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Dedicated to the memory of my mother

Dr Doris Chen (30 July 1929 – 3 June 2012),

a member of the Department of Mathematics
at the University of Hong Kong from 1953 to 1985,

and who gifted me the pleasure of mathematics

It is a great privilege for me to have the opportunity to hold the prestigious
Y.C. Wong Visiting Lectureship at the University of Hong Kong this month, and
to deliver a Y.C. Wong Lecture.

In the late 1940s, when my mother was an undergraduate in mathematics at the
Sun Yat-Sen University in Guangzhou (then Canton), Professor Wong was already
a member of the Department of Mathematics at the University of Hong Kong. Those
were days of much turmoil, and my mother was asked by her professor to bring a
collection of important and valuable university documents to Hong Kong to give
to Professor Wong for safe keeping. From this, I deduce that my association with
Professor Wong goes back to when I was aged –7 or –8.

1. Introduction

In this lecture, we give a very brief introduction to geometric discrepancy theory.
We highlight some of the major contributions to the subject and the powerful ideas
involved. After setting up the questions, we explain the concept of trivial errors, a
consequence of the fact that there is no integer between 0 and 1, and then give a
simple example to show how such trivial errors can be exploited. We then briefly
illustrate some of the techniques of the subject and the relationship with other areas
of mathematics. We also discuss some applications.

Geometric discrepancy theory owes its existence to the fundamental work of
the legendary mathematician Klaus Roth. He was awarded the Fields Medal in
1958 for his groundbreaking work on diophantine approximation and on arithmetic
progressions, work that has greatly influenced such luminaries as Wolfgang Schmidt,
Endre Szemerédi, Timothy Gowers, Ben Green and Terence Tao, to name just a
few. Yet he considers his 1954 paper [31] on discrepancy theory to be his best work.
As he explains, “But I started a subject!”

Discrepancy theory owes its existence to the original conjecture of Johannes van
der Corput [18, 19] in 1935, that no sequence of real numbers between 0 and 1 can, in
some sense, be too evenly distributed. However, the conjecture, as well as its proofs
by Tatyana van Aardenne-Ehrenfest [1, 2] in 1945 and 1949, are in 1-dimensional
setting, and therefore not geometric in nature. Indeed, Roth’s paper [31] in 1954 is
the first instance of such problems posed with a geometric framework.

Roth’s early work is followed soon by a beautiful paper of Harold Davenport
and then a remarkable series of ten papers by Wolfgang Schmidt between 1968 and

1



2 WILLIAM CHEN

1977 and a monograph [37] in 1977, as well as three further papers by Roth himself.
Gábor Halász also contributed a vital paper in 1981. These contributions form the
solid foundation from which further work follows.

Much of the development of the subject in the 1980s has been carried out by
József Beck and the author, separately as well as in collaboration, resulting in many
breakthroughs as well as a monograph [7]. They are joined in the 1990s by Ralph
Alexander, Jǐŕı Matoušek and Maxim Skriganov. For a beginner in the subject, the
beautifully written monograph by Matoušek [30] is highly recommended.

This century sees many more contributors to the subject, notably Dmitriy Bilyk,
Michael Lacey and Armen Vagharshakyan. There are also many colleagues who
take a keen interest in applications of discrepancy theory to problems on numerical
integration.

2. Formulation of the Problems

Let N be a fixed positive integer. Suppose that P is a collection of N points in
the unit square [0, 1]2.
set P of N points in unit square [0,1]2

B

!

!

!! !
!

! !

!

!

!

! ! !
!

!

! !
!

A!

!!
!! !

!

Z[P;B] – number of points of P that fall into B

N × area(B) – expected number of points of P that fall into B

D[P;B] =Z[P;B]−Nµ(B)

For every measurable subset B of [0, 1]2, let Z[P;B] denote the number of points of
P that fall into B. If B is to have its fair share of points, then the quantity Nµ(B),
where µ(B) denotes the area of B, represents the corresponding expectation. Then
the difference D[P;B] = Z[P;B]−Nµ(B) is called the discrepancy of the collection
P with respect to the subset B.

For every collection P of N points in the unit square [0, 1]2, we now consider the
discrepancy D[P;B] over all subsets B of [0, 1]2 in an infinite collection B, and not
just for one subset B of [0, 1]2.

Lower bound results in discrepancy theory say that all collections P are bad,
whereas upper bound results say that some collections P are not too bad.

For instance, a lower bound result may be of the form

for every P, there exists B in B such that |D[P;B]| is large.

Then a corresponding upper bound result may be of the form

there exists P such that for every B in B, |D[P;B]| is not too large.

Of course, we need to quantify large and not too large.
Alternatively, a lower bound result may be of the form

for every P, |D[P;B]| is large on average in B.
Then a corresponding upper bound result may be of the form

there exists P such that |D[P;B]| is not too large on average in B.
In this case, we have to further quantify on average.
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3. Trivial Errors and Blowing Them Up

Suppose that P is a collection of N = 100 points in the unit square [0, 1]2.
set P of N = 100 points in unit square [0,1]2

B

µ(B) = 1
200 Nµ(B) = 1

2

D[P;B] =Z[P;B]−Nµ(B)





=0− 1
2 if Z[P;B] = 0

!1− 1
2 if Z[P;B] ! 1

D[P;B] " −1
2 or D[P;B] ! 1

2

trivial errors – need to blow them up

If B is a subset of [0, 1]2 of area 1/200, then Nµ(B) = 1/2. Since there is no integer
between 0 and 1, we must have Z[P;B] = 0 or Z[P;B] > 1. Then

D[P;B] = Z[P;B]−Nµ(B)

{
= 0− 1

2 , if Z[P;B] = 0,

> 1− 1
2 , if Z[P;B] > 1,

so that |D[P;B]| > 1/2. These are known as trivial errors, and we need to find
ways to blow them up.

