞⋃
n=1

n−1⋃
k=0

Sn.k

is T-invariant, so it follows from the ergodicity of T that

µ

(
∞⋃
n=1

n−1⋃
k=0

Sn.k

)
= µ(X) = 1. (5.11)

The desired identity (5.1) now follows on combining (5.8)–(5.11). □

Proof of Theorem 4. Let P be a dissipative system described in the statement of
the theorem. Let X denote the union of the left vertical edges of the constituent
atomic squares of the underlying polysquare translation surface. Furthermore, let

T = Tα : X → X

denote the discretization of the ordinary geodesic flow on the underlying polysquare
translation surface. For every x ∈ X, let n(x) = nA∪B(x) denote the smallest integer
n ⩾ 1 such that Tn(x) ∈ A∪B. Then the time-quantitative version of the Gutkin–
Veech theorem gives rise to a threshold N0 = N0(P ;A ∪B;α) such that n(x) ⩽ N0

for λ1-almost every x ∈ X.
Consider the induced map

T∗ = T|A∪B : A ∪B → A ∪B : x 7→ Tn(x)(x).

Then it follows from the existence of N0 = N0(P ;A ∪ B;α) and Lemma 5.1 that
T∗ is a finite interval exchange transformation on the set A ∪ B. Indeed, the set
A ∪ B can essentially be decomposed into a finite union of disjoint intervals such
that ordinary geodesic flow of slope α moves each interval splitting-free either by
length N0(1+α2)1/2 without hitting A∪B or by length at most N0(1+α2)1/2 when
returning to A ∪B for the first time.

Let F(A∪B) denote the first return strip, where λ1-almost every point of A∪B
is swept along by the flow of slope α until it hits the set A ∪ B again for the first
time, and let F(A) and F(B) denote respectively the corresponding first return strip
when we start with points of A only and with points of B only.

We now apply Lemma 5.2 with S = A ∪ B and µ = λ1/s, where s denotes the
number of distinct atomic squares of the underlying polysquare translation surface,
so that µ(X) = 1, and deduce that

1

s
λ2(F(A ∪B)) =

1

s

∫
A∪B

n(x) dλ1 = 1.

Hence λ2(F(A ∪B)) = s, and so

F(A) ∪ F(B) = F(A ∪B) = P ,

apart from exceptional sets of 2-dimensional Lebesgue measure 0. The reader may
wish to check whether this is the same split as obtained by the reverse flow recipe.
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Observe that λ2(F(B)) ⩾ 1. To see this, we simply observe that the continuous
analogue of Lemma 5.2 applied to the projection of F(B) to the unit torus [0, 1)2

shows that the image is the whole unit torus and so has area 1.
At this point, we recall that the Kakutani–Kac approach using Lemmas 5.1 and 5.2

gives rise to a measure preserving induced map. We now make use of this. For every
subset H ⊂ P , let

y(H) = {y : (x, y) ∈ P and (x, y) ∈ H for some x}
denote the collection of the y-coordinates of the points of H. We have two cases,
motivated respectively by Figures 22 and 24.

Case 1. We have perfect balance, in the sense that

λ1(y(T
∗(A) ∩ A) ∩ y(T∗(A) ∩B)) = 0, (5.12)

so that the sets T∗(A)∩A and T∗(A)∩B have essentially no common y-coordinates.
Note that

λ1((T
∗(A) ∩ A) ∪ (T∗(A) ∩B)) = λ1(T

∗(A) ∩ (A ∪B))

= λ1(T
∗(A)) = λ1(A) = λ1(B), (5.13)

where the last step is a consequence of the measure preserving property of T∗. It
follows that if (5.12) holds, then the projection of T∗(A) ∩ A to the unit torus
[0, 1)2 and the projection of T∗(A) ∩ B to the unit torus [0, 1)2 together form the
projection of A or B to the unit torus [0, 1)2, as illustrated in Figure 29, where the
parts of T∗(A) in A and B are indicated in bold under A and B respectively. See
also Figure 22 for a concrete example.

projection A B

Figure 29: T∗(A) ∩ A and T∗(A) ∩B are perfectly balanced

Using the measure preserving property of T∗ again, we conclude that the sets
T∗(A) ∩ A and T∗(A) ∩ B cover λ1-almost every y-coordinate in A or B precisely
once. This also means that the sets T∗(B)∩A and T∗(B)∩B cover λ1-almost every
y-coordinate in A or B precisely once. The dissipative flow of slope α jumps from
T∗(B) to A in a 1-to-1 and measure preserving way, and jumps from T∗(A) to A in
a 1-to-1 and measure preserving way.

Starting from A, we can extend it by the dissipative flow of slope α forever in
a 1-to-1 and measure preserving way. Then the resulting set R(P ;A;α) ⊂ P is
clearly invariant under dissipative flow of slope α. It then follows from the Poincare
recurrence theorem that λ2-almost every point of R(P ;A;α) is recurrent under
dissipative flow of slope α. The two sets R(P ;A;α) and F(A) have some common
properties. They both contain A and are invariant under dissipative flow of slope α.
They are also both disjoint from F(B). Thus we conclude that

R(P ;A;α) = F(A) = R(P ;α) and F(B) = W(P ;α), (5.14)

apart from exceptional sets of 2-dimensional Lebesgue measure 0. If R(P ;α) has
area 1, then we have uniformity of dissipative flow of slope α in the set. If R(P ;α)
has area greater than 1, then the set may decompose into a union of minimal subsets
that are invariant under dissipative flow of slope α and with integer valued areas. It
then follows from the Birkhoff ergodic theorem that there is uniformity of dissipative
flow of slope α in each of these sets.
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Case 2. We do not have perfect balance, in the sense that

λ1(y(T
∗(A) ∩ A) ∩ y(T∗(A) ∩B)) > 0, (5.15)

so that the sets T∗(A) ∩ A and T∗(A) ∩ B have non-trivial overlapping of y-
coordinates. Using the observation (5.13), we conclude that if (5.15) holds, then
the projection of T∗(A)∩A to the unit torus [0, 1)2 and the projection of T∗(A)∩B
to the unit torus [0, 1)2 together leave out part of the projection of A or B to the
unit torus [0, 1)2, as illustrated in Figure 30, where the parts of T∗(A) in A and B
are indicated in bold under A and B respectively. See also Figure 24 for a concrete
example.

projection A B

Figure 30: T∗(A) ∩ A and T∗(A) ∩B are perfectly balanced

In particular, the dissipative flow of slope α does not jump from T∗(A) to A in
a 1-to-1 and measure preserving way. It follows that removing F(B) is insufficient
to generate dissipative flow of slope α that is measure preserving in the remaining
set. The extension process that we discuss next is now guided by Figure 24. This is
a process that grows the transient set in steps.

For the first step, let A1 ⊂ A be defined by

y(A1) = y(T∗(A) ∩ (A ∪B)).

This means that A1 already captures essentially all the y-coordinates of T∗(A), and
we throw away the complement A \A1. More precisely, we expand the set F(B) by
including the extra set F(A \ A1). For the second step, let A2 ⊂ A1 be defined by

y(A2) = y(T∗(A1) ∩ (A ∪B)).

This means that A2 already captures essentially all the y-coordinates of T∗(A1), and
we throw away the complement A1 \ A2. More precisely, we expand the set F(B)
further by including the extra set F(A1 \ A2). And so on. We therefore have a
decreasing sequence xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A ⊃ A1 ⊃ A2 ⊃ . . . ⊃ Ai ⊃ . . .

of subsets of A. At the i-th step, we expand the set F(B) further by including the
extra set F(Ai−1 \ Ai).
Of course, expanding the set F(B) means contracting the set F(A) at the same

time. Accordingly, let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A∞ =
∞⋂
i=1

Ai.

Starting from A∞, we can extend it by the dissipative flow of slope α forever in
a 1-to-1 and measure preserving way. Then the resulting set R(P ;A∞;α) ⊂ P is
clearly invariant under dissipative flow of slope α. It then follows from the Poincare
recurrence theorem that λ2-almost every point of R(P ;A∞;α) is recurrent under
dissipative flow of slope α. The two setsR(P ;A∞;α) and F(A∞) have some common
properties. They both contain A∞ and are invariant under dissipative flow of slope α.
They are also both disjoint from

F(B) ∪
∞⋃
i=1

F(Ai−1 \ Ai),
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with the convention that A0 = A. Thus we claim that

R(P ;A∞;α) = F(A∞) = R(P ;α) (5.16)

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F(B) ∪
∞⋃
i=1

F(Ai−1 \ Ai) = W(P ;α),

apart from exceptional sets of 2-dimensional Lebesgue measure 0.
We need to elaborate on (5.16). In Case 1, the sets in (5.14) are finite unions

of polygons with boundary edges that are vertical or of slope α. In this case, we
can clearly draw the same conclusion if the extension process is finite. However, the
extension process may possibly be infinite. In this case, the set R(P ;A∞;α) may
be closed which is much more complicated than a union of polygons. We then need
to show that almost every point in R(P ;A∞;α) is a non-wandering point.
Note that the set R(P ;A∞;α) is measurable and invariant under dissipative and

measure preserving flow of slope α, so almost every point P ∈ R(P ;A∞;α) satisfies
the Lebesgue density theorem, so that for every ε > 0, P has an ε-neighbourhood
which intersects R(P ;A∞;α) in a set of positive measure. It then follows from the
Poincare recurrence theorem that this ε-neighbourhood of P returns via the flow
infinitely many times. Hence P is a non-wandering point.

This completes the proof. □

Theorem 4 leads immediately to the following question on the finiteness of the
extension process.

Question. What conditions will ensure that the extension process in Theorem 4
terminates after a finite number of steps, so that the recurrent set R(P ;α) is a
finite union of polygons with boundary edges that are vertical or of slope α? Is it
true that the extension process always terminates after a finite number of steps?

In the case when the underlying polysquare translation surface is the L-surface,
we have already verified this in the affirmative in the special case of Figure 18 where
the conditions (4.1) are satisfied and in the special case of Figure 23 with b = 0.8
and α = 1/

√
2.

For any typical dissipative system when the underlying polysquare translation
surface is the L-surface, we can also establish this in the affirmative by following
the proof of Theorem 4. Here, in Case 1, the conclusion is clear. In Case 2, there
must be a non-empty subinterval of B and corresponding subinterval of A that are
gray immediately to the left, leading to a dark gray strip that originates from the
subinterval in A analogous to that in Figure 24. Clearly this dark gray strip has a
twin that originates from the subinterval in B, and they are both in the transient
set W(P ;α). This means that the third twin that originates from the left vertical
edge of the atomic square that does not contain A or B must be an open set in the
recurrent set R(P ;α). The recurrent set R(P ;α) has area 1, and its projection to
the unit torus [0, 1)2 is the whole unit torus. The desired result now follows from
the Remark after the proof of Theorem 1 concerning a finite number of zig-zaggings.

6. More on the extension process

We continue our investigation of dissipative systems P where the underlying sur-
face is a finite polysquare translation surface, as introduced in Section 4. We have
shown in Section 5 that the extension process, starting from the no-go stripN (P ;α),
constructs the transient set W(P ;α) in a finite or infinite number of steps. When
the number of steps is finite, then we know that both the transient set W(P ;α) and
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the recurrent set R(P ;α) are finite unions of polygons with boundary edges that are
vertical or of slope α. In this section, we establish some partial results concerning
the finiteness of the extension process. A first result is the following.

Theorem 5. In the setting and terminology of Theorem 4, suppose further that the
endpoints of the vertical intervals that make up the one-sided barrier B all have
rational y-coordinates. Then the extension process terminates after a finite number
of steps, and both the transient set W(P ;α) and the recurrent set R(P ;α) are finite
unions of polygons with boundary edges that are vertical or of slope α.

Proof. We follow the proof of Theorem 4 and use the Kakutani–Kac approach. In
Case 1, the extension process does not start at all, so is clearly finite. In Case 2, we
have the situation illustrated in Figure 31.

gray
gray

white

white
gray

white
gray

white

gray
gray

A B A

Figure 31: a step of the extension process

At the start of the i-th step of the extension process, we have the growing no-go
zone at the end of the (i − 1)-th step, coloured in gray, immediately to the left
of Ai−1 \ Ai as well as immediately to the left of the corresponding subintervals
of B. We then construct the set F(Ai−1 \Ai), which may contain one or more strips
depending on the number of intervals A† that make up the set Ai−1 \ Ai. This is
done by starting from each interval A† and sweeping it along by the flow of slope α
until it hits the set A ∪B, as illustrated in dark gray in Figure 31.

This flow from each interval A† that makes up the set Ai−1 \ Ai may split at a
singularity of the system P , as illustrated in Figure 24. However, any singularity
of P which causes splitting in the i-th step is then eliminated, in the sense that
it will not feature in any subsequent step of the extension process. Thus all the
singularities will be eliminated after finitely many steps of the extension process,
assuming that the extension process has not actually terminated before that. Hence
by ignoring a finite number of steps at the start of the extension process, we may
therefore assume without loss of generality that the flow corresponding to F(A†)
from each interval A† of Ai−1 \ Ai is splitting-free, and its image T∗(A†) on A ∪ B
is an interval. We then need to investigate the location of T∗(A†). The part of P
immediately to the left of T∗(A†) at the beginning of the i-th step is not yet part
of the growing no-go zone and is therefore coloured white. We study its intersection
with A ∪ B. For the purpose of our discussion, we assume that T∗(A†) lies on A,
as the case if it lies on B is essentially the same, with reference to A and to B
interchanged.

For each subset Ai ⊂ A, we also consider the corresponding subset Bi ⊂ B. We
say that an interval A† ⊂ Ai is a ww-subinterval (resp. gg-subinterval) of Ai if
it is maximal in the sense of inclusion with the property that P is coloured white
(resp. gray) immediately to the left of A† and is also coloured white (resp. gray)
immediately to the left of the corresponding subinterval B† ⊂ Bi. We say that an
interval A† ⊂ Ai is a wg-subinterval (resp. gw-subinterval) of Ai if it is maximal
in the sense of inclusion with the property that P is coloured white (resp. gray)
immediately to the left of A† and is coloured gray (resp. white) immediately to the
left of the corresponding subinterval B† ⊂ Bi. Furthermore, we define the special
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sum at the start of the i-th step of the extension process by

S(i) = |{A† ⊂ Ai−1 : A
† is a ww-subinterval or a gg-subinterval of Ai−1}|,

and this represents the total number of ww-subintervals and gg-subintervals of Ai−1

at the start of the i-th step of the extension process.
We need the following intermediate result.