We illustrate how one may blow up the trivial errors by discussing the following
result of Schmidt [35]. The result is essentially best possible, in the sense that the
exponent 1/3 cannot be improved.

Theorem S. Suppose that P is a collection of N points in the unit square [0, 1]2.
Schmidt (1973) – given set P of N points in unit square [0,1]2

B

!
!

!!!!!!!! !
!

"
"

"
"

there exists a convex set B such that |D[P;B]| ! cN
1
3

result is essentially best possible

Schmidt’s chocolate theorem

Then there exists a convex set B such that |D[P;B]| > cN1/3.

Remark. This result is sometimes known as Schmidt’s chocolate theorem. Here
is an extract from an email received by the author a few years ago.
Dear William,
Recently I came upon some old writing of yours about me and chocolate. Actually
my son had found it someplace on the internet and forwarded it to me. It is the
note which contains two lemmas.
Lemma 1. Wolfgang Schmidt loves chocolate.
Lemma 2. Pat Schmidt makes lovely chocolate cake.
I am very touched by your kind comments. Am I forgetful or what, but I don’t
remember hearing you talk about this at a conference or reading it before. My
son talked about your writing to my grandson (8 years) who then wrote about
it in a school project, saying he liked me because I like chocolate and I am funny.
Unfortunately I now have to eat less chocolate. I had kidney stones and nutritionists
(they are bad people) say I should avoid chocolate and some other food to prevent
kidney stones from recurring . . .
Best wishes, Wolfgang.
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So let us prove Schmidt’s chocolate theorem.

Proof. Consider the unit square [0, 1]2 (a square plate). It is possible to place a
disc A of diameter 1 (cake) within [0, 1]2. Let P be any collection of N points
(chocolates) in [0, 1]2. Consider disc segments of area 1/2N (tiny pieces of cake).

Elementary calculations show that there are at least cN1/3 non-overlapping disc
segments of area 1/2N , where c is a positive constant. Some disc segments contain
no points of P, and we denote them by S1, . . . , Sk. The other disc segments each
contains at least one point of P, and we denote them by T1, . . . , Tm. Clearly we
have k +m > cN1/3. Furthermore

D[P;Si] = − 1
2 , i = 1, . . . , k, (1)

and

D[P;Tj ] > 1
2 , j = 1, . . . ,m, (2)

Suppose first that we remove from A all those disc segments that contain no points
of P (eat all those tiny pieces of cake that do not contain chocolates). The remainder
is a convex set A \ (S1 ∪ . . . ∪ Sk), and

D[P;A \ (S1 ∪ . . . ∪ Sk)] = D[P;A]−
k∑

i=1

D[P;Si]. (3)

Suppose instead that we remove from A all those disc segments that contain points
of P (eat all those tiny pieces of cake that contain chocolates). The remainder is a
convex set A \ (T1 ∪ . . . ∪ Tm), and

D[P;A \ (T1 ∪ . . . ∪ Tm)] = D[P;A]−
m∑

j=1

D[P;Tj ]. (4)

Combining (3) and (4), and noting (1) and (2), we have

D[P;A \ (S1 ∪ . . . ∪ Sk)]−D[P;A \ (T1 ∪ . . . ∪ Tm)] =

m∑

j=1

D[P;Tj ]−
k∑

i=1

D[P;Si]

> 1
2 (k +m) > 1

2cN
1/3,

and so

|D[P;A \ (S1 ∪ . . . ∪ Sk)]| > 1
4cN

1/3 or |D[P;A \ (T1 ∪ . . . ∪ Tm)]| > 1
4cN

1/3,

or both. �
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4. The Classical Problem

The classical problem in discrepancy theory concerns the discrepancy of point
collections with respect to aligned rectangles anchored at the origin. For every
x = (x1, x2) in [0, 1]2, we denote by B(x) = [0, x1)× [0, x2) the rectangle with sides
parallel to the coordinate axes, bottom left vertex anchored at the origin and top
right vertex at x.

Roth (1954) – given set P of N points in unit square [0,1]2

x

B(x)

D[P;B(x)] = Z[P;B(x)] − Nµ(B(x))

∫

[0,1]2
|D[P;B(x)]|2 dx ! c1 logN

Schmidt (1972) – sup
x∈[0,1]2

|D[P;B(x)]| ! c2
√

logN

Suppose that P is a collection of N points in unit square [0, 1]2. Then the
discrepancy function is given by

D[P;B(x)] = Z[P;B(x)]−Nµ(B(x)).

The following is the pioneering result of Roth [31] in 1954.

Theorem R. We have the following lower bound results.

(i) There exists a constant c1 > 0 such that for every collection P of N points
in the unit square [0, 1]2, we have

∫

[0,1]2
|D[P;B(x)]|2 dx > c1 logN.

(ii) There exists a constant c2 > 0 such that for every collection P of N points
in the unit square [0, 1]2, we have

sup
x∈[0,1]2

|D[P;B(x)]| > c2(logN)1/2. (5)

Remark. For those readers not familiar with the notion of the supremum

sup
x∈[0,1]2

|D[P;B(x)]|,

think of this as the maximum value of |D[P;B(x)]| as x varies over [0, 1]2. This is
not quite correct, but will suffice for the moment.

Note that part (ii) follows immediately from part (i). We comment that the
estimate is not best possible. In fact, we can say a lot more.

Theorem RSHLDC. We have the following lower bound results.

(i) There exists a constant c1 > 0 such that for every collection P of N points
in the unit square [0, 1]2, we have

∫

[0,1]2
|D[P;B(x)]|2 dx > c1 logN.

(ii) There exists a constant c2 > 0 such that for every collection P of N points
in the unit square [0, 1]2, we have

sup
x∈[0,1]2

|D[P;B(x)]| > c2 logN.
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(iii) For every fixed q > 1, there exists a constant c3(q) > 0, depending at most
on q, such that for every collection P of N points in the unit square [0, 1]2,
we have

∫

[0,1]2
|D[P;B(x)]|q dx > c3(q)(logN)q/2.

(iv) There exists a constant c4 > 0 such that for every collection P of N points
in the unit square [0, 1]2, we have

∫

[0,1]2
|D[P;B(x)]|dx > c4(logN)1/2.

These are complemented by the following upper bound results.

(v) There exists a constant c5 > 0 such that for every natural number N > 2,
there exists a collection P of N points in the unit square [0, 1]2 such that

sup
x∈[0,1]2

|D[P;B(x)]| 6 c5 logN.

(vi) There exists a constant c6 > 0 such that for every natural number N > 2,
there exists a collection P of N points in the unit square [0, 1]2 such that

∫

[0,1]2
|D[P;B(x)]|2 dx 6 c6 logN.

(vii) For every fixed q > 1, there exists a constant c7(q) > 0, depending at most
on q, such that for every natural number N > 2, there exists a collection P
of N points in the unit square [0, 1]2 such that

∫

[0,1]2
|D[P;B(x)]|q dx 6 c7(q)(logN)q/2.

Here part (i) is the original result of Roth [31], while part (ii) is an improvement
of Roth’s bound (5) by Schmidt [34] in 1972. Part (iii), due to Schmidt [36] in 1977,
is a generalization of part (i). Part (iv), due to Halász [23] in 1981, is stronger than
both parts (i) and (iii).

Part (v), due to Lerch [29] in 1904, shows that part (ii) is best possible. Part
(vi), due to Davenport [20] in 1956, shows that parts (i) and (iv) are best possible.
Finally, part (vii), due to Chen [11] in 1980, is a generalization of part (vi) and
shows that parts (i), (iii) and (iv) are best possible.

In other words, all of these bounds are best possible, apart from the values of
the constants.

The situation is very different if we study the corresponding problems in higher
dimensions. Let K > 2 be fixed. For every x = (x1, . . . , xK) in [0, 1]K , consider
aligned rectangular boxes B(x) = [0, x1)× . . .× [0, xk). For every collection P of N
points in [0, 1]K , we can study the corresponding discrepancy function D[P;B(x)].

We can say quite a lot. In the next two collections of results, the various parts
correspond to those in Theorem RSHLDC.

Theorem RSC. We have the following lower bound results.

(i) There exists a constant c′1(K) > 0, depending at most on K, such that for
every collection P of N points in the unit cube [0, 1]K , we have

∫

[0,1]K
|D[P;B(x)]|2 dx > c′1(K)(logN)K−1.
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(iii) For every fixed q > 1, there exists a constant c′3(K, q) > 0, depending at
most on K and q, such that for every collection P of N points in the unit
cube [0, 1]K , we have

∫

[0,1]K
|D[P;B(x)]|q dx > c′3(K, q)(logN)(K−1)q/2.

These are complemented by the following upper bound results.

(vi) There exists a constant c′6(K) > 0, depending at most on K, such that for
every natural number N > 2, there exists a collection P of N points in the
unit cube [0, 1]K such that

∫

[0,1]K
|D[P;B(x)]|2 dx 6 c′6(K)(logN)K−1.

(vii) For every fixed q > 1, there exists a constant c′7(K, q) > 0, depending at
most on K and q, such that for every natural number N > 2, there exists
a collection P of N points in the unit cube [0, 1]K such that

∫

[0,1]K
|D[P;B(x)]|q dx 6 c′7(K, q)(logN)(K−1)q/2.

In part (vi), the generalization of Davenport’s result to higher dimensions is due
to Roth [33]. On the other hand, the techniques of Roth, Schmidt and Chen in
parts (i), (iii) and (vii) work well in all dimensions.

We also have the following partial results.

Theorem RHH. We have the following lower bound results.

(ii) There exists a constant c′2(K) > 0, depending at most on K, such that for
every collection P of N points in the unit cube [0, 1]K , we have

sup
x∈[0,1]K

|D[P;B(x)]| > c′2(K)(logN)(K−1)/2.

(iv) There exists a constant c′4(K) > 0, depending at most on K, such that for
every collection P of N points in the unit cube [0, 1]K , we have

∫

[0,1]K
|D[P;B(x)]|dx > c′4(K)(logN)1/2.