Lemma 6.1. Suppose that there is no splitting in the i-th step of the extension
process where the flow takes the set Ai−1 \ Ai to the image T∗(Ai−1 \ Ai). Then
the inequality S(i + 1) ⩽ S(i) holds. In particular, there exists a positive constant
c1 = c1(P ;B;α) ⩾ 1 such that S(i) ⩽ c1 for every i = 1, 2, 3, . . . .

Proof. The proof breaks down into a number of cases.
Note first of all that the set Ai−1 \ Ai is the union of all the gg-subintervals A†

of Ai−1, and recall that at the start of the i-th step of the extension process, the
part of P immediately to the left of each image T∗(A†) is coloured white. It follows
that each image T∗(A†) is contained in a union of finitely many ww-subintervals
and wg-subintervals of Ai−1.

Case 1. Suppose that the image T∗(A†) of a gg-subinterval A† of Ai−1 lies in the
interior of a ww-subinterval A‡ of Ai−1, as illustrated in the picture on the left in
Figure 32. Then after F(A†) has been added to the growing no-go zone, this ww-
subinterval A‡ of Ai−1 is converted to 2 ww-subintervals and a gw-subinterval of Ai.
It follows that going from S(i) to S(i+ 1), we gain 2 new ww-subintervals, lose the
ww-subinterval A‡ and lose the gg-subinterval A†. Thus S(i+ 1) = S(i).
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Figure 32: the splitting-free image T∗(A†) and consequences

Case 2. Suppose that the image T∗(A†) of a gg-subinterval A† of Ai−1 lies in the
interior of a union of consecutive ww-subintervals and wg-intervals of Ai−1, with a
ww-subinterval of Ai−1 at each end of the union, as illustrated in the picture on the
right in Figure 32. Then after F(A†) has been added to the growing no-go zone,
the ww-subinterval of Ai−1 at the each end is converted to a ww-subinterval and a
gw-subinterval of Ai, each ww-subinterval of Ai−1 in the middle is converted to a gw-
subinterval of Ai, and each wg-subinterval of Ai−1 is converted to a gg-subinterval
of Ai. It follows that going from S(i) to S(i+1), we gain one more gg-subinterval of
Ai than ww-subinterval of Ai−1 that we lose, but we also lose the gg-subinterval A†.
Thus S(i+ 1) = S(i).

Case 3. Suppose that the image T∗(A†) of a gg-subinterval A† of Ai−1 lies in the
interior of a union of consecutive wg-subintervals and ww-intervals of Ai−1, with
a wg-subinterval of Ai−1 at each end of the union, as illustrated in the picture on
the left in Figure 33. Then after F(A†) has been added to the growing no-go zone,
the wg-subinterval of Ai−1 at the each end is converted to a gg-subinterval and a
wg-subinterval of Ai, each wg-subinterval of Ai−1 in the middle is converted to a gg-
subinterval of Ai, and each ww-subinterval of Ai−1 is converted to a gw-subinterval
of Ai. It follows that going from S(i) to S(i+1), we gain one more gg-subinterval of
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Ai than ww-subinterval of Ai−1 that we lose, but we also lose the gg-subinterval A†.
Thus S(i+ 1) = S(i).
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Figure 33: the splitting-free image T∗(A†) and consequences

Case 4. Suppose that the image T∗(A†) of a gg-subinterval A† of Ai−1 lies in the
interior of a union of consecutive wg-subintervals and ww-intervals of Ai−1, with
a wg-subinterval of Ai−1 at one end of the union and a ww-subinterval of Ai−1 at
the other end of the union, as illustrated in the picture on the right in Figure 33.
Then after F(A†) has been added to the growing no-go zone, the wg-subinterval
of Ai−1 at one end is converted to a gg-subinterval and a wg-subinterval of Ai, the
ww-subinterval of Ai−1 at the other end is converted to a ww-subinterval and a
gw-subinterval of Ai, each wg-subinterval of Ai−1 in the middle is converted to a
gg-subinterval of Ai, and each ww-subinterval of Ai−1 in the middle is converted to
a gw-subinterval of Ai. It follows that going from S(i) to S(i+1), we gain one more
gg-subinterval of Ai than ww-subinterval of Ai−1 that we lose, but we also lose the
gg-subinterval A†. Thus S(i+ 1) = S(i).

We next investigate those instances when an endpoint of the image T∗(A†) coin-
cides with an endpoint of the union of consecutive wg-subintervals and ww-intervals
of Ai−1.

Case 5. Suppose that the extreme endpoint of the wg-subinterval of Ai−1 at one
end of the union of consecutive wg-subintervals and ww-intervals of Ai−1 coincides
with an endpoint of the interval T∗(A†), as illustrated in the picture on the right
in Figure 34. Compared to the picture on the left, we see that the only difference
is that there is now one fewer wg-subinterval of Ai, and this does not contribute to
S(i+ 1). Thus S(i+ 1) = S(i).
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Figure 34: the splitting-free image T∗(A†) and consequences

Case 6. Suppose that the extreme endpoint of the ww-subinterval of Ai−1 at one
end of the union of consecutive wg-subintervals and ww-intervals of Ai−1 coincides
with an endpoint of the interval T∗(A†), as illustrated in the picture on the right
in Figure 35. Compared to the picture on the left, we see that the only difference
is that there is now one fewer ww-subinterval of Ai, and this makes a difference to
S(i+ 1). Thus S(i+ 1) < S(i).
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Figure 35: the splitting-free image T∗(A†) and consequences

This completes the proof. □

Assume, on the contrary, that the extension process does not terminate after a
finite number of steps. That means that for every i = 1, 2, 3, . . . , at the beginning of
the i-th step, there are gg-subintervals of Ai−1 to work with. On the other hand, we
see from the proof of Lemma 6.1 that each gg-subinterval A† of Ai−1 originates from
a gg-subinterval of Ai−2, which in turn originates from a gg-subinterval of Ai−3, and
so on, and so has its origin from a gg-subinterval of A. Thus we can examine their
combined horizontal flow. More precisely, for each gg-subinterval A† of Ai−1, we
consider the total length L(A†) of the horizontal flow, starting from a gg-subinterval
of A and culminating in the image A†, as illustrated in Figure 36 where the flow is
stretched out on the plane.

1-st step 2-nd step 3-rd step

A† ⊂ A3

L(A†)

Figure 36: illustration of L(A†) on the plane

Summing L(A†) over the collection H(i) of all the individual gg-subintervals A†

of Ai−1 gives rise to the sum xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

L(i) =
∑

A†∈H(i)

L(A†).

Then the sequence L(i), i = 1, 2, 3, . . . , is increasing and not bounded above.
We need a well known number theoretic result.

Lemma 6.2. Let qk = qk(α) denote the denominator of the k-convergent of the
irrational number α > 0. Then for every integer n = 1, 2, 3, . . . , qk − 1, we have

∥nα∥ >
1

2qk
,

where ∥γ∥ denotes the distance of γ from the nearest integer.

Using the time-quantitative version of the Gutkin–Veech theorem and Lemma 6.1,
we see that there exists a sufficiently large positive constant c2 = c2(P ;B;α) such
that any interval of positive real numbers of length at least c2 contains at least one
member of the sequence L(i), i = 1, 2, 3, . . . .
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Let qk1 , qk2 , qk3 , . . . , where k1 < k2 < k3 < . . . , be a sequence of sufficiently large
denominators of the convergents of α such that

qkν > 2c2, qkν+1 ⩾ 4c1qkν , ν = 1, 2, 3, . . . . (6.1)

Then there exists an increasing sequence of integers iν , ν = 1, 2, 3, . . . , such that

L(iν) ∈
(qkν

2
, qkν

)
, ν = 1, 2, 3, . . . ,

and the intervals are pairwise disjoint, since c1 ⩾ 1. We may further assume that
there is no splitting in the extension process from step i1 onwards.