These are complemented by the following upper bound results.

(v) There exists a constant c′5(K) > 0, depending at most on K, such that for
every natural number N > 2, there exists a collection P of N points in the
unit cube [0, 1]K such that

sup
x∈[0,1]K

|D[P;B(x)]| 6 c′5(K)(logN)K−1.

(vii) There exists a constant c′7(K) > 0, depending at most on K, such that for
every natural number N > 2, there exists a collection P of N points in the
unit cube [0, 1]K such that

∫

[0,1]K
|D[P;B(x)]|dx 6 c′7(K)(logN)(K−1)/2.

Part (ii) is a simple consequence of part (i), whereas part (iv) is due to Halász
[23]. In part (v), the generalization of Lerch’s result to higher dimensions is due to
Halton [24] in 1960. Part (vii) is the special case q = 1 of part (vii) earlier.

Note that there is a substantial gap between the bounds in parts (ii) and (v),
and likewise between the bounds in parts (iv) and (vii). The question of reducing
these gaps is known as the Great Open Problem.
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In groundbreaking work, Bilyk, Lacey and Vagharshakyan have shown in 2008
that the lower bound in part (ii) can be improved somewhat. This follows a smaller
improvement by Beck [6] in 1989 in the special case K = 3.

Theorem BLV. For every K > 3, there exist constants c(K) > 0 and δ(K),
satisfying 0 < δ(K) < 1 and depending at most on K, such that for every collection
P of N points in the unit cube [0, 1]K , we have

sup
x∈[0,1]K

|D[P;B(x)]| > c(K)(logN)(K−1+δ(K))/2.

The case K = 3 is due to Bilyk and Lacey [9], while the generalization to K > 4
is due to Bilyk, Lacey and Vagharshakyan [10].

5. Trivial Errors and Blowing Them Up – Again

In this section, we briefly discuss the ideas of Roth in Theorem R. While the
ideas easily extend to higher dimensions, we shall confine our discussion here to
dimension 2.

Suppose that P has N points.
If we partition [0, 1]2 into 2N or more parts, then at least half of these parts

contain no points of P.
More precisely, choose an integer n such that 2n−1 < 2N 6 2n. If we partition

[0, 1]2 into 2n congruent rectangles, then at least half of these rectangles contain no
points of P.

Of course, we have to be very careful when points occasionally fall on the edges
of the rectangles. We therefore adopt the convention that all rectangles are closed
on the left and bottom and open on the right and top.

For instance, if P contains N = 26 points, then n = 6, and 2n = 64 > 52 = 2N .
Below, the picture on the left shows 64 rectangles of size 2−2 × 2−4, whereas the
picture on the right shows 64 rectangles of size 2−3×2−3. It is not difficult to check
that in either case, there are at least 32 rectangles with no points of P.

N = 26, n = 6, 2n = 64 > 52 = 2N

26 rectangles of size 2−2 × 2−4

!

!

!! !
!

! !

!

!

!

! ! !

!

!

! !
!

!

!!
!! !

!

N = 26, n = 6, 2n = 64 > 52 = 2N

26 rectangles of size 2−3 × 2−3

!

!

!! !
!

! !

!

!

!

! ! !

!

!

! !
!

!

!!
!! !

!

Suppose that a rectangle B is one of 2n congruent rectangles of area 2−n, and
contains no points of P. Then we have the trivial error

D[P;B] = Z[P;B]−N2−n = −N2−n < − 1
4 . (6)

We wish to blow up such trivial errors.
In particular, we wish to make assertions concerning the discrepancy D[P;B(x)]

with respect to rectangles of the form B(x) = [0, x1)× [0, x2), where x = (x1, x2).
We thus need to find some way of deducing such assertions from the information
concerning the discrepancy D[P;A] with respect to rectangles A not anchored at
the origin.
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Suppose that a rectangle A, with vertices x, y, z and w as shown below, does
not contain any points of P.

rectangle B of area 2−n contains no point of P

D[P;B] = Z[P;B] − N2−n = −N2−n < −1
4

xz

wy
A

Then we have some trivial error for D[P;A] similar to (6).
Below, the picture on the left shows the rectangle A and the rectangle B(x),

whereas the picture on the right shows the rectangle A and the rectangle B(y).
The + signs indicate areas counted, so that we have noted

µ(B(x)) and µ(B(x)) + µ(B(y))

respectively.+ red

⊕
++−

+−+−+−

+ red + green

⊕

⊕
++−

+−++−−

Below, the picture on the left shows the rectangle A and the rectangle B(z), whereas
the picture on the right shows the rectangle A and the rectangle B(w). The − signs
indicate areas counted negatively, so that we have noted

µ(B(x)) + µ(B(y))− µ(B(z)) and µ(B(x)) + µ(B(y))− µ(B(z))− µ(B(w))

respectively.+ red + green − blue

⊕

⊕

#
++−

+−++−−

+ red + green − blue − magenta

⊕

⊕

#

#
++−

+−++−−

In particular, we have

µ(B(x)) + µ(B(y))− µ(B(z))− µ(B(w)) = µ(A). (7)
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We can repeat this exercise, now counting points of P in the various areas instead
of areas, and conclude that

Z[P;B(x)] + Z[P;B(y)]− Z[P;B(z)]− Z[P;B(w)] = Z[P;A]. (8)

Combining (7) and (8), we conclude that

D[P;B(x)] +D[P;B(y)]−D[P;B(z)]−D[P;B(w)] = D[P;A].