For every i = 1, 2, 3, . . . , let A (i) denote the subset of the transient set W(P ;α)
that the extension process gives after i steps.
We wish to give a lower bound to the the quantities

λ2(A (iν) \ A (iν−1)), ν = 2, 3, 4, . . . .

In view of Lemma 6.1, there exists A†
ν ∈ H(iν) such that

L(A†
ν) ⩾

qkν
2c1

. (6.2)

To determine the length of the interval A†
ν , we use the assumption that all of the

vertical intervals that make up the one-sided barrier B have endpoints with rational
y-coordinates. Suppose that Q = Q(P ;B;α) denotes the lowest common multiple
of the denominators of these y-coordinates. On magnifying the dissipative system P
by a factor Q in each direction, we arrive at a dissipative system PQ where the one-
sided barrier corresponding to B consists of whole vertical edges of atomic squares
of PQ. Thus the magnified analogue of the interval A†

ν in PQ must have endpoints
with y-coordinates of the form {b+mα} for some m = 0, 1, 2, 3, . . . , qkν − 1, where
b ∈ R is fixed, and length

|{b+m1α} − {b+m2α}| ⩾ ∥(m1 −m2)α∥ >
1

2qkν
,

where 0 ⩽ m1 < m2 < qkν , in view of Lemma 6.2. Thus the length of the interval
A†

ν is at least xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

2qkνQ
.

It follows from (6.1) and (6.2) that

λ2(A (iν) \ A (iν−1)) ⩾
L(A†

ν)− L(iν−1)

2qkνQ
⩾

1

2qkνQ

(
qkν
2c1

− qkν−1

)
⩾

1

4c1Q
.

The disjointness of the sets A (iν) \ A (iν−1), ν = 2, 3, 4, . . . , now implies infinite
total area, and this gives the desired contradiction. □

Under the hypotheses of Theorem 5, the restriction of the dissipative flow of
irrational slope α to the recurrent set R(P ;α) modulo one is integrable geodesic
flow on the unit torus [0, 1)2. The ergodic theorem then implies that this restricted
flow is a k-fold covering of geodesic flow on the unit torus [0, 1)2 for some integer
k satisfying 1 < k < s, where s is the number of atomic squares of the underlying
finite polysquare translation surface of the dissipative system P . Since the recurrent
set R(P ;α) is a finite union of polygons with boundary edges that are vertical or of
slope α, the usual discretization of the flow restricted to R(P ;α) defines a bijective
interval exchange transformation from the interval [0, k) to itself. If the overlapping
graph of this bijection is connected, then Lemma 4.1 guarantees equidistribution of
the orbits inside R(P ;α). In this case, we say that the attractor R(P ;α) is minimal.
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We also establish a second partial result concerning the finiteness of the extension
process.

Theorem 6. In the setting and terminology of Theorem 4, suppose further that
a component of the recurrent set R(P ;α) contains an open subset G. Then this
component of the recurrent set R(P ;α) can be constructed by a finite number of
zig-zaggings and is a finite union of polygons with boundary edges that are vertical
or of slope α.

Note that we have no information on the structure of the part of the recurrent set
R(P ;α) outside this special component, so we are unable to draw any conclusions
about the recurrent set R(P ;α) as a whole.

We begin with some general facts.
Suppose that the underlying polysquare translation surface of the dissipative sys-

tem P has s atomic squares. Then the dissipative flow of irrational slope α > 0 on
P defines a non-bijective transformation

f = fα : [0, s) → [0, s), (6.3)

where the interval [i−1, i) represents the left vertical edge of the i-th atomic square.

Remark. Strictly speaking, f = fα is not an interval exchange transformation as
dissipative flow is in general not reversible.

Denote modulo one projection by

π : [0, s) → [0, 1). (6.4)

The function π relates the discretization of dissipative flow of slope α on P to the
discretization of geodesic flow of slope α on the unit torus [0, 1)2.

Let S ⊂ [0, s) be a subset of multiplicity 1. In other words, the restriction

πS : S → [0, 1) : y 7→ π(y)

of π to the set S is injective. We further assume that S is a union of finitely many
intervals, so likewise for the set

S = π(S ).

Let the modulo one projection of f = fα be denoted by

g = gα : [0, 1) → [0, 1), (6.5)

so that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

g ◦ π = π ◦ f. (6.6)

Then g = gα describes rotation by α on the unit circle [0, 1), and is the interval
exchange transformation corresponding to the discretization of geodesic flow of slope
α on the unit torus [0, 1)2.

For any x ∈ S ⊂ [0, 1), let

n(x) = nS(x) = min{n ⩾ 1 : gn(x) ∈ S}.
Then it follows from Lemma 5.2 due to Kac that there exists a common threshold
N∗(S) = N∗(S;α) such that

n(x) = nS(x) ⩽ N∗(S) for all x ∈ S.

As a consequence of (5.11) in the proof of Lemma 5.2, we have

[0, 1) =

N∗(S)⋃
n=1

n−1⋃
k=0

gk({x ∈ S : nS(x) = n}) =
N∗(S)⋃
n=1

n⋃
k=1

gk({x ∈ S : nS(x) = n}), (6.7)
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apart from an exceptional set of measure 0 and where each union is pairwise disjoint.
We then lift this up to [0,m) and obtain a quantity

Ψ(S ) =

N∗(S)⋃
n=1

n⋃
k=1

fk({y ∈ S : nS(π(y)) = n}), (6.8)

and of course π(Ψ(S )) = [0, 1).
The assumption that S is a set of multiplicity 1 implies that π is injective on

Ψ(S ); in other words, Ψ(S ) is a copy of the unit torus [0, 1) generated from S by
the dissipative flow of slope α. More importantly, Ψ(S ) is a set of multiplicity 1.

The set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ϕ(S ) =

N∗(S)⋃
n=1

fn({y ∈ S : nS(π(y)) = n})

is essentially a copy S , since

π(ϕ(S )) =

N∗(S)⋃
n=1

π(fn({y ∈ S : nS(π(y)) = n}))

=

N∗(S)⋃
n=1

gn(π({y ∈ S : nS(π(y)) = n}))

=

N∗(S)⋃
n=1

gn({x ∈ S : nS(x) = n})

= S = π(S ),

apart from an exceptional set of measure 0, as it follows from (6.7) that

N∗(S)⋃
n=1

gn({x ∈ S : nS(x) = n}) =
N∗(S)⋃
n=1

{x ∈ S : nS(x) = n} = S,

apart from an exceptional set of measure 0.
Clearly ϕ(S ) ⊂ Ψ(S ), so ϕ(S ) is a set of multiplicity 1.
We next set up the crucial step in the proof of Theorem 6.
The open subset G of P contains a disc of positive radius. We may assume

that this disc is sufficiently small that it is contained in a single atomic square
of the underlying polysquare translation surface of P and the reverse flow in the
direction (−1,−α) projects it on to the left vertical edge of a single atomic square,
as illustrated in Figure 37.

G

Figure 37: constructing the interval I0

This gives rise to an interval I0 ⊂ [0, s) of positive length and multiplicity 1 on
the left vertical edge of an atomic square of the underlying polysquare translation
surface of P .

Define the sets I1,I2,I3, . . . in terms of I0 inductively by

I1 = ϕ(I0) \ I0, Ij = ϕ(Ij−1) \ I0, j = 2, 3, 4, . . . , (6.9)
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assuming that Ij−1 has positive measure. Note that each set I1,I2,I3, . . . is of
multiplicity 1, and each Ψ(Ij) is a copy of [0, 1) if Ij has positive measure.

Lemma 6.3. For any non-negative integers j′ ̸= j′′, the sets Ψ(Ij′) and Ψ(Ij′′)
are disjoint.

Proof of Theorem 6. By Lemma 6.3, the s+ 1 sets

Ψ(Ij) ⊂ [0, s), j = 0, 1, 2, 3, . . . , s,

are pairwise disjoint. Note next that Ψ(Ij) is a copy of [0, 1), and so has measure 1,
if Ij has positive measure. This implies that Ψ(Ij∗) must have measure 0 for some
j∗ = 0, 1, 2, 3, . . . , s. Hence the set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

j∗−1⋃
j=0

Ψ(Ij) (6.10)

is generated from I0 in at most xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

j∗−1∑
j=0

N∗(π(Ij))

zig-zaggings. Clearly the set (6.10) is invariant under f . Note that each set Ψ(Ij)
for any integer j ⩾ j∗ has measure 0 and so can be ignored. □

Remark. Figure 38 illustrates how we set up an induction process and explains the
definitions in (6.9). It also explains the purpose of Lemma 6.3.

Figure
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Figure 38: the early steps of the induction process

The idea is as follows. Starting from the set I0, we generate the set Ψ(I0) by the
flow which is represented in discrete form by f . This set Ψ(I0) has an interesting
subset ϕ(I0) which collects together all the points corresponding to first returns to
I0 modulo one. In general, ϕ(I0) has a part that lies in I0 and a part that lies
outside I0. Since the part in I0 is already accounted for, we remove it from ϕ(I0)
and consider the subset I1 = ϕ(I0) \ I0. Next, we generate a set Ψ(I1) which
has an interesting subset ϕ(I1). Again, ϕ(I1) has a part that lies in I0 and a part
that lies outside I0. Hence we consider the subset I2 = ϕ(I1) \ I0. And so on.
In this way, we ensure that the sets Ψ(I0),Ψ(I1),Ψ(I2), . . . are pairwise disjoint.
Together they take up all the points in [0, s) corresponding to the component of the
recurrent set under consideration.

Proof of Lemma 6.3. Note that the lemma follows immediately from the uniqueness
property of Assertion A below.

Assertion A. For every integer ℓ ⩾ 0 and y∗ ∈ Ψ(Iℓ), there is a unique sequence

(y0, h0), (y1, h1), (y2, h2), . . . , (yℓ, hℓ),

where yj ∈ Ij and hj = 1, 2, 3, . . . for every j = 0, 1, . . . , ℓ, such that

y1 = fh0(y0), y2 = fh1(y1), . . . , yℓ = fhℓ−1(yℓ−1), y∗ = fhℓ(yℓ).
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Assertion A follows from Assertion B below by backtracking from y∗ to y0, since
the set I0 is never visited in between.

Assertion B. For every integer ℓ ⩾ 0 and y∗ ∈ Ψ(Iℓ), there is a sequence

(y0, h0), (y1, h1), (y2, h2), . . . , (yℓ, hℓ),

where yj ∈ Ij and hj = 1, 2, 3, . . . for every j = 0, 1, . . . , ℓ, such that the numbers

y0, f(y0), f 2(y0), . . . , fh0−1(y0),

y1 = fh0(y0), f(y1), f 2(y1), . . . , fh1−1(y1),

y2 = fh1(y1), f(y2), f 2(y2), . . . , fh2−1(y2),

. . . ,

yℓ = fhℓ−1(yℓ−1), f(yℓ), f 2(yℓ), . . . , fhℓ−1(yℓ),

y∗ = fhℓ(yℓ),

(6.11)

apart possibly from y0 and y∗, do not belong to I0.

Remark. In Assertion A and Assertion B, for every j = 0, 1, . . . , ℓ− 1, we have

fhj(yj) = yj+1 ∈ Ij+1 ⊂ ϕ(Ij), so that hj = nπ(Ij)(π(yj)).

On the other hand, we have

fhℓ(yℓ) ∈ Ψ(Iℓ), so that hℓ ⩽ nπ(Iℓ)(π(yℓ)).

It remains to establish Assertion B. We proceed by induction on ℓ.
Consider first the initial case ℓ = 0, and let y∗ ∈ Ψ(I0). It follows from (6.8) that

there exist n = 1, . . . , N∗(π(I0)) and k = 1, . . . , n such that

y∗ ∈ fk({y ∈ I0 : nπ(I0)(π(y)) = n}),
so that y∗ = fk(y0) for some y0 ∈ I0 satisfying nπ(I0)(π(y0)) = n, and so (6.11) for
ℓ = 0 is satisfied with h0 = k ⩽ n and none of f(y0), f

2(y0), . . . , f
k−1(y0) belongs

to I0.
Suppose next that i > 0 and Assertion B holds for every ℓ < i. Let y∗ ∈ Ψ(Ii).

It follows from (6.8) that there exist n = 1, . . . , N∗(π(Ii)) and k = 1, . . . , n such
that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

y∗ ∈ fk({y ∈ Ii : nπ(Ii)(π(y)) = n}),
so that y∗ = fk(yi) for some yi ∈ Ii satisfying nπ(Ii)(π(yi)) = n. Write hi = k ⩽ n.
Then we have a pair (yi, hi) where yi ∈ Ii and hi = 1, 2, 3, . . . , leading to the
numbers xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

yi, f(yi), f 2(yi), . . . , fhi−1(yi),

y∗ = fhi(yi).
(6.12)

Since yi ∈ Ii ⊂ Ψ(Ii−1), using the case ℓ = i− 1, there is a sequence

(y0, h0), (y1, h1), (y2, h2), . . . , (yi−1, hi−1),

where yj ∈ Ij and hj = 1, 2, 3, . . . for every j = 0, 1, 2, . . . , i − 1, such that the
numbers

y0, f(y0), f 2(y0), . . . , fh0−1(y0),

y1 = fh0(y0), f(y1), f 2(y1), . . . , fh1−1(y1),

y2 = fh1(y1), f(y2), f 2(y2), . . . , fh2−1(y2),

. . . ,

yi−1 = fhi−2(yi−2), f(yi−1), f 2(yi−1), . . . , fhi−1−1(yi−1),

yi = fhi−1(yi−1),

(6.13)
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apart possibly from y0 and yi, do not belong to I0. Clearly (6.13) combines with
(6.12) to give the existence aspect of (6.11) for the case ℓ = i. It remains to show
that the numbers in (6.12), apart possibly from y∗, do not belong to I0.
Clearly yi ∈ Ii = ϕ(Ii−1) \ I0 does not belong to I0. Suppose on the contrary

that some other number in (6.12), apart from yi and y∗, belongs to I0. Then it is
of the form xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

fh(yi) for some h = 1, . . . , hi − 1,

and is clearly in Ψ(Ii) but not in ϕ(Ii). Let y
′ ∈ I0 denote the one with minimal

value of h. Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

y′ ∈ I0 and y′ ̸∈ ϕ(Ii). (6.14)

We can next truncate (6.12) and replace it with

yi, f(yi), f 2(yi), . . . , fh−1(yi),

y′ = fh(yi).
(6.15)

Combining (6.13) and (6.15) leads to

y0, f(y0), f 2(y0), . . . , fh0−1(y0),

y1 = fh0(y0), f(y1), f 2(y1), . . . , fh1−1(y1),

y2 = fh1(y1), f(y2), f 2(y2), . . . , fh2−1(y2),

. . . ,

yi−1 = fhi−2(yi−2), f(yi−1), f 2(yi−1), . . . , fhi−1−1(yi−1),

yi = fhi−1(yi−1), f(yi), f 2(yi), . . . , fh−1(yi),

y′ = fh(yi),

(6.16)

where, apart possibly from y0 and y′, the terms do not belong to I0.
Meanwhile, it follows from (6.14) that

π(y′) ∈ π(I0) \ π(ϕ(Ii)) = π(I0) \ π(Ii).