Note that we have given a weight of +1 to the points x and y, and a weight of −1
to the points z and w.

More precisely, suppose that a rectangle B is one of 2n congruent rectangles of
area 2−n, and contains no points of P. Then we define an auxiliary function f on
rectangle B by writing f(x) = ±1 as shown in the picture below.

rectangle B of area 2−n contains no point of P

define an auxiliary function f on rectangle B by writing f(x) = ±1

B
+1

+1 −1
−1

Rademacher functions – well known orthogonal functions
This is an example of a Rademacher function, part of a system of well known
orthogonal functions.

Among the 2n congruent rectangles of area 2−n, there will be some rectangles B
which contain at least one point of P. In order to ensure that these rectangles do
not compromise the good work we have done so far, we make sure that they make
no contribution at all by defining an auxiliary function f on B by writing f(x) = 0.

Thus the auxiliary function f is defined on the unit square [0, 1]2 as shown in
the picture below.

rectangle B of area 2−n contains one or more points of P

define an auxiliary function f on rectangle B by writing f(x) = 0

B ∩ P = ∅

B ∩ P $= ∅

+1
+1 −1
−1

0

modified Rademacher functions – orthogonal functions
This is an example of a modified Rademacher function. The collection of such
functions are easily shown to be remain orthogonal.

This idea is a fundamental contribution of Roth, and the idea of orthogonality
plays an enormous role in the study of discrepancy theory, in both lower and upper
bound questions.



THERE IS NO INTEGER BETWEEN 0 AND 1 11

6. A Fourier Transform Approach

Much of the progress in the 1980s is made through the use of a Fourier transform
approach, introduced in the study of irregularities of integer sequences by Roth [32]
in 1964; see also Beck and Chen [7, Section 9.1].

Suppose that B is a measurable subset of the unit torus [0, 1]2, symmetric about
its centre. For every vector x in [0, 1]2, we can translate B by x to obtain the set
B + x.

P – set of N points in torus [0,1]2

B ⊂ [0,1]2 symmetric about its centre

translate B by x to obtain B + x

!"
#$

!"
#$

!
!
!
!
!
!
!
!
!
!"

x

B

B + x

Then

D[P;B + x] =

∫

[0,1]2
χB(x− y)(dZ −Ndµ)(y).

In other words, under translation, the function

D = χB ∗ (dZ −Ndµ)

is a convolution.
Within this convolution, χB is the geometry part, depends on B but not on P.

On the other hand, dZ − Ndµ is the measure part, depends on P but not on B.
Ideally, we wish to study the two parts separately, but the convolution proves to
be an obstacle.

The way to proceed is to consider Fourier transforms, and note that

D̂ = χ̂B · ( ̂dZ −Ndµ)

is an ordinary product. Writing φ = Ẑ −Nµ, we have the Parseval identity
∫

[0,1]2
|D[P;B + x]|2 dx =

∑

0 6=t∈Z2

|χ̂B(t)|2|φ(t)|2.

Using this idea, Beck can establish many interesting results.
Suppose that A is a closed convex set in the unit torus [0, 1]2, and consider

similar copies A(λ, τ,x) of A under contraction λ ∈ [0, 1], rotation τ ∈ T and
translation x ∈ [0, 1]2. For every collection P of N points in [0, 1]2, the discrepancy
function is given by

D[P;A(λ, τ,x)] = Z[P;A(λ, τ,x)]−Nµ(A(λ, τ,x)).

The following is a major result of Beck [4] in 1987.

Theorem B. Suppose that A is a closed convex set in the unit torus [0, 1]2 that
satisfies some minor technical condition. Then we have the following lower bound
results.

(i) There exists a constant c1(A) > 0, depending at most on A, such that for
every collection P of N points in the unit torus [0, 1]2, we have

∫

[0,1]2

∫

T

∫ 1

0

|D[P;A(λ, τ,x)]|2 dλ dτ dx > c1(A)N1/2.
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(ii) There exists a constant c2(A) > 0, depending at most on A, such that for
every collection P of N points in the unit torus [0, 1]2, we have

sup
λ,τ,x

|D[P;A(λ, τ,x)]| > c2(A)N1/4.

Here the minor technical condition says that A is not too thin, and is satisfied if
A contains a small disc of some fixed small positive radius.

These results are very close to best possible.

Theorem BC. Suppose that A is a closed convex set in the unit torus [0, 1]2. Then
we have the following upper bound results.

(iii) There exists a constant c3(A) > 0, depending at most on A, such that for
every natural number N , there exists a collection P of N points in the unit
torus [0, 1]2 such that

∫

[0,1]2

∫

T

∫ 1

0

|D[P;A(λ, τ,x)]|2 dλ dτ dx 6 c3(A)N1/2. (9)

(iv) There exists a constant c4(A) > 0, depending at most on A, such that for
every natural number N > 2, there exists a collection P of N points in the
unit torus [0, 1]2 such that

sup
λ,τ,x

|D[P;A(λ, τ,x)]| 6 c4(A)N1/4(logN)1/2. (10)

Here part (iii) is due to Beck and Chen [8], while part (iv) is due to Beck [3].
The two theorems above extend in a straightforward manner to the unit torus

[0, 1]K in higher dimensions K > 2, with the exponents 1/2 and 1/4 for N replaced
respectively by 1− 1/K and 1/2− 1/2K.

Next we study the corresponding problem when rotation is not present.
Suppose that A is a closed convex set in the unit torus [0, 1]2, and consider

now homothetic copies A(λ,x) of A obtained under contraction λ ∈ [0, 1] and
translation x ∈ [0, 1]2, with no rotation. For every collection P of N points in
[0, 1]2, the discrepancy function is given by

D[P;A(λ,x)] = Z[P;A(λ,x)]−Nµ(A(λ,x)).

Suppose again that A satisfies some minor technical condition as before. What
can one say about the quantities

∫

[0,1]2

∫ 1

0

|D[P;A(λ,x)]|2 dλ dx and sup
λ,x
|D[P;A(λ,x)]|

in this situation?
Beck [5] has given a partial answer to this question in 1988, and shown that

the answers depend on the geometry of the boundary ∂A of the set A. We do not
give Beck’s precise result here, but simply illustrate the difficulty of the problem
by highlighting two contrasting cases.

Suppose that A is a circular disc. Then there is de facto rotation, and the above
two theorems apply, so there exist constants c′1(A) > 0 and c′2(A) > 0, depending
at most on the circular disc A, such that for every collection P of N points in the
unit torus [0, 1]2, we have

∫

[0,1]2

∫ 1

0

|D[P;A(λ,x)]|2 dλ dτ dx > c′1(A)N1/2

and

sup
λ,x
|D[P;A(λ,x)]| > c′2(A)N1/4.
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Suppose next that A is an aligned rectangle. Then this becomes a problem very
much like the classical one studied by Roth, so there exist constants c′1(A) > 0 and
c′2(A) > 0, depending at most on the rectangle A, such that for every collection P
of N points in the unit torus [0, 1]2, we have

∫

[0,1]2

∫ 1

0

|D[P;A(λ,x)]|2 dλ dτ dx > c′1(A) logN

and

sup
λ,x
|D[P;A(λ,x)]| > c′2(A)(logN)1/2. (11)

Corresponding to the Great Open Problem, we may ask whether the estimate in
(11) can be improved to something of order of magnitude logN .

Furthermore, no result on the corresponding problem in any dimension K > 2
has been established. Indeed, a complete solution to the order of magnitude of

sup
λ,x
|D[P;A(λ,x)]|

for arbitrary closed convex sets A in the unit torus [0, 1]K in arbitrary dimensions
K > 2 is known as the Greater Open Problem.

For a simple introduction to the Fourier transform technique, see the survey by
Chen [13].

7. Some Probabilistic Techniques

In this section, we briefly describe the basic ideas underpinning the upper bounds
(9) and (10). For simplicity, let us assume that P is a set of N = M2 points in the
unit torus [0, 1]2. We can split the unit torus into N little squares S of area 1/N
in the obvious way, and place a point in the middle of each such little square.

set P of N = M2 points in [0,1]2, convex set B

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

Suppose first of all that B ∩ S = ∅. Then clearly

D[P;B ∩ S] = Z[P; ∅]−Nµ(∅) = 0− 0 = 0.

Suppose next that S ⊆ B, so that B ∩ S = S. Then clearly

D[P;B ∩ S] = Z[P;S]−Nµ(S) = 1− 1 = 0.

It follows that

D[P;B] =
∑

S
∂B∩S 6=∅

D[P;B ∩ S],

and so

|D[P;B]| 6
∑

S
∂B∩S 6=∅

|D[P;B ∩ S]| 6 #{S : ∂B ∩ S 6= ∅},

since |D[P;B ∩ S]| 6 1 trivially for every little square S.
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If B is convex, then #{S : ∂B ∩ S 6= ∅} 6 CN1/2, and this gives a trivial upper
bound CN1/2 compared to that given in (10). We need to aim to take the square
root of this trivial upper bound.

To achieve a better result, we randomise the N points by allowing each to move
in a uniform fashion within its own little square, and independently of each other,
and then apply large deviation type techniques in probability theory.

Fore more details, and a brief description on deducing the bound (9), see the
survey by Chen [14].

8. A Lattice Point Approach to the Classical Problem

Let us return to the classical discrepancy problem, and attempt to understand
the upper bounds in parts (v) and (vi) of Theorem RSHLDC.

The smarty pants may suggest the following obvious approach. For simplicity,
let us again assume that P is a set of N = M2 points in the unit square [0, 1]2. We
can split the unit square into N little squares of area 1/N in the obvious way, and
place a point in the middle of each such little square.

However, let us consider a rectangle B1 as shown in the picture below on the
left, and a slightly bigger rectangle B2 as shown in the picture below on the right.

set P of N = M2 points in [0,1]2

rectangle B1, slightly bigger rectangle B2

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

set P of N = M2 points in [0,1]2

rectangle B1, slightly bigger rectangle B2

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

Clearly, Z[P;B1] and Z[P;B2] differ by nearly M , and since the two rectangles
have almost identical areas, it follows that D[P;B1] and D[P;B2] differ by more
than M/2, and so the approach is doomed, as no probabilistic technique can reduce
the estimates to logarithmic size.