It is easy to check that π(Ij) ⊂ Ij−1 for every j = 1, 2, 3, . . . , so there exists some
κ < i such that xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

π(y′) ∈ π(Iκ) and π(y′) ̸∈ π(Iκ+1).

Now xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

π(Iκ+1) = π(ϕ(Iκ) \ I0) = π(ϕ(Iκ)) \ π(ϕ(Iκ) ∩ I0)

= π(Iκ) \ π(ϕ(Iκ) ∩ I0),

so that π(y′) ∈ π(ϕ(Iκ)∩I0). Together with the assumption y′ ∈ I0, this leads to

y′ ∈ ϕ(Iκ) ⊂ Ψ(Iκ).

The case ℓ = κ of the assertion now gives a sequence

(y⋆0, h
⋆
0), (y⋆1, h

⋆
1), (y⋆2, h

⋆
2), . . . , (y⋆κ, h

⋆
κ),

where y⋆k ∈ Ik and h⋆
k = 1, 2, 3, . . . for every k = 0, 1, 2, . . . , κ, and the numbers

y⋆0, f(y⋆0), f 2(y⋆0), . . . , fh⋆
0−1(y⋆0),

y⋆1 = fh⋆
0(y⋆0), f(y⋆1), f 2(y⋆1), . . . , fh⋆

1−1(y⋆1),

y⋆2 = fh⋆
1(y⋆1), f(y⋆2), f 2(y⋆2), . . . , fh⋆

2−1(y⋆2),

. . . ,

y⋆κ = fh⋆
κ−1(y⋆κ−1), f(y⋆κ), f 2(y⋆κ), . . . , fh⋆

κ−1(y⋆κ),

y′ = fh⋆
κ(y⋆κ),

(6.17)

where, apart possibly from y⋆0 and y′, the terms do not belong to I0.
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Note that the two sequences (6.16) and (6.17) have the same endpoint y′. Working
backward along (6.16) and (6.17) one term at a time, we may reach y0 or y⋆0 first,
or at the same step.

If this process reaches y0 first, then y0 must be one of the terms in (6.17) that is
different from y⋆0 and y′, so that y0 ̸∈ I0, a contradiction.

If this process reaches y⋆0 first, then y⋆0 must be one of the terms in (6.16) that is
different from y0 and y′, so that y⋆0 ̸∈ I0, a contradiction.
If the process reaches y0 and y⋆0 at the same step, then clearly y⋆0 = y0. Then

successively we have y⋆1 = y1, y
⋆
2 = y2, and so on, and eventually y′ = yκ+1. But

y′ ∈ I0, and yκ+1 ∈ Iκ+1 = ϕ(Iκ) \ I0 does not belong to I0, thus leading to a
contradiction also.

This completes the proof. □

We complete this section by giving a complete answer to the question of the
finiteness of the extension process.

Theorem 7. Consider dissipative flow of slope α, where α > 0 is irrational, on a
system P, where a finite polysquare translation surface has beem modified with the
inclusion of a one-sided barrier B on the common vertical edge of two neighbouring
atomic squares, in the form of a union of finitely many vertical intervals, and where
a set A corresponding to B has been chosen on a different vertical edge on the same
horizontal street that contains B. Then the recurrent set R(P ;α) and the transient
set W(P ;α) can be constructed by an extension process on the no-go zone N (P ;α).
Furthermore, this process is finite, and both sets R(P ;α) and W(P ;α) are finite
unions of polygons with boundary edges that are vertical or of slope α.

We first make some preliminary discussion where we introduce the new ideas.
As before, we make use of functions f , π and g satisfying (6.3)–(6.6) first intro-

duced earlier in this section, where we use the interval [0, s) to describe the left
vertical edges of the s atomic squares of the finite polysquare translation surface,
with [i, i+1) representing the left vertical edge of the i-th atomic square, where the
index i ∈ M = {0, 1, . . . , s− 1}.
The one-sided barrier B on a common vertical edge of two atomic squares is a

union of finitely many intervals, so that

B ⊂ [i, i+ 1) ⊂ [0, s)

for some i ∈ M = {0, 1, . . . , s− 1}, and the boundary ∂B is a finite set. Denote the
set of splitting points by xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Q = π(∂B) ∪ {0}.
To avoid these splitting points, we say that an interval I = (a, b) ⊂ [0, 1) is

k-stable if xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

gj(I) ∩Q = ∅ for every j = 0, 1, . . . , k.

It is easy to check that the following hold:
(S1) If I ′ ⊂ I ′′, then I ′ is k-stable if I ′′ is k-stable.
(S2) If I is k-stable, then I is j-stable for every j = 0, 1, . . . , k.
(S3) If k ⩾ 2 and I is k-stable, then g(I) is (k − 1)-stable.
(S4) If I = (a, b) is not k-stable, then there exists a finite partition

a = x0 < x1 < . . . < xn = b

of I such that (xℓ−1, xℓ) is k-stable for every ℓ = 1, . . . , n.
(S5) If I is 1-stable, then there exists a mapping σI : M → M such that

f(I + i) = g(I) + σI(i), i ∈ M . (6.18)
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To see this, note that if I is 1-stable, then it follows from (6.6) that

π(f(I + i)) = g(π(I + i)) = g(π(I)) = g(I)

does not split, and so it follows that f(I + i) ⊂ [i′, i′ + 1) for some i′ ∈ M . We now
simply take i′ = σI(i).

The assumption that I is k-stable leads to a sequence

I −→ g(I) −→ g2(I) −→ . . . −→ gk(I) (6.19)

of splitting-free intervals. In view of (S2), (S3) and (S5), this gives rise to a sequence

M
σI−→M

σg(I)−−→M −→ . . . −→ M
σ
gk−1(I)−−−−→M

of mappings xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

σgj(I) : M → M , j = 0, 1, . . . , k − 1.

Denote their composition mapping σk,I : M → M by

σk,I = σgk−1(I) ◦ . . . ◦ σg(I) ◦ σI .

Then corresponding to (S5) and (6.18), we have

fk(I + i) = gk(I) + σk,I(i), i ∈ M . (6.20)

Remark. Note that (6.18) and (6.20) represent not only equality of sets but crucially
also mappings of intervals.