However, our smarty pants are not too stupid after all. A square lattice of points
still works, but one needs to rotate it. The question of lattice points in right-angled
triangles has been studied as long ago as the 1920s by Hardy and Littlewood [26, 27].

Consider the lattice Z2, and place a right angled triangle in such as way that
the horizontal and vertical sides sit halfway between consecutive rows and columns
respectively of lattice points.

We want to estimate the discrepancy between the actual number of lattice points
that fall into the triangle and the area of the triangle. Here, the triangle has been
placed to ensure that there is essentially no discrepancy arising from the horizontal
and vertical edges, and so any discrepancy must arise from the hypothenuse, as
shown in the picture below.

claim – a square lattice of points still works, but need to rotate it

Hardy and Littlewood (1922) – lattice points in right-angled triangles

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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In fact, any estimate on the discrepancy depends on arithmetic properties of the
slope of the hypothenuse. Thus we enter the area of diophantine approximation,
and in particular, badly approximable numbers, such as

√
2.

In short, if our smarty pants had rotated the square lattice by an angle θ such
that tan θ =

√
2, then they would not have looked so stupid after all.

Indeed, using a variant of this idea, as well as a very clever reflection principle,
Davenport [20] has established part (vi) of Theorem RSHLDC.

9. More on the Classical Problem

A very fruitful approach to upper bounds in the classical problem is given by
van der Corput point sets and their variants.

The van der Corput point set Ph of 2h points in [0, 1]2 is given by

Ph = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1}},
using dyadic expansions.

Below is a picture of the van der Corput point set P5 of 25 = 32 points.

Use of van der Corput point sets (from 1980):

• For simplicity, assume that N = 2s for some s ∈ N.

• Consider the set Ps = {(0.x1 . . . xs, 0.xs . . . x1) : x1, . . . , xs ∈ {0, 1}}.

• The set Ps has nice periodic structure.

• The picture below shows P5, containing 32 points.

One crucial property of the van der Corput point sets Ph is that many rectangles
in [0, 1]2 contains the expected number of points, under the convention that all
rectangles are closed on the left and bottom and open on the right and top. For
instance, we can partition the unit square [0, 1]2 into 25 = 32 congruent rectangles
in six different ways. In each case, each small rectangle contains precisely one of
the 32 points of P5.
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Another crucial property of the van der Corput point sets Ph is periodicity, best
illustrated by the picture below concerning the van der Corput point set P5.• If we only show [12 , 5

8 )× [0, 1), of area 1
8 , then there are 32× 1

8 = 4 points
of P5 in this rectangle, with vertical distance 1

4 apart.

• In fact, for any integers m and h satisfying 0 ≤ h ≤ s and 0 ≤ m < 2h,
the rectangle [m2−h, (m+1)2−h)× [0, 1) contains 2s−h points of Ps, with
vertical distance 2h−s apart.

• Any rectangle of the form [0, y1) × [0, y2) is contained in a union of at
most s+1 sets of the form [m2−h, (m+1)2−h)× [0, y2), where 0 ≤ h ≤ s
and 0 ≤ m < 2h. Each such set has discrepancy less than 1, and so the
discrepancy of the set [0, y1) × [0, y2) is at most s + 1 # log N . This
is the trivial estimate, obtained by Lerch in 1904 and is essentially best
possible for the extreme discrepancy!

• (C + Skriganov) For every s ∈ N, the set Ps of 2s points satisfies
∫

[0,1]2
|D[Ps;B(y)]|2 dy = 2−6s2 + O(s),

and so does not give desired upper bound.

Note that the vertical distribution of the points in the white rectangle is periodic.
This periodicity property permits the use of Fourier series.

Let us describe the use of van der Corput point sets to deduce Davenport’s
theorem, that there is a constant c6 > 0 such that for every natural number N > 2,
there exists a collection P of N points such that∫

[0,1]2
|D[P;B(x)]|2 dx 6 c6 logN.

Suppose that N = 2h, so that we are tempted to test the van der Corput point
set Ph. However, a result of Halton and Zaremba [25] says that

∫

[0,1]2
|D[Ph;B(x)]|2 dx =

h2

64
+ error of order h,

thus of order (logN)2, and so Ph will not give Davenport’s theorem. We need to
modify Ph by introducing a probabilistic parameter and taking an average.

The probabilistic variable in the argument of Roth [33] is translation. For this
to work, one needs the periodicity property of the van der Corput point sets. An
alternative approach by Chen [12] uses digit shifts as the probabilistic variable, and
does not require periodicity, and so has the benefit of working for sets other than
the van der Corput sets.

The van der Corput sets possess a third crucial property which is the basis of
the more recent breakthrough by Chen and Skriganov [15, 16].

Take ⊕ to be coordinatewise and digitwise addition modulo 2. Then (Ph,⊕) is
a group isomorphic to the additive group Zh2 .

The characters of such groups are the Walsh functions with values ±1. Below
are pictures of the first eight Walsh functions.

some Walsh functions defined on [0,1] with values ±1

Walsh functions form orthonormal basis for L2([0,1])

w4 w5 w6 w7

w0 w1 w2 w3

The Walsh functions form an orthonormal basis for L2([0, 1]).
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Furthermore, it is also well known that the 2-dimensional Walsh functions form
an orthonormal basis for L2([0, 1]2), and this leads to Fourier–Walsh series and
analysis on L2([0, 1]2), an analogue of the classical Fourier series and analysis on
L2([0, 1]2) based on the orthonormal system of exponential functions. We thus have
at our disposal a tool which is much better suited to understanding the intricacies
of the van der Corput point sets. For a survey of this area, the reader is referred
to the forthcoming survey by Chen and Skriganov [17].