Next, to avoid self intersection of the sets in the sequence (6.19), we say that an
interval I = (a, b) ⊂ [0, 1) is k-clear if I is k-stable and the sets

I, g(I), g2(I), . . . , gk(I)

are pairwise disjoint. It is easy to check that the following hold:
(C1) If I is k-stable, then there exists a k-clear subinterval I ′ ⊂ I. To see this,

take x ∈ I to be the midpoint of I, let

r = min
j1,j2∈{0,1,...,k}

j1 ̸=j2

|gj1(x)− gj2(x)|,

and consider the interval (x− r/2, x+ r/2). We now simply take a sufficiently small
r′ < r/2 to ensure that I ′ = (x− r′, x+ r′) ⊂ I. Here the choice of x is justified by
the Remark above, and the value of r is independent of the choice of x ∈ I.
(C2) If I is k-clear and i′ ̸∈ σk,I(M ), then for every i ∈ M and integer j ⩾ 0,

f j(I + i) ∩ (gk(I) + i′) = ∅. (6.21)

To see this, suppose on the contrary that

x1 ∈ f j(I + i) ∩ (gk(I) + i′), so that π(x1) ∈ gj(I) ∩ gk(I).

This means that gj(I) ∩ gk(I) ̸= ∅, so that we must have j ⩾ k. There exists
x2 ∈ I + i such that x1 = f j(x2). Then the number x3 = f j−k(x2) satisfies

fk(x3) = f j(x2) = x1 ∈ gk(I) + i′,

and it follows from (6.20) that i′ ∈ σk,I(M ), a contradiction.
(C3) If I is k-clear, i′ ∈ σk,I(M ) and i′′ ̸∈ σk,I(M ), then for every integer j ⩾ 0,

f j(gk(I) + i′) ∩ (gk(I) + i′′) = ∅.
To see this, suppose on the contrary that

x1 ∈ f j(gk(I) + i′) ∩ (gk(I) + i′′).
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Then there exists x2 ∈ gk(I) + i′ such that f j(x2) = x1. Meanwhile, it follows from
(6.20) that there exists i ∈ M such that

fk(I + i) = gk(I) + i′,

so there exists x3 ∈ I + i such that fk(x3) = x2. Thus x1 = f j+k(x3), so that
f j+k(I + i) ∩ (gk(I) + i′′) ̸= ∅, contradicting (6.21) and (C2).

The proof of Theorem 7 is based on the following critical intermediate result.

Lemma 6.4. If I = (a, b) ⊂ [0, 1) is k-clear, then one of the following holds:
(i) The set xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx⋃

i∈σk,I(M )

(gk(I) + i) (6.22)

generates a recurrent region in a finite number of steps.
(ii) There exists a subinterval I∗ ⊂ I and an integer k∗ > k such that I∗ is k∗-clear

and xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|σk∗,I∗(M )| ⩽ |σk,I(M )| − 1.

Here a recurrent region is a set of recurrent points that is invariant under the
dissipative flow.

Remark. Suppose that a recurrent region R of a dissipative system P has non-
trivial intersection with every other recurrent region of P . Then apart possibly
from exceptional sets of measure 0, R contains every other recurrent region of P .
To see this, note that ifR′ is another recurrent region of P , then so isR′\R. IfR′\R
is non-trivial, then R intersects non-trivially with R′ \ R, clearly a contradiction.
Hence apart possibly from exceptional sets of measure 0, we must have R′ ⊂ R.
Here we have used the fact that if R and R′ are recurrent regions of P , then so

are the region R∪R′ and its three pairwise disjoint constituent parts R∩R′, R\R′

and R′ \R. To see this, note that it is straightforward that R∪R′ and R∩R′ are
recurrent regions of P . Clearly R′ \ R ⊂ R′, so no point of R′ \ R can move into
R\R′ under the dissipative flow. To show that R′ \R is a recurrent region, suppose
on the contrary that R′\R is not invariant under the dissipative flow, and a positive
proportion of it can move into R ∩R′ under the flow. Since the dissipative flow is
measure preserving, it follows that a positive proportion of R ∩ R′ moves outside
itself under the flow, contradicting that R∩R′ is a recurrent region.

Proof of Theorem 7. For any integer k, in view of (S4) and (C1), we can find a
k-clear interval I and determine the set σk,I(M ). From Lemma 6.4, we can keep
shrinking until we obtain a minimal value of |σk,I(M )|. This shrinking process must
be finite, as |σk,I(M )| ⩽ s is a trivial bound. Thus the union

I =
⋃

i∈σk,I(M )

(gk(I) + i)

of subintervals of [0, s) generates a recurrent region R of the system P in a finite
number of steps. To show that R is the whole recurrent set R(P ;α), it suffices to
show that it intersects non-trivially with every other recurrent region R′ of P .
Let R′ be any recurrent region generated by I ′ ⊂ [0, s). Then π(I ′) = [0, 1), so

that there exists i∗ ∈ M such that the set I ′ ∩ (I + i∗) has positive measure. The
assumption that R′ is a recurrent region implies that the set I ′ ∩ fk(I + i∗) also
has positive measure. Thus the intersection of R′ ∩ R has positive measure, and
this completes the proof. □

It remains to establish the critical intermediate result.
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Proof of Lemma 6.4. For every x ∈ gk(I), let

n(x) = ngk(I)(x) = min{n ⩾ 1 : gn(x) ∈ gk(I)}.
Then it follows from Lemma 5.2 due to Kac applied to the set gk(I) that there exists
a common threshold N∗(gk(I)) such that

n(x) = ngk(I)(x) ⩽ N∗(gk(I)) for all x ∈ gk(I).

This and (S4) give rise to a partition

a1 = x0 < x1 < . . . < xn = b1

of the interval gk(I) = (a1, b1) such that for every ℓ = 1, . . . , n,
◦ the subinterval Dℓ = (xℓ−1, xℓ) is N

∗(gk(I))-stable; and
◦ the value ngk(I)(x) is constant in Dℓ = (xℓ−1, xℓ), with common value kℓ, so that

Dℓ = (xℓ−1, xℓ) is kℓ-stable, and we can consider the mapping σkℓ,Dℓ
.

We can consider a corresponding partition on the original interval I = (a, b) into
subintervals Pℓ, ℓ = 1, . . . , n, such that gk(Pℓ) = Dℓ.

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

M1 = σk,I(M ) and M2 = M \ M1.

It follows from (C3) that if i1 ∈ M1 and i2 ∈ M2, then for every integer j ⩾ 0,

f j(gk(I) + i1) ∩ (gk(I) + i2) = ∅. (6.23)

For every ℓ = 1, . . . , n, we have Dℓ ⊂ gk(I) and gkℓ(Dℓ) ⊂ gk(I), so that choosing
j = kℓ, it follows from (6.23) that

fkℓ(Dℓ + i1) ∩ (gkℓ(Dℓ) + i2) = ∅,
so that σkℓ,Dℓ

(i1) ̸= i2, and so xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

σkℓ,Dℓ
(M1) ∩ M2 = ∅.

Let xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

M3,ℓ = σkℓ+k,Pℓ
(M ) = σkℓ,Dℓ

(σk,Pℓ
(M ))

⊂ σkℓ,Dℓ
(σk,I(M )) = σkℓ,Dℓ

(M1) ⊂ M1.