10. Connections with Other Areas

The work of Bilyk, Lacey and Vagharshakyan [10] has highlighted connections
between various areas, via the small ball inequality. The small ball inequality in
probability theory and harmonic analysis in two dimensions is due to Talagrand [38].
An alternative proof, due to Temlyakov [40], follows a variant of Roth’s original
ideas by Halász [23] in discrepancy theory.

Work on the Great Open Problem in discrepancy theory is related also to the
small ball conjecture for brownian sheets in probability, as studied by Kuelbs and
Li [28], and by Dunker, Kühn, Lifshits and Linde [22], and also related to the
question of the entropy of mixed smoothness classes in approximation theory, as
studied by Temlyakov [39].

11. Applications to Numerical Integration

Suppose that f(x) is a function defined on the unit square [0, 1]2. The continuous
average of the function is given by the integral

I(f) =

∫

[0,1]2
f(x) dx. (12)

However, there are many such functions that arise in the practical world for which
we do not have enough technique to evaluate this integral. To overcome this, we
often take a set P of N points in [0, 1]2, where N is reasonably large, and calculate
instead the discrete average

S(f,P) =
1

N

∑

p∈P
f(p), (13)

and then use this as an approximation to the integral (12). Then the error of the
approximation is given by the difference

E(f,P) = S(f,P)− I(f). (14)

Suppose that B is a measurable subset of the unit square [0, 1]2. Consider the
special case when f is the characteristic function of B, so that

f(x) = χB(x) =

{
1, if x ∈ B,
0, if x 6∈ B.

Then

S(f,P)− I(f) =
Z[P;B]

N
− µ(B) =

D[P;B]

N
,

clearly a discrepancy problem.
Thus the study of the error of approximation (14) is a generalization of the

problem of discrepancy.
We also have the following remarkable observation of Woźniakowski [41] in 1991.
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Theorem W. Let C(2) denote the class of continuous real valued functions in
[0, 1]2, endowed with the Wiener sheet measure ν. For every function f ∈ C(2), let
I(f), S(f,P) and E(f,P) be defined by (12)–(14). Then

∫

C(2)

|E(f,P)|2 dν =
1

N2

∫

[0,1]2
|D[P ′;B(x)]|2 dx,

where the set P ′ is closely related to the set P, with P ′ = {(1, 1)− p : p ∈ P}.
An illustration is given below.

∫

C(2)
|E(f, P)|2 dν =

1

N2

∫

[0,1]2
|D[P ′;B(x)]|2 dx

P P ′

!!!
!!

! !! !! !! !
! ! !! !!!!!!! !! ! !

! ! !! ! !! ! !! ! !! ! !! ! !! ! !! ! ! !! ! ! !

! ! !! !! !! !! !! !! !! !! ! !

!!!!!!!!!

!!!!!!!!!
!!!!!

! ! !! !!!!!! ! !! !! ! !

!!!!!
!! !! !! !!

!!! !! !!!
!!!! !!!

!!! !!! !!! !!! !!! !!! !!! !!!! !!!!

!!! !! !! !! !! !! !! !! !!!

!!!
!!!
!!!

!!!
!!!
!!!

!!!
!!

!!! !! !!!
!!!! !! !!!

On the other hand, many physical or economical phenomena are governed by
many parameters, entailing functions of many real variables.

Suppose that f(x) is a function defined on the unit cube [0, 1]K , where the
dimension K is large, corresponding to the number of real variables that we require.
Again, we often cannot evaluate the integral

I(f) =

∫

[0,1]K
f(x) dx,

and instead take a set P of N points in [0, 1]K and evaluate the sum

S(f,P) =
1

N

∑

p∈P
f(p).

The corresponding discrepancy problem involves the function D[P;B(x)] in
[0, 1]K , concerning discrepancy with respect to rectangular boxes of the type

B(x) = [0, x1)× . . .× [0, xK),

where x = (x1, . . . , xK) ∈ [0, 1]K .
Here the best upper bounds are given by Halton [24] and Roth [33], with

sup
x∈[0,1]K

|D[P;B(x)]| 6 C1(K)(logN)K−1 (15)

and ∫

[0,1]K
|D[P;B(x)]|2 dx 6 C2(K)(logN)K−1. (16)

Now smarty pants will have us use square lattices. We can then obtain the
theoretically weaker, and indeed trivial, upper bounds

sup
x∈[0,1]K

|D[P;B(x)]| 6 C∗1 (K)N1−1/K (17)

and ∫

[0,1]K
|D[P;B(x)]|2 dx 6 C∗2 (K)N2−2/K . (18)
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For large values of K, the bounds (15) and (16) are better than the bounds (17)
and (18) only when the number of points N is very large and, indeed, beyond the
scope of computation at the current state of computer science. Woźniakowski has
coined this the curse of dimensionality.

For further reading on numerical integration, the reader is referred to the recent
monograph of Dick and Pillichshammer [21].
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