Then there are two possibilities:
(i) Suppose that M3,ℓ = M1 for every ℓ = 1, . . . , n. Note that we have arrived

at the set (6.22) in a finite number of steps, and the function f leads to an interval
exchange transformation from⋃

i∈M1

(gk(I) + i) =
⋃

i∈M1

n⋃
ℓ=1

(Dℓ + i)

to xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx⋃
i∈M1

n⋃
ℓ=1

fkℓ(Dℓ + i) =
⋃

i∈M1

n⋃
ℓ=1

(
gkℓ(Dℓ) + σkℓ,Dℓ

(i)
)
=
⋃

i∈M1

n⋃
ℓ=1

(
gkℓ(Dℓ) + i

)
=
⋃

i∈M1

n⋃
ℓ=1

(Dℓ + i) =
⋃

i∈M1

(gk(I) + i).

This gives case (i) in the lemma.
(ii) Suppose that there exists ℓ = 1, . . . , n such that M3,ℓ ̸= M1. Let k

∗ = kℓ + k.
Then xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

|σk∗,Pℓ
(M )| ⩽ |M1| − 1,
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and Pℓ is k
∗-stable. It then follows from (C1) that there exists a subinterval I∗ ⊂ Pℓ

which is k∗-clear, and it is easy to see that

|σk∗,I∗(M )| ⩽ |σk∗,Pℓ
(M )| ⩽ |M1| − 1 = |σk,I(M )| − 1.

This gives case (ii) in the lemma. □

7. Further comments

Here we have studied dynamical systems where the underlying domain is a finite
polysquare translation surface, and the one-sided barriers are located on the vertical
sides of some atomic squares. For such nice systems, we have shown that the
attractor is a union of finitely many polygons, and that this set can be determined
by a finite process.

If we leave the class of finite polysquare translation surfaces, the structure of
the attractor can be significantly different. The following example, considered by
Boshernitzan and Kornfeld [3] in 1995, provides an excellent illustration.

Let α = 0.311 . . . be the unique root of the polynomial p(x) = x3 − x2 − 3x + 1
in the interval (0, 1). Consider dissipative flow from left to right with slope α on
the unit torus [0, 1)2 modified by the inclusion of a one-sided barrier as shown in
Figure 39. When the flow encounters the bold barrier, it continues in the same
direction from the corresponding point on the left edge. For convenience, assume
that the top barrier includes the bottom endpoint and the bottom barrier excludes
the top endpoint.

b

b

b

b

0

α2

1 − α

1 − α + α2

1 − α2

1

0 α 1

Figure 39: a dissipative system with 1-direction flow

This dissipative flow is described by Boshernitzan and Kornfeld in terms of an
interval translation mapping which is a generalization of the concept of an interval
exchange transformation. Here the interval [0, 1) denotes the left vertical edge. Then
the interval translation mapping is given by T : [0, 1) → [0, 1), where

T(x) =

 x+ α, if x ∈ [0, 1− α),
x+ α2, if x ∈ [1− α, 1− α2),
x+ α2 − 1, if x ∈ [1− α2, 1).

(7.1)

The flow that starts from any point x on the left vertical edge returns to the left
vertical edge at the point T(x).
Let I1 = [1 − α, 1). To study the first return map T∗

1 : I1 → I1, we consider the
partition xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I1 = [1− α, 1− α2) ∪ [1− α2, 1− α3) ∪ [1− α3, 1),
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in the same ratio as the partition [0, 1) = [0, 1− α)∪ [1− α, 1− α2)∪ [1− α2, 1). If
y ∈ [1− α, 1− α2), then

T(y) = y + α2 ∈ [1− α + α2, 1) ⊂ [1− α, 1) = I1,

so that T∗
1(y) = y + α2. If y ∈ [1− α2, 1− α3) ⊂ [1− α2, 1), then

T(y) = y + α2 − 1 ∈ [0, α2 − α3) = [0, 1− 3α) ⊂ [0, 1− α),

T2(y) = y + α2 − 1 + α ∈ [α, 1− 2α) ⊂ [0, 1− α),

T3(y) = y + α2 − 1 + 2α ∈ [2α, 1− α) ⊂ [0, 1− α),

T4(y) = y + α2 − 1 + 3α = y + α3 ∈ [3α, 1) ⊂ [1− α, 1) = I1,

so that T∗
1(y) = y + α3. If y ∈ [1− α3, 1) ⊂ [1− α2, 1), then

T(y) = y + α2 − 1 ∈ [α2 − α3, α2) = [1− 3α, α2) ⊂ [0, 1− α),

T2(y) = y + α2 − 1 + α ∈ [1− 2α, α2 + α) ⊂ [0, 1− α),

T3(y) = y + α2 − 1 + 2α = y + α3 − α ∈ [1− α, α2 + 2α) ⊂ [1− α, 1) = I1,

so that T∗
1(y) = y + α3 − α. Summarizing, we have

T∗
1(y) =

 y + α2, if y ∈ [1− α, 1− α2),
y + α3, if y ∈ [1− α2, 1− α3),
y + α3 − α, if y ∈ [1− α3, 1).

(7.2)

Consider next the linear mapping from [0, 1) to [1− α, 1), given by

y = 1− α + xα. (7.3)

Using (7.1), we see that

y(T(x)) =

 1− α + (x+ α)α = y + α2, if x ∈ [0, 1− α),
1− α + (x+ α2)α = y + α3, if x ∈ [1− α, 1− α2),
1− α + (x+ α2 − 1)α = y + α3 − α, if x ∈ [1− α2, 1).

Comparing this with (7.2), we conclude that the linear mapping (7.3) gives rise to
an isomorphism between T : [0, 1) → [0, 1) and T∗

1 : [1 − α, 1) → [1 − α, 1). In
other words, the interval translation mapping T acts on the subinterval [1 − α, 1)
in precisely the same way as on the interval [0, 1). This can be interpreted as self
similarity in a smaller scale.

Next, let I2 = [0, α2). To study the first return map T∗
2 : I2 → I2, we consider

the partition xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I2 = [0, α2 − α3) ∪ [α2 − α3, α2 − α4) ∪ [α2 − α4, α2).

We can show that

T∗
2(y) =

 y + α3, if y ∈ [0, α2 − α3),
y + α4, if y ∈ [α2 − α3, α2 − α4),
y + α4 − α2, if y ∈ [α2 − α4, α2).

(7.4)

Furthermore, consider the linear mapping from [0, 1) to [0, α2), given by

y = α2x. (7.5)

Using (7.1), we see that

y(T(x)) =

 α2(x+ α) = y + α3, if x ∈ [0, 1− α),
α2(x+ α2) = y + α4, if x ∈ [1− α, 1− α2),
α2(x+ α2 − 1) = y + α4 − α2, if x ∈ [1− α2, 1).

Comparing this with (7.4), we conclude that the linear mapping (7.5) gives rise to an
isomorphism between T : [0, 1) → [0, 1) and T∗

2 : [0, α2) → [0, α2). In other words,
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the interval translation mapping T acts on the subinterval [0, α2) in precisely the
same way as on the interval [0, 1).

Elaborating on this idea, Boshernitzan and Kornfeld can show that the attractor
in this example exhibits Cantor type self similarity and is an uncountable nowhere
dense compact set with measure zero.

Skripchenko and Troubetskoy [7, 8] have made a study of these systems after
the initial work of Boshernitzan and Kornfeld. They can show that by varying
the position and length of the one-sided barrier and the slope of the flow, one can
construct uncountably many similar systems where the Hausdorff dimension of the
closure of the attractor is zero. They also study the question of entropy which is
beyond the scope of our study here.
